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AFFINE COMPLETE ALGEBRAS ABSTRACTING
DOUBLE STONE AND KLEENE ALGEBRAS

MIROSLAV HAVIAR

ABSTRACT. In this paper we generalize R. Beazer’s characterization of affine complete double
Stone algebras with a non-empty bounded core [1] to the class of double K»-algebras with
a non-empty bounded core. These algebras have appeared in the literature as a common
generalization of double Stone and Kleene algebras. We show that Post algebras of order
3 are the only locally affine complete (in a stronger sense of [12]) double K»-algebras with
a non-empty bounded core and the only finite affine complete double K»>-algebras. Then
introducing some extension properties for congruence-preserving functions we characterize
(infinite) affine complete double Ka-algebras with a non-empty bounded core. We finally
derive the Beazer result for double Stone algebras.

1. Introduction. The problem of characterizing affine complete algebras was posed
by G. Gréitzer in [6] (Problem 6). Recall that an n-ary function f on an algebra A is
compatible if for any congruence 6 on A, a; = b; (0) (a;,b; € A), i = 1,...,n yields
flar,...,;an) = f(b1,...,by) (0). A polynomial function of A is a function that can be
obtained by composition of the basic operations of A, the projections and the constant
functions. Clearly, all polynomial functions of A are compatible. An algebra A is called
affine complete if the polynomial functions of A are the only compatible functions. Hence
in general, affine complete algebras have ‘many’ congruences.

In [4] G. Gritzer proved that every Boolean algebra is affine complete. In [5] he showed
that affine complete bounded distributive lattices are those which do not have proper
Boolean subintervals. A list of particular varieties in which all affine complete members
were characterized can be found in [3] and its up-to-date version in [10].

Two ‘local’ versions of affine completeness have been studied in the literature. A weaker
notion of local affine completeness can be found e.g. in [16]. According to the stronger
meaning of this concept, which we adopt here, an algebra A is locally affine complete if
any finite partial function in A™ — A (i.e. function whose domain is a finite subset of A™)
which is compatible (where defined) can be interpolated by a polynomial of A (see e.g.
[12]).

In [1] R. Beazer characterized affine complete algebras in the class of double Stone
algebras with a non-empty bounded core. A generalization of this result, to the class of
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so-called quasi-modular double p-algebras, was presented in [9] where also locally affine
complete Stone algebras (in the stronger sense of [12]) were characterized. Recently, affine
complete Kleene algebras were successfully described in [11]. This allows us to investigate
affine completeness in the class of double Ks-algebras which are known as a common
generalization of double Stone and Kleene algebras [2]. This investigation, which uses
techniques similar to those in [8] and [9], is the object of this paper.

First we show that for any double Ks-algebra L with a non-empty bounded core K (L),
(locally) affine completeness of L yields (locally) affine completeness of K (L) as a bounded
distributive lattice (Theorem 3.3). Consequently, we get that Post algebras of order 3 are
the only locally affine complete double Ks-algebras with a non-empty bounded core and
the only affine complete algebras among the double Ks-algebras with a finite skeleton and
a finite non-empty core (Corollaries 3.6 and 3.9). Then we introduce some extension prop-
erties for compatible functions and with their use we reduce the question of characterizing
(infinite) affine complete double K»-algebras with non-empty bounded core to those ques-
tions for Kleene algebras and distributive lattices (Theorem 3.17) where the answers are
already known. We finally derive from our characterization the Beazer result for double
Stone algebras.

2. Preliminaries.

MS-algebras were introduced by T.S. Blyth and J.C. Varlet in the beginning of eigh-
tees as a nice generalization of de Morgan and Stone algebras and have shown a fruitful
development during the previous decade (cf. [2]).

Let us recall that an MS-algebra is an algebra (L;V,A,°,0,1) of type (2,2,1,0,0) where
(L;V,A,0,1) is a bounded distributive lattice and © is a unary operation such that for all
z,y € L

(1) x < z°°,

(2) (xAy)® =2V y°,

(3) 1° = 0.

One can show that the following rules of computation hold further in L:
(xVy)® =a°Ny°,
‘,I;,OOO — 1,07
0° =1.

The class of all MS-algebras is equational. The subvariety Ko of MS-algebras is defined

by two additional identities
(4) rAx® =2x°° Ax° and
(5)  (@Az?)VyVvy® =yVy°,
The subvariety M of de Morgan algebras is defined by the identity (6) x = 2°°. Another
important subvarieties of MS-algebras are the subvarieties B, S, K of Boolean, Stone and
Kleene algebras, respectively which are characterized by the identities B: xzvz° =1, S:
xAz° =0 and K : (5), (6), respectively.

Let L be an MS-algebra from the subvariety K,. Then
(i) L°° ={x € L; x = x°°} is a Kleene subalgebra of L ;

(ii) LN ={x Az°; x € L} is an ideal of L;
(iii) LY = {z vV z°; z € L} is a filter of L.
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Now we recall basic facts about double MS-algebras. A double MS-algebra is an al-
gebra (L;V,A°,7,0,1) of type (2,2,1,1,0,0) such that (L;V,A,°,0,1) is an MS-algebra,
(L; v, A,T,0,1) is a dual MS-algebra, and the unary operations are linked by the identities

2°T = 2°° and xt° =gzTt.

Obviously, every de Morgan algebra (L;V,A,”,0,1) can be made into a double MS-
algebra if one defines z° = z+ = Z. Conditions under which an MS-algebra can be
made into a double MS-algebra are known (cf. [2]). It is proved that the subvarieties B,
K, M of MS-algebras are dense, i.e. all algebras in these subvarieties can be made into
double MS-algebras. Further, bistable subvarieties of MS-algebras are defined as those V
that for every double MS-algebra (L;V,A,°,T,0,1), whenever (L;V,A,°,0,1) € V, then
(L;V,A,T,0,1) € V too. It is known which subvarieties of MS-algebras are bistable and
which fail (cf. [2]). Among first, the subvarieties B, S, K, SVK and M are included, among
non-bistable one can find the subvariety Ks. It is true that the identity (5) implies the
dual one, (5¢) (zVaT)AyAyt =y Ayt however for the identity (4), which defines
the subvariety Ko V M, this is not the case. Therefore the variety of double Ks-algebras
is defined by the identities (4), (5) and (4¢) zVvat =ztt va™.

It is known that there are precisely 22 non-isomorphic subdirectly irreducible double
MS-algebras. The lattice of subvarieties of double MS-algebras has cardinality 381 (cf.
[2]).

Some subsets of double MS-algebras play a significant role in investigations. By the
skeleton S(L) of a double MS-algebra L is meant a de Morgan algebra L°° = {x € L; z°° =
z}=L*tt ={z € L; 2™t =z}. If L is a double K»-algebra then S(L) is a Kleene algebra.
Further, in a double MS-algebra L, 2° < x+ and consequently 7 < < 2:°° hold for any
element . Therefore, the notion of the core K(L), known for double Stone algebras, can
be generalized for double Ks-algebras as follows:

K(L)y={xzVvz°; xe L}n{xAzt; x € L}.

Double Stone algebras L which have a one-element core, |K(L)| = 1, are named Post
algebras of order 3. They form a subclass (not a subvariety) of the variety of so-called
three-valued Lukasiewicz algebras which are double Stone algebras defined by the identity
(xAzT)V (yVy®)=yVy® (cf. [1]). The variety of three-valued Lukasiewicz algebras is
known to be arithmetical (i.e. congruence-distributive and congruence-permutable).

An important role is played by so-called determination congruence which is defined as
follows:

r=y (®%) iff 2°=y° and 2t =y,
For other properties of MS-algebras and double MS-algebras we refer the reader to [2].

We finally mention few facts concerning the affine completeness. We start with basic
Gratzer’s results.

2.1 Theorem ([4]). Any Boolean algebra is affine complete.
Let us recall that a function f : L™ — L on a lattice L is order-preserving if x; < y;

(xi,y; € Ly i=1,...,n) implies f(z1,...,2n) < f(y1,...,Yn) where < is the lattice order.
It is well-known that every polynomial function on a lattice is order-preserving.
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2.2 Theorem ([5; Corollaries 1,3]). Let L be a bounded distributive lattice. The following
conditions are equivalent.

(1) L is affine complete;

(2) every compatible function on L is order-preserving;

(3) L contains no proper Boolean interval.

Now we present the Beazer result for double Stone algebras and its immediate conse-
quences.

2.3 Proposition ([1; Theorem 5]). Let L be a double Stone algebra with a non-empty
bounded core K(L). The following conditions are equivalent.

(1) L is affine complete;

(2) K(L) is an affine complete distributive lattice;

(3) No proper interval of K (L) is Boolean.

2.4 Corollary ([1; Corollary 6]). Any Post algebra of order 3 is an affine complete double
Stone algebra.

2.5 Corollary ([1; Corollary 7]). A finite double Stone algebra having a non-empty core
is affine complete if and only if it is a Post algebra of order 3.

In [8] it was shown that if a Ko-algebra L is affine complete then the filter LY is (as a
lattice) affine complete, too. Since by 2.2 a finite distributive lattice LV is affine complete
if and only if |[LY| = 1, we immediately get

2.6 Proposition ([8; Corollary 4]). Let L be a Ky-algebra such that LV is finite. Then
L is affine complete if and only if L is a Boolean algebra.

In a Kleene algebra L, the filter LV is isomorphic to the ideal L”. Hence we have

2.7 Corollary. Let L be a Kleene algebra such that L is finite. Then L is affine complete
if and only if L is a Boolean algebra.

The following few facts are considered to be a part of ‘folklore’:

2.8 Proposition. If a lattice L contains a Boolean interval [a,b] (a < b), then L is not
affine complete.

Proof. Define a function f : L — [a,b] by f(z) = ((x V a) Ab) , where ' denotes the
complement in the Boolean interval [a,b]. For any non-trivial congruence 6 € Con(L) and
=y (0) (r, y€ L) we have ((zVa)Ab) = ((yVa)Ab) (0),1ie fis a compatible
function of L. But f is not order-preserving because f(a) = b, f(b) = a, therefore f
cannot be represented by a lattice polynomial. Hence L is not affine complete. [

2.2 implies that a finite distributive lattice L is affine complete if and only if |L| = 1.
Now 2.8 yields that the assumption about distributivity of L can even be dropped.

2.9 Corollary. A finite lattice L is affine complete if and only if |L| = 1. O
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2.10 Proposition. For any lattice L the following are equivalent:

(1) L is locally affine complete;
(2) every finite partial compatible function of L is order-preserving;
(3) [L]=1.

Proof. (1) = (3): Let L be locally affine complete and let a,b € L, a < b. The function
f ={(a,b),(b,a)} is a finite partial compatible function on L, thus by hypothesis it can
be interpolated on {a,b} by a polynomial of L, which is an order-preserving function. But
we have f(a) =b, f(b) = a, a contradiction.

(2) = (3): If |L| # 1 then we can define the same partial function f as above which
contradicts (2).

The rest of the proof is trivial. [

The following result (see [13] or [14]) characterizes those varieties of which all members
are locally affine complete as arithmetical.

2.11 Theorem. A variety V is arithmetical if and only if for each algebra A € V, a finite
partial function f on A can be interpolated by a polynomial function of A just in the case
f is Con(A)-compatible.

Since the class of the Post algebras of order 3 is contained in the arithmetical variety
of the three-valued Lukasiewicz algebras, we immediately get

2.12 Corollary. Every Post algebra of order 3 is locally affine complete.

We conclude with a technical lemma which will be applied in Section 3 (for D being a
Boolean algebra and a bounded distributive lattice, respectively; its proof, which can be
found in [7] or [9], will be repeated here as it is not long and we want this paper to be
self-contained.)

2.13 Lemma. Let D be any algebra such that its reduct is a bounded distributive lat-
tice (D,V,A,0,1) and the algebra D is a subdirect product of 2-element algebras. Let
f',g" : D™ — D be (partial) compatible functions with domains F' and G (F,G C D"),
respectively, let S := F NG and let SN {0,1}" # @&. For any (0,1)-homomorphism
h: D — {0,1} between the algebra D and a 2-element algebra {0, 1}, denote h(S) :=
{(M(z1),---,h(xy)) € {0,1}™; (21,...,2,) € S} and let h(S) = h(S N {0,1}") hold for
every such h. Then f' = ¢’ identically on S if and only if f' = ¢’ identically on SN{0,1}".

Proof. Let f' = ¢’ identically on S N {0,1}". Suppose on the contrary that there exists
an n-tuple (dy,...,d,) € S such that f'(dy,...,d,) =a#b=g'(dy,...,dy). Since a # b
in D which is a subdirect product of 2-element algebras, there exists a ‘projection map’
h: D — {0,1}, which is a (0, 1)-homomorphism between the algebra D and some algebra
{0,1}, such that h(a) # h(b). Define functions f}, g5 : h(S) — {0,1} by the following
rules:

F5(h(z1), ..., h(xn)) = h(f (21, ..., 20)),

gs(h(x1), ..., h(zy)) = h(g' (21,...,2,)) where (z1,...,z,) € S.
Obviously, f5, g4 are well-defined, since f’, g’ preserve the kernel congruence of the ho-
momorphism h. Obviously, fi = g identically on h(S), because h(S) = h(S N {0,1}"),
h(0) =0, h(1) =1 and f’ = ¢’ identically on S N{0,1}". Therefore
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h(a) = h(f'(dy, ... dn)) = fa(h(d1),. .., h(dn)) = g5(h(dy1), ..., h(dn)) =
h(g'(di,...,d,)) = h(b), a contradiction. Hence f’ = ¢’ identically on S. The proof is
complete. [

We finally mention that in order to abbreviate some expressions, we shall often use
the notation x for an n-tuple (z1,...,x,), and f(x) for f(z1,...,z,) in the next section.
Further, X° and %% will denote (23, ...,73) and (z7,...,2;}), respectively, (XV k)Al will
abbreviate ((z1 V k)AL ..., (z, V k) Al), etc.

3. Affine completeness.
We start with a canonical form of any polynomial function on a double MS-algebra.

3.1 Lemma. Any polynomial function f(zy,...,x,) on a double MS-algebra L can be
represented in the form

f(:t:l,...,a:n):~~ V (a(il,jl,...,in,jn)/\m?Am{lA---Axﬁbnsz'L")

i 7j€{_27_170a17273}n7 ; <3
and dually, in the form

FlE1, . an) = A (Bli1, 1y -+ +yliny Jin) VT2V 200V ooV e v gin)
i,je{-2,-1,0,1,2,3}", i <j

where \/ and )\ are taken over all vectors i = (i1y e yin), j = (J1y---yJn) €

{-2,-1,0,1,2,3}", the coefficients (i1, J1,--5%n,Jn)s B(i1,J1, -« sin,jn) € L and

z2, 271, 20 21, 2% and 22 denote z°°, 2°, x,x T, x+t, and 1, respectively.
Proof. Tt follows from the following facts:

(i) for every x € L x°F = x°°, zT° = g+t z°°° = z° gttt = g+ and 2° <
ot ot <z < x°°

(i) for every z,y € L (zVy)° = 2°ANy°, (xAy)° = 2°Vy® and (z Ayt =
gt vyt (@vy)t=at Ayt

(iii) the lattice L is distributive. O

3.2 Lemma. Let L be a double Ky-algebra with a non-empty core K(L). Then for any
z,y€ K(L) z°<y and zt >y.

Proof. 1t follows from the facts that any element of K (L) can be represented in the form
aVa® as well as bAbT for some a, b € L, and that the identities (4),(5), (5%) hold in L. O

3.3 Theorem. Let L be a double Ks-algebra with a non-empty bounded core K(L). If
L is (locally) affine complete then K (L) is a (locally) affine complete distributive lattice.

Proof. Let L be (locally) affine complete . Let f’ be an n-ary (finite partial) compatible

function of the lattice K(L) = [k,[]. Define a (finite partial) function f : L™ — L by
fx1,..cozn) = f((xa VE)AL ..., (x, VE)AD).

Obviously, f/ = f | K(L)™ and f is a (finite partial) compatible function of the algebra L

(in local version we can always take f = f’ to assure a finite domain of f). Indeed, if § is a

congruence of L and x; = y; (0), i = 1,...,n, then (x; VE)Al = (y; VE)AL (), thus we have

(where f’is defined) f'((z1VE)AL, ..., (x,VE)AL) = f'((y1 VE)AL ..., (ynVE)AL) (0 | K (L))
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as f’ is compatible on K (L) (where defined), whence f(x1,...,2,) = f(y1,---,yn) (0).
Therefore by 3.1 we can write for x1,...,x, € K(L) (where f’ is defined)
(a) .]fl(}z):f‘()z):~~ V B ~(a(i17j17"'7in7j’n)/\$zll/\‘T{l/\”'/\m%n/\mzln)'
ije{-2,-1,0,1,2,3}7, i <j

By 3.2 and the fact that f/(X) € K(L), the terms z;" can be omitted in (a). Further, the
polynomial obtained can be, with use of the distributive laws and the relations z° < z*
and o1 < z < 2°°, rewritten in the form
(b) A (B Gty -+ v ins fin) VTNV TV -V @l v i),

ije{—2,-1,0,2,3}", 1 <j
Now again from 3.2 and f'(x) € K(L) it follows that the terms z$ can be omitted in (b).
So we get
() f'(%) = A (B(i1, 41, - - ins Jn) VLV @]V -V aln Vo).
i.je{-2,0,2,3}", 1 <]

Now we see that f’ is order-preserving (where defined). The assertion follows from 2.2 (in
local version from 2.10). O

3.4 Proposition. If a double Ks-algebra L is (locally) affine complete then the Kleene
algebra S(L) = L°° is (locally) affine complete, too.

Proof. Let L be a (locally) affine complete double Ko-algebra. Let f’ be an n-ary (finite
partial) compatible function on S(L). Define an n-ary (finite partial) function f on L
by f(z1,...,2n) = f(25°,...,25°). Obviously, f is compatible since f’ is compatible
(where defined), so by hypothesis f can be represented (where defined) by a polynomial
p(z1,...,2,) of L. Hence for all x = (z1,...,z,) € (L°°)" (where f’ is defined) we have
f(x) = f(x) = p(x) = p(x)°° as f'(x) € L°°. Clearly, in p(z1,...,2,)°° all constants are
elements of L°°, thus f’ can be represented (where defined) by a polynomial of S(L). O

3.5 Lemma. Local affine completeness of the Kleene algebra S(L) yields local affine
completeness of the lattices S(L)" and S(L)V.

Proof. We know that in a Kleene algebra S(L), the ideal S(L)" and the filter S(L)V are
isomorphic. Let f : F C (S(L)")" — S(L)" be a finite partial compatible function of
the lattice S(L)". We claim that f also preserves the congruences of the Kleene algebra
S(L) where defined. Indeed, if 6 is a congruence of S(L) and (z1,...,%n), (Y1,---,Un) €
F, z;=vy; (0), i=1,...,n, then f(z1,...,2,) = f(y1,...,yn) (0 | S(L)") as f preserves
the lattice congruence 6 [ S(L). Now local affine completeness of S(L) yields that for all
X = (21,...,2,) € F, f(X) can be written as in (a) of the proof of 3.3. However, now in (a)
we have only terms z; and x; because 7°° = zt+ =z and #° = x* hold in S(L). Since
z; € S(L)" are of the form z; = a* Aat*, we have 2] = a*Vvatt = avat > aTAatt = 14
by (4%), (5%), consequently the terms z; can be omitted. Hence f is order-preserving

(where defined). By 2.10, S(L)" is locally affine complete. [J

3.6 Corollary. A double Kj-algebra with a non-empty bounded core K (L) is locally
affine complete if and only if it is a Post algebra of order 3.

Proof. If K(L) is locally affine complete then by 3.3 and 2.10, |K(L)| = 1. Further, by 3.4,
3.5 and 2.10 again, |S(L)"| = |S(L)Y| = 1. Hence for any x € L, 0 = 2° Az°° = x Az° and
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l=ztvaztt =z Vvat. Hence L is a double Stone algebra (S(L) is a Boolean algebra)
and consequently L is a Post algebra of order 3. The converse follows from 2.12. [

From now we shall deal with the affine completeness only.

3.7 Corollary. Let L be a double Ks-algebra such that the ideal L™ = {x ANx°; x € L} C
S(L) is finite. Then L is affine complete if and only if L is an affine complete double Stone
algebra.

Proof. 1f L is an affine complete double Ky-algebra then by 3.4 the Kleene algebra S(L)
is affine complete, too. Since S(L)» C L” and L" is finite, S(L) is a Boolean algebra
by 2.7. Therefore for any z € L, 2° V 2°° = 1 and 2+ A 2Tt = 0, hence (as in 3.6)
rAx°=2°A2°°=0and x Vot =zTT Vot =1, ie. L is a double Stone algebra. [

3.8 Corollary. A double Ks-algebra with a finite skeleton is affine complete if and only
if it is an affine complete double Stone algebra .

3.9 Corollary. A double Ky-algebra L with a finite skeleton and a finite non-empty core
(in particular, a finite double Ks-algebra) is affine complete if and only if L is a (finite)
Post algebra of order 3.

Proof. Let L be affine complete . By 3.8, L is affine complete double Stone algebra and
by 3.3 and 2.9, |K(L)| = 1. Hence, L is a Post algebra of order 3. O

Next, by L we always mean an (infinite) double Ks-algebra with a non-empty bounded
core K(L) = [k,l]. Obviously, a mapping ¢ : L — K(L), ¢(z) = (z V k) Al is a lattice
homomorphism. We abbreviate by ¢(x) the n-tuple (XVE)Al = ((z1VE)AL ..., (x,VE)AL).

3.10 Lemma. Every element of L can be decomposed in the form
(d) z=xTTV(xz®°A(xVE)Al).

Proof. We shall show that for any a € L, a = a®°° A (a V k). By the distributivity of L,
a®® A (aVk)=aV(a®° Ak). It suffices to show that a°° Ak = a A k. Suppose on the
contrary that a Ak < a® A k. Then for x =a°° ANk, y=a° ANk, z=a ANk we have
cAy=a °ANa° Nk=aNa°Nk=aNa®=2zAy
as k = cV ¢® for some ¢ € L and (4), (5) hold,
xVy=(a°Va°) Nk=k=(aVa®)Nk=2zVy.
Hence, {aAa®, z, y, x, k} is a five-element non-modular sublattice of L (pentagon), which
contradicts to the distributivity of L.
Hence in L we have
x=1zNA(xVEk)
and dually,
r=zttV(zAl).
These two equations imply (d). O

We recall that (o(x), p(x°), 9(x°°), p(xT), (x*T) (£ € L™) in the next definition is an
abbreviation for the 5n-tuple ((z1 VE)AL ..., (xn VE)AL (2SVE)AL ..., (2o VE)AL (25°V
EYANL . (2 VE)AL (2T VEYAL ..., (zE VE)AL (] TVE)AL ... (zFT VE)AL.
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3.11 Definition. We shall say that L satisfies an ‘extension property’

(EC) if for any compatible function f : L™ — L, the partial function fj : K(L)" —
K (L) defined on the core such that for all x € L™
T (@(%), 0(%°), p(X°°), p(xF), p(XH)) = o(f(%))
and f}, is undefined elsewhere can be extended to a total compatible function of
the lattice K(L).

3.12 Lemma. The partial function fj, in the preceding definition is a (well-defined)
partial compatible function of the lattice K (L).

Proof. We associate to any congruence g of the lattice K(L) an equivalence relation 6,
on L defined by the rule
(e) ==y (0) iff p(a) = p(y') (Ok) for all i € {—2,-1,0,1,2},

where 2° =z, 2! = 2™, 2? = 2%, 27! = 2°, 72 = 2°°. One can easily verify that 0, is
a congruence on L. Let  ¢(z!) = ¢(y!) (0k) for some elements z;,y; € K(L), i=1,...,n
and all j € {—2,—-1,0,1,2}. Then xz; =y; (A1), thus f(X) = f(7) (AL) as f is compatible
on L. Now by (e) again ¢(f(X)) = ¢ (f(¥)) (fk), i.e. ff preserves the congruences of
K (L) where defined. To show that fz is well-defined, it suffices to use 0x = Ag(r), the
smallest congruence of K(L). O

3.13 Proposition. Let one of the following conditions hold in L:
(i) L is affine complete;
(ii)) K (L) is simple (i.e. has only trivial congruences).

Then (EC) is fulfilled in L.

Proof. (i) For the function fj associated to a compatible function f : L™ — L we define
a function f; : L™ — L by f1(X) = ¢(f(X)) . This is compatible on L, hence it can be

represented by a polynomial p(z1,...,z,) of L. Using the rules of computation for ° and
T, p(X) can be rewritten as [(x,x°,x°°,xT,xTT) for some lattice polynomial [(z1,...,Ts,),
oo .+ .++

i.e. as a lattice polynomial in which terms x;, 7, x7°, z;", ;" stand for variables. Further,

using the homomorphism ¢, one can show that for all x € L™

f(@(X), ... 0(xTT)) = f1(%) =p(X) = 0(p(X)) =1'(¢(%),..., p(X*T)),
where all constants in I” are of the form (aVk)Al, i.e. I'(x1,...,z5,) is a polynomial of the
lattice K (L). Now, of course, I’ can be chosen as the required total compatible extension
of the partial function fJ,.

(ii) The statement is obvious as any total extension of f is compatible. [

3.14 Lemma. Let f : L™ — L be a compatible function on L. Let f$, ff : S(L)*" —
S(L) be partial functions such that for all (zq,...,x,) € L"

oS, .28, xf, . oh) = f(zy,. .., 10)°°,

fH@S,.. 22,z o oh) = f(zy,. .. z,)tT

and f2, fI are undefined elsewhere. Then f2, fi are well-defined and preserve the

congruences of S(L) where defined.
Proof. Obviously, f2, fi are well-defined since z{ = y?, xj yf 1=1,...,nyield z; =

yi(®S) (the determination congruence), which follows f(x) = f(7)(®%), thus f(X)°° =
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f(3)°°, fx)TT = f(y)*T. Further, for any congruence gy of S(L) we define an equiv-
alence relation 0 on L'by = =y (0L) iff 2° =y° (0sr)) and 27 =y (Agz)). Since
S(L) is a subalgebra of L, 6, is obviously a congruence of I containing fg(z). Similarly
as in Lemma 3.12 one can now easily show that f2, f; preserve the congruences of S(L)
where defined. O

3.15 Definition. We shall say that L satisfies an ‘extension property’

(ES) if for any compatible function f : L™ — L, the partial functions f¢, f}:S(L)*" —
S(L) defined as in 3.14 can be extended to total compatible functions of the Kleene
algebra S(L).

3.16 Proposition. The extension property (ES) concerning the skeleton is fulfilled in L
whenever one of the following conditions holds:

(i) L is affine complete ;

(ii) S(L) is a Boolean algebra;

(iii) S(L) is simple.

Proof. (i) Let L be affine complete and f : L™ — L be a compatible function on L. We
proceed similarly as in 3.13. Concerning the function f? associated to f, we define a
function f; : L™ — S(L) by f1(x) = f(x)°°. Clearly, f; is compatible on L, thus it can be
represented by a polynomial p(z1,...,z,) of the algebra L. Since for any x € L™, f1(x) €
L°°, we have p(x) = p(~)° = p(x )++ and using the laws for °© and *, p(x )°° can be
rewritten as k(z$,...,22,z7,...,x}) for some polynomial k(wz1,...,7s,) of the Kleene

algebra S(L). Hence for all x e L™

fOE0,XT) = f(%)°° = p(%)°° = k(x°,xT)
showing that k(zi,...,%2,) can serve as the required total compatible extension of the
partial function f2. The case of f; is analogical.

(ii) If S(L) = L°° = L** is a Boolean algebra, then for any z € L, 0 = 2°°Az°® = zAz°
by (4), and dually, 1 =27t Vvaot =2 Vvat by (49). Thus L is a double Stone algebra.
Let S be the domain of f2, i.e.

S={(x°x"); xe L"} C S(L)*"
One can easily verify that the function f2 can be interpolated on the set S N {0, 1}%" by
a Boolean polynomial function b : S(L)*" — S(L) defined as follows:
b(xy,. .., Ton) = \V (Fo(A, D) ATT A Axde Azl A A Db
(a,b)esn{0,1}2n
where 20 = z;, vl = 2] = 22 = 2.

We shall verify that the assumptions of Lemma 2.13 are satisfied for the Boolean algebra
S(L) = (S(L) V,A,,0,1) and the functions fJ and b. It is easy to see that for z; =
0, (z2,z]) = (1, 1) and for z; = 1, (2%,z]) = (0,0). Hence SN{0,1}>" # & and we claim
that for any Boolean homomorphlsm h:S(L)— {0,1}, h(S) = h(S N {0,1}2m).

If for (x°,%T) € S we have h(z$) = 1, then also h(z]) = h(z§ V z]) = h(zF) vV h(z]) =
1. In this case (h(x?9),h(z])) = (1, 1) = (h(1),h(1)). If (h(x ) h(z;)) = (0,0) then
trivially (h(1°),h(17)) = (h(0),h(0)) = (0,0) = (h(z3),h(z;)). The remaining case is
(h(z9),h(x;)) = (0,1). Since we assume that L has a non-empty core K(L) = [k,I],

7 7
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we have (h(k°),h(k*)) = (h(0),h(1)) = (0,1) = (h(x?),h(x])). We have showed that
h(S) = h(S N{0,1}?").

Applying Lemma 2.13 we get that fS = b identically on the whole set S, hence the
polynomial function b is the required compatible extension of f2 on the skeleton S(L). For
fi one can proceed in the same way.

(iii) If S(L) is simple, then both total extensions of f¢, f; are compatible. [

3.17 Theorem. Let L be an (infinite) double Ks-algebra with a non-empty bounded core
K(L). The following conditions are equivalent.
(1) L is affine complete ;
(2) (i) K(L) is an affine complete distributive lattice and

(ii)) S(L) is an affine complete Kleene algebra (cf. [11]) and

(iii) (EC) and

(iv) (ES).
Proof. The necessity follows from Theorem 3.3 and Propositions 3.4, 3.13 and 3.16. To
prove the converse, let f : L™ — L be a compatible function on L. By Lemma 3.10 we can
write

(f) fX)=FfR)TTV(f(X)°A(f(X)VE)AL) forall x e L".
To replace (f(x)VE)AL, f(x)°° and f(x)*" in (f) by polynomials of L, we take the partial
functions fj and f2, fi associated to f as in 3.11 and 3.14. By (EC) and (ES), these

partial compatible functions can be extended to total compatible functions fi(z1,...,zs,)
and fo(x1,...,%2,), fa3(x1,...,22,) of K(L) and S(L), respectively, which by hypothesis
can be represented by polynomials py(z1,...,2s,) and pa(z1, ..., Tan), p3(T1,...,T2,) of

K (L) and S(L), respectively. Therefore in (f),

f(i) = p3()~(07 )~(+) \ [pZ(iov i+) Apl(@(i)v (P(io)7 ceey (p(i++)]
for all x € L™, thus f can be represented by a polynomial of the algebra L. [J

Now we derive the Beazer characterization of affine complete double Stone algebras
with a non-empty bounded core (Proposition 2.3). The equivalence of (2) and (3) in 2.3
is known from 2.2, thus we show the equivalence of (1) and (2).

(1) = (2) of 2.3 is immediate from 3.3. Now let in a double Stone algebra L the core
K(L) = [k,l] is affine complete, i.e. K(L) does not contain a proper Boolean interval.
Since the skeleton S(L) is a Boolean algebra, by 3.16 and 3.17 it only remains to show
(EC). We first prove the following two lemmas.

3.18 Lemma. Let L be a double Stone algebra with a non-empty bounded core K (L) =
[k,l] and x,y € L. Then

p(z°) = o(y°) iff p(z°°) =p(y>°) and

p(at) =p(y) i pa™h) =p(y*™).
Proof. Let o(zt) = p(y*). The identities T A 2™ = 0 and zT vV 2™t = 1 imply
e(xt)ANp(ztt) =k, p(xT) Vp(xtT) =1 for any = € L. Hence

P th) = (el A ely™) V(') = (p) v o(a™ ) Alp(y™) V(') =

e(ytr) v o(att).
In the same way one can show ¢(y™1) = p(y*+) V p(zT1). The converse statement as
well as the proof of the first one are analogical. [J
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3.19 Lemma. Let L be a double Stone algebra with a non-empty bounded core K (L)
[k,1], k < landlet z € L such that o(z°), p(z°°), ¢(z), p(xTT) € {k,l}. Then ¢(z°) =
implies ¢(2°°) = k and analogously, p(z™) = [ implies p(x*1) = k.

Proof. Let o(x°) = I. Tt is obvious that ¢(z°°) = [ would yield [ = ¢(z°) A ¢(2°°)
©(0) = k, a contradiction. Analogously, if p(z*) =1 = ('), then [ = p(z™)
e(zt1) = p(0) = k, a contradiction, using the identity =zt AzTT =0. O

o~

> |l

Now we are ready to prove the final result.

3.20 Proposition. Let L be a double Stone algebra with a non-empty bounded core
K (L) = [k,l] such that K(L) contains no proper Boolean interval. Then (EC) is fulfilled
in L.

Proof. If k =1, then L is a Post algebra of order 3 and trivially, (EC) is fulfilled in L. So
we can further assume that k < [.

Let f' = fr : K(L)™ — K(L) be the partial compatible function associated to a com-
patible function f : L™ — L as in 3.11. Let S = {(¢(X), p(x°), 9(X°°), p(xT7), p(x11)); x €
L™} be the domain of f', S C K(L)°". We shall show that f’ can be interpolated on the
set SN {k,1}°" by the following polynomial of the lattice K (L):

(9) q(w1,...,250) = V (f (b1 vy bsn) Ayr A=+ A ysn),
besSn{k,l}5n
where y; = ]
l, if b,L = k.

Let x be any (fixed) vector from SN{k,(}°". If & # x and b; # x; for some j, n < j < bn,
then either b; =1, x; = k and then f'(b)Ay1 A---Ays, =k or bj =k, x; =1 and then
by Lemmas 3.18, 3.19 there exists s € {j — n,j + n} such that zs = k,bs = [, thus again

')Ay A+ Ays, = k. Hence it suffices to take into account in (g) only conjunctions
f’(f)) Ay A -+ N ysy, such that b; = z; for all 7, n < i < 5n and moreover, b; < z; for all
i, 1 <1<mn. So
Q($17“‘7$5n):~ v ~ (f/(blv'"7bnaxn+17-"ax5n)-
besn{k,1}5", b<x
Next, we show that f'(b) < f/(%) for any b € S N {k,1}°" such that b; = =; for
i =n+1,....,5n and b; < z; for : = 1,...,n. Denote us = bs if by = x4, otherwise
us = u, 1 < s < n. We get a unary compatible function g : K(L) — K(L), g(u) =
f(u1y ... Up, Ty, ..., Ts,) and we have to show that g¢g(k) < g(I). Since g(k) =
g(u) (Ohat(k,u)) and g(u) = g(l) (Pas(u,l)) for any u € K(L) (Orat(k,u) and Oiat(u,l)
denote the principal lattice congruences generated by the pairs (k,u) and (u,l), respec-
tively), we get
g(u) Vu=g(k)Vuand
g(u) ANu=g(l) A u.
This means that for any « € [g(1), g(k) V g(1)], g(u) is the relative complement of u in this
interval, which is therefore Boolean. By the assumption of Proposition 3.20 this implies
g(k) < g(l), what was to be proved. Hence
q(x1, . 250) = f(x1,...,05,) for any x € SN {k,1}5".

We shall show that the assumptions of Lemma 2.13 are satisfied for the lattice K (L)

and the functions f’ and ¢. If in the 5n-tuple (p(X), p(X°), P(x°°), p(XT), p(XT1)) € S we
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take z; = 0 then (p(z;), o(x?), (
(o). 0(@f), ple2). (e} ), plai +) =
that h(S) = h(S N {k, l} ™) for any (0, 1)-lattice homomorphism h : K(L) — {k,1}°".
Let (¢(x), p(x°), 9(x°°), p(xT), (‘H'))ESandz'e{l ,n}. Since h and ¢ are
lattice homomorphisms and L is a double Stone algebra, we have
h(p(x7)) V hp(x7°)) = h(e(z7 V 27°)) = h(e(1)) = h(l
h(p(x7)) A h(p(x5°)) = h(p(z7 A z7°)) = h(p(0)) = h(’f) k
and analogously,
h(p(z)) V h(e(a ) = h(p(zf v o ™)) = h(p(1)) = h(l) =
. h(p(z)) Ahle(a ) = hlp(zf A zf™)) = h(p(0)) = h
h(e(z )) =k if and only if h(p(x$°)) =1 and
h(p(z)) =k if and only if h(p(z; ™)) =1.
This yields that each 5-tuple (h(¢(x;)), h(p(22)), h(p(x5°)), h(p(z])), h(p(x]))) can only
be one of the 5-tuples (k,l, k, 1, k), (k, [ ). Since moreover,
h(p(wi)) A h(p(z7)) = h(e(zi A 5
the last 5-tuple (1,1, k,1, k) is 1mp0881b1e Hence we get
{(ne(@:), h((2?)), h(p(@§°)), (e (x)), hlp(w;T))); =i € L} =
{(k,l,k, L, k), (K, k,l,k 0, (l kL k, l)}—
{(h(p(20), hlp(29), h(p(5°)), h(o(zi)), (2 ™))); zi € {0,k,1} }.
Note that for z; € {0 k,1} we have (¢ (wz), (29), o(22°), p(z), p(x;T)) € {k,1}5. Con-
sequently, h(S) = h(S N {k,1}°").
By Lemma 2.13, f' = ¢ on S, thus ¢(z1,...,%5,) is the required total compatible
extension of the partial function f'. [

°), p(xf), o(zF)) = (k,1,k,1,k) and if z; = 1 then
(I k1, k l) Hence S N {k,1}°" # @ and we claim

\_/
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