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DEFINABILITY OF PASCAL’S TRIANGLES MODULO 4 AND 6
AND SOME OTHER BINARY OPERATIONS
FROM THEIR ASSOCIATED EQUIVALENCE RELATIONS

IVAN KOREC

ABSTRACT. Pascal’s triangles modulo n can be considered as binary operations on the set N
of nonnegative integers. To every binary operation f on a set M an equivalence relation R on
M? can be associated in which (z,y) is equivalent with (u,v) if and only if f(z,y) = f(u,v).
The equivalence R can be considered as a 4-ary relation on M, and we can try to reconstruct
f from R, more precisely, to define elementarily f in <M;R>. (Some abstract information
about f is used by this.) This problem will be solved for Pascal’s triangles modulo n for
1 < n < 6. The answer is positive for n = 4 and n = 6, negative for n = 1 and n prime
(even greater than 6). As a corollary we obtain that the operations +, X are definable in the
structure (N; EqBg ), where EqBg = {(=,y,u,v) € N | (I:y) = (u—ukv) (mod 6) }; the integer
6 cannot be replaced by any smaller positive integer. The above mentioned problem will be
solved (positively, resp. negatively) also for addition and multiplication on the set N, resp.
Z, and for some other operations.

1. INTRODUCTION

To every mapping f : X — Y an equivalence relation R on X can be associated by the
formula R(z,y) <= f(x) = f(y). In particular, to every binary operation x on a set M
an equivalence relation R on M? can be associated. We can consider R as a 4-ary relation
on the set M in the obvious way.

Definition. Let x be a binary operation on a set M. We shall say that R is the associated
equivalence relation of the operation * if

R:{(:E,y,u,v)EM4|x*y:u*v}.

Notice once more that the associate equivalence relation is not an equivalence relation
on M but may be considered as an equivalence relation on M2. (Analogously we could
associate a 2n-ary relation to an m-ary operation also for n # 2.) We can also define R in
the groupoid (M *) by the first order formula

R(z,y,u,v) <= x*xy=ux*uv.
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The relation R was constructed from x. We can ask whether, conversely, * can be
reconstructed from R. Generally speaking, it is impossible because distinct operations
can have equal associated equivalence relations. However, sometimes it can be done if
additional information about the structure <M : *> is available. In what follows usually the
structure (M;«) will be given up to isomorphism; this is the strongest possible abstract
information about <M ; *>, but it also need not suffice. Further, the answer can depend
on the chosen type of reconstructability. We shall deal with first order definability, and
so our goal is to define (elementarily, i.e., by a first order formula) the operation * in the
structure <M; R>.

We shall investigate Pascal’s triangles modulo n from this point of view. Pascal’s triangle
modulo n will be denoted by B,,, and it is defined by the formula

B, (z,y) = <x ;_ y) MOD n;

the symbol MOD denotes the rest by integer division. In the present paper moduli n < 6
will be considered; the greater moduli will be considered later. However, the answer to our
problem seems to depend on the factorization of n. So examples for all three typical cases
are presented here: n prime, n prime power (with the exponent e > 1) and n divisible by
at least two distinct primes. Besides Pascal’s triangles modulo n also several more classical
examples of binary operations will be considered.

We shall use the classical first order predicate calculus with equality. We shall use five
usual logical connectives with usual priority rules and other method to simplify or shorter
the formulas. Classical mathematical symbols (like +, x etc.) will be used in their usual
sense; it may depend on the considered base set. Predicate and functional symbols are
formed rather freely (groups of several letters, subscripts, superscripts, ... ) but, of course,
from the formal point of view every such symbol is considered as indecomposable.

2. ILLUSTRATING EXAMPLES

Let us describe the problem from previous section informally for the case M finite. Let
in the Cayley table of <M ; >l<> the inside elements are replaced by colours (distinct elements
by distinct colours). We obtain the coloured table (without information about the used
association of colours to the elements of M). Then coloured table shows us the equivalence
relation associated to * (and nothing more: the coloured table can be constructed, up to
the choice of colours, from this relation). Moreover, we obtain some additional information
about <M ; >|<> For example, we can obtain the Cayley table of an isomorphic copy of the
structure; this is the strongest possible abstract information about (M;x). Of course, the
order of the elements in its headings need not correspond to that in the coloured table. Our
goal is to reconstruct the coloured table, i.e. to replace the colours by the elements of M in
the original way. In principle, we could simply check all binary operations on M. However,
we shall use the considerations which will be useful also for the infinite cases considered
later; for example, we shall look for “invariants” expressible by first order formulas.

Ezample 2.1. Let <M; *> be a groupoid , where M = {0, 1,2,3} and x is the operation
which must be reconstructed. We are given the Cayley table of an isomorphic copy A
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of <M ; >|<> and the coloured table constructed as described above. They are given in the
left-hand and the central part of Figure 1; let the capitals correspond to colours: Red,
Green, Blue, Yellow.

abc d 01 2 3 0123
ala dbec 0OJR G BY 011 230
blc d ¢ b 1B RYG 1{310 2
cla a a d 2|G B YB 212 30 3
d|b c d a 3]1Y R R R 310111

Figure 1.

We have to associate elements to colours and (as a by-product) find an isomorphism
between <M : *> and the structure A (with Cayley’s table) displayed on the left. Since
A has no nontrivial automorphism the isomorphism will be determined uniquely. The
Red colour occurs in the table 5 times, and the only element which occurs 5 times in the
left table (except headings) is a; therefore Red must be associated to a. Similarly Green
must be associated to b. The Yellow occurs once at the main diagonal, hence it must be
associated to d. It remains to associate Blue to c¢. There are only two distinct colours in
the row of 3, therefore 3 must be associated to ¢, and hence to Blue. The only pair of
commuting elements of <M; *> is {0, 3} and the only such pair in A is {c, d}. Therefore 0
must be associated to d, and hence to Yellow. There remain the colours Red, Green and
the elements 1, 2. We cannot associate Red to 2 because the obtained algebra would have
no idempotent, and A has one. Therefore we have to associate Red to 1, and finally Green
to 2. The completed Cayley table is on the right-hand side of Figure 1.

Remark. A faster (but less illustrative) method in this case would be to consider the
invariants “number of distinct symbols in the row and in the column” for the elements of
A and the elements of M. So we obtain immediately the isomorphism mentioned above.
Then we can “forget” colours, and fill in the table of (M;x).

Ezample 2.2. Let us consider the tables on the left-hand part of Figure 2; their roles are
similar to those in Figure 1. Now we cannot reconstruct the operation x uniquely (and we
cannot define it from its associated equivalence relations) because there are two distinct
(although isomorphic) algebras which fulfil the given conditions.

a b 01 01 01
alja b 0lR G 0101 0{1 0
b|b a 111G R 1(10 10 1

Figure 2.

More formally, let <{0, 1}, 69> be the additive group modulo 2. Then the operation &
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is not definable in the structure <{0, 1}; R>, where

R={(z,y,uv) e {0,1}" |z@y=udov}

is the the associated equivalence relation of @.

Ezrample 2.3. Let us consider the left-hand and the central table of Figure 3; their role is
similar to those in Example 2.1.

abc 01 2 01 2
alac ¢ 0lR G G 010 2 2
blc b ¢ 111G B G 1121 2
clc c ¢ 211G G G 212 2 2

Figure 3.

The algebra on the left is idempotent, hence the reconstructed algebra is also idem-
potent. Hence the elements 0, 1, 2 must be associated to the colours Red, Blue, Green,
respectively; we can see it immediately from the diagonal of the central table. However,
the element and the colour associated to a are not uniquely determined. It can be either
0 and Red or 1 and Blue; both choices are possible, and determine the two isomorphisms
between the left-hand and the right-hand table.

Ezample 2.4. Let us consider the left-hand and the central table of Figure 3, and let us
replace any non-diagonal G in the central table by R. The only possible solution of our
problem can be the operation on the right. However, it is not a solution indeed. So we
can see that the table of an isomorphic image and the coloured table cannot be combined
arbitrarily. They really must correspond to the same algebra.

Example 2.5. Let us consider two operations on the set {0,1}: logical conjuction (now
denoted by e) and Sheffer’s function denoted by x; the tables are given in Figure 4.

e 01 * (0 1
000 0|11
1101 1(10

Figure 4.

The corresponding algebras are not isomorphic; the first one is idempotent while the
other is not. Nevertheless, we can see that Eq, = Eq,. Both elements 0, 1 are definable
(as constants) from the relation Eq,, and hence the operations e and * (as well as all other
binary operations on {0,1}) are definable, too. (Of course, the defining formulas must be
distinct.)

56



Ezxample 2.6. Let us consider a set M of cardinality greater than 1 and the operation x
on M be defined by  xy = x for all z,y € M. Then Eq,(z,y,z,w) <= x =2 We
cannot define the elements of M (as constants) in the structure <M ;s Eq, > Nevertheless,
the operation x is definable in this structure. (Of course, we need not use Eq, at all.)

3. SOME RESULTS FOR MORE CLASSICAL STRUCTURES

Theorem 3.1. Let x be an idempotent operation on a nonempty set M and let Eq, be
its associated equivalence relation. Then the operation % is first order definable in the
structure <M; Eq, >

Proof. The operation * can be defined by the formula
Z=1T* y <:> Eq*(z7 Z?‘T"? y)'
Indeed, since always z * z = z the equations z = z xy and z x z = x *x y are equivalent. [

Remark. Theorem 3.1 is formulated for a single algebra. We can reformulate it for the
class of all (nonempty) idempotent groupoids without any difficulties. However, it cannot
be extended to the class of all groupoids, as Example 2.5 shows.

For the next theorem remember that the center of a group is its subset consisting of all
elements which commute with every element. The center of a group is always nonempty
because it contains its neutral element.

Theorem 3.2. Let <M; >l<> be a group and let Eq, be the associated equivalence relation
of the operation *. Then * is definable in the structure <M; Eq, > if and only if the center
of the group <M; *> consists of unique element.

Proof. If the center of <M ; *> contains only the neutral element of G then we can define
this element and then the operation * in <M : *> as follows:

r=1 < Vy,u,U(Eq*(:U,y,u,v) = Eq*(y,x,u,v)),
z=xxy < Eq,(z,1,2,y).
If the center contains an element a # 1 then we shall consider the operation ® defined
by t®y = a*x*xy. The structure <M; ®> is a group isomorphic with <M; *> (and distinct

from it). However, both operations have the same associated equivalence relations Eq,,
and hence none of them can be definable in (M;Eq, ). O

Theorem 3.3. (i) The operation + (on the set N) is definable in the structure (N; EqPlus ),
where EqPlus = {(z,y,u,v) e N* |z +y=u+v}.

(ii) The operation x (on the set N) is definable in the structure (N;EqTimes ), where
EqTimes = {(z,y,u,v) € N* | zy = wv}.

Proof. In <N; Equus> we can define
r=0 < Vy,z(Equus(a:,x,y,z) = r=yAxr= z)

Then we have z = z+y <= EqPlus(z,0, z,y). The proof of (ii) is similar; we shall define
1 at first. O
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Theorem 3.4. (i) The operation + (on the set Z) is not definable in the structure
(Z,EqPlus ), where EqPlus = {(z,y,u,v) € Z* | v+ y = u+ v}.

(ii) The operation x (on the set Z) is not definable in the structure (Z;EqTimes),
where EqTimes = {(z,y,u,v) € Z* | 2y = uv}.

Proof. For (i) we can apply Theorem 3.2 because the center of the commutative group
<Z; —|—> is Z.

For (ii) let us consider the mapping f : 2 — —z. We can see that f is an automorphism
of <Z; EqTimes >, and f is not an automorphism of <Z, ><>. Therefore x cannot be definable
in (N; EqTimes ). (Remarks: 1. f is the only nontrivial automorphism of the considered
structure. 2. We can define the set {—1, 1} (as a unary relation), but we cannot distinguish
the element 1.) O

4. AUXILIARY RESULTS ABOUT PASCAL’S TRIANGLES MODULO 1

Here we shall present some notions and results useful for the next section. The results
will be given without proofs; they are either classical or easy or contained in [Bo90] or
[K093]. We shall start with n-adic masking relation for arbitrary n > 1, although it
is closely related to Pascal’s triangle modulo n only for n prime. If a number z € N
is given by its n-adic digits a,,a, 1,...,a9 we shall write z = [a,a,_1...a¢],. Leading
zeros are allowed if necessary (e. g., to obtain equal numbers of digits in two integers).
For x = [a,...a100]n, ¥ = [by...b1bo]n we shall write z C,, y if it holds a; < b; for all
1=0,1,...,7. The relation C,, will be called n-adic masking relation.

Claim 4.1. For every integer n > 1 the relation C,, is a partial order on the set N. In the
structure L = <N; Cn, > we can define:

TlnYy proper masking relation;

T,y meet operation in L;

T Uy y join operation in L;

0 the constant 0 (zero) as the smallest element of L;
Pow,(z) x is a power of p;

CFAdd,(z,y, 2) carry-free addition: 4+ y = z, and no carry occurs
when x + y is computed.
The structure <N; Ly, |‘|n> is a distributive lattice with the smallest element 0.

Figure 4 contains Pascal’s triangles modulo 2 and modulo 3. The coordinate system
with the axes oriented right downward and left downward is used, and the elements 0 are
replaced by dots. (The same system is used in further figures, too.) We can see their
rather simple “fractal” structure, which is common for all Pascal’s triangles modulo prime
numbers. A very useful tool in investigating them is Lucas’ theorem, see e. g. [Bo90]. We
shall give it in a slightly modified form, with (w;ry) instead of (Z)

Theorem 4.2. Ifn is a prime and
(4.2.1) x = [ay...a160]n, y = [by...b1boln

then
(4.2.2) (‘” + y) = <“° + bO) . (“1 + bl) - <“" + b") (mod n).
T ag a1 a,
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Corollary 4.3. For n,x,y as in Theorem 4.2 we have
B, (z,y) =0 ifand only if a; + b; > n for some i € {0,1,...,7}.

Theorem 4.4. For every prime n the relation C,, is first order definable in the structure
<N; B, >

Proof. The defining formula can be

(4.4.1) tC,y < Vz2(Bu(z,2) =0 = By(y,2) =0).

To prove that, some considerations about n-adic digits must be done and Corollary 4.3
applied. O

Claim 4.5. For every prime n and z,y,e € N, the integer (”jc'y) is divisible by n¢ if and
only if at least e carries occur in the addition of x, y in n-adic number system.

For the proof binomial coefficients must be expressed by factorials, and the exponents
of n in factorizations of the factorials ought to be computed.

5. DEFINABILITY OF PASCAL’S TRIANGLES MODULO n

Now we shall investigate definability of the operations B,, (i.e., Pascal’s triangles modulo
n) from their associated equivalence relations EqB,, defined by

Ean = {(m’yﬂj’?U) S N4 | Bn(l',y) = Bn(uav)}'

In the present paper we shall consider only few small values of n.

Let us define VB, (z) = { By (z,y) | y € N} and let CVBF () mean that card(VB,(z)) =
k. The functions VB,, cannot be (first order) defined in <N; Bn> simply because their values
are subsets of N, and not elements of N. However, the predicates CVBY (for 1 < k < n)
can be defined:

k i—1
CVBI:L(.I) <~ Elyla - Yk /\ /\ _'Ean(xvyzvxayj)/\
i=2j=1
k+1i—1
/\Vyh"'vyk-i-l \/ \/ Ean(Ivywxayj)a
=2 j=1

for k = 1 the first member no the right can be deleted. Further, let EB % (z, ) mean
B, (z,y) € {z'l, cee, zk} In particular, let EB (x, y) mean B, (z,y) = i.

Now we shall investigate Pascal’s triangle modulo 4; its structure is more complicated
than that of By but there is an obvious relationship between them; it is expressed by the
formula By(z,y) = B4(z,y) MOD 2. The function By is displayed in Figure 5.

Theorem 5.1. The operation By (Pascal’s triangle modulo 4) is first order definable in
the structure <N; EqB, >, where EqB, is the equivalence relation associated to By.

Proof. Pascal’s triangle modulo 4 is displayed in Figure 2. We can see that it contains
only 1’s on its margin (i.e. for x =0 or y = 0) and (with exception on the top) only even
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Pascal’s triangle modulo 4
(with dots instead of zeros).

Figure 5.
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elements on its axis. The first property is obvious. The second one can be easily proved
from Lucas’ Theorem (used for the modulus 2 and « = y). Therefore we can define

r=0 <= Yy, zEqB,(z,y, z, 2),
EBéll(xay) — EqB4(‘T7y7070)7
EBY(z,y) <— 3z(z7$0/\EqB4(w,y,z, z))

The formula EB$?(x,y) obviously corresponds to By(z,y) = 0. Therefore we can define
the masking relation Cy by a formula similar to (4.4.1) as follows:

oy <= Vz(EBP(z,2) = EB}*(y,2)).

The structure <N; Co > is a partially ordered set with the smallest element 0; we can
consider it as a distributive lattice in the usual way (see Claim 4.1); let the lattice operations
be L, My. We can define the set Pows as the set of atoms of the lattice. Further we can

define

EBj(z,y) <= 3z(Pows(z) AEqB4(2,y, 2, 2)),
EBj(z,y) <= EB{*(z,y) A ~EBi(z,y),
EBj(z,y) <= —EB{*(z,y) A~ EBj(z,y).
Now we shall use that B4(2%,2% 4+ 2¥) = 0 only if y = = + 1; indeed, only in this case two
carries occur in the addition of 2% and 2” + 2¥ (in binary number system; see Claim 4.5).
This enables us to define the constants 1, 2, 3. (We could also define addition, but we need
not that now.)

z=1 <= Pows(z) AVy(Pows(y) = EBj(y,z s y)),
z =2 < Pows(z) NEBJ(1,7 U5, 1)),
3=1 |_|2 2.

Finally, the function B4 can be defined by

z = By(z,y) <= z=0AEqB,(z,y,1,3)V

2

(Z =17 A EqB4(ﬂL’, Y, 1a L — 1))’

3
=1

and the proof is finished. O

Now we shall deal with Pascal’s triangle modulo 6; it is displayed in Figure 6. Notice
that Bg is connected with By and Bs by the formulas

BZ(l'vy) :Bﬁ(mvy) MOD27 B3(-T,y) :BG('Tvy) MOD 3.
They obviously enable us to compute the values of B2 and Bs. However, since 2, 3 are
relatively prime we can also compute the values of Bg from the values of By and Bs. We

can also use results about rather simple Bs, B3 in the investigation of Bg.
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Theorem 5.2. The operation Bg (Pascal’s triangle modulo 6) is first order definable in
the structure <N; EqBg >, where EqBg is the equivalence relation associated to Bg.

Proof. For every x € N we have VBg(z) = {1} VBg(z) = {0,1,2 3,4 5} or VBg(z) =
{0, 1,3, 4}. The second case is the most frequent The ﬁrst case takes place only for z = 0.
The third case takes place for those x > 0 which have no 1’s in their 3-adic expansion.
Indeed, congruence con81deratlons show that VBg(z) = {0 1,3 4} is equivalent with the
conjunction of VBy(z) = {0,1} and VBs(z) = {0, 1} For z > 0 the first condition is
always satisfied, hence it need not be con81dered For the second condition we have to use
Lucas’ theorem for n = 3, and that Bs(2,a) € {0, 1} for every a € {0, 1, 2}.
Using the above facts we can define:

=0 <= Yy, zEqB4(z,y,z, 2),

Bi(z,y) <= EqBg(z,v,0,0),
EB024(3:, y) <= Elz(z # 0 A EqBg(z, v, 2, z)),
EBY*(z,y) < 3u, U(CVBé(u) A EqBg(z,y, u,v)),
EBg(x, y) — Hu( CVB%(U) A EqBg(z, vy, u, u)),
EB83(ZL‘, y) <= EB2134($, y) A (EBg(x, y) V- EB224(:1:, y)) A - EB%(II}, Y).

(The meaning of the defined predicates was explained above; now we have to check that
these defining formulas correspond to the intended meaning. It is not difficult.)

The formulas EBY**(x,y) and EBZ(z,y) obviously correspond to Ba(z,y) = 0 and
Bs(z,y) = 0. Therefore we can define the masking relations for the bases 2, 3 as follows:

xCoy < Vz(EBQ**(z,2) = EBg*(y,2)),
rC3y < Vz(EBg?’(x,z) = Eng’(!y?z))7

Now we could use the result of [Ko93] that for distinct primes p, ¢ the operations +, x
are definable in <N; Cp, Ly > Then all arithmetical operations and relations, hence Bg, too
are definable in such structures. However, we shall use a more elementary consideration.

Using Ty we can define Powsy and Lls. Using T3 we can define Pows and Ujs. Further
we can define

x =1 <= Powy(z) A Pows(x),
r=2 = 1G3rAz#1AVy(yCaz = yC31Vy=ux),
3 =1Us 2, 4=1U33, 5 =2Us3.

If we have the constant 0,1,...,5 we can define Bg as follows:

5
z = Bg(z,y) < zzO/\EqBG(x,y,l,5)\/\/ (z:i/\EqBG(x,y,l,i—l)). O

1=1
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Corollary 5.3. The operations 4, x are first order definable in the structure <N; EqBg >,
where EqBg is the equivalence relation associated to Bg.

In the corollary we cannot replace 6 by 4 because multiplication is not definable in
<N; B4>; moreover, the elementary theory of <N; EgB 4> is decidable.

In the theorems we cannot replace 6 (or 4) by any other positive integer n < 6. The
function Bj is a constant function (with the value 0), hence EqB; = N* is trivial, and we
cannot, define neither 0 nor B in the structure <N; EqB, > The other cases are covered
by the next theorem.

Theorem 5.4. Ifn is prime then B, is not definable in <N; EqB,, >

Proof. Let n be prime. Every permutation of the set Pow,, induces an automorphism of the
structure <N; EgB,, > However, only permutations which preserve 1 induce automorphisms
of <N; Bn>. In particular, the mapping f : N — N defined by

fxn? +yn+2)=azn?+2n+y forall z€N, 0<y<n, 0<z<n

is an automorphism of <N; EqB,, >, but it is not an automorphism of <N; Bn>. (The corre-
sponding permutation interchanges 1 and n, and preserves the other powers of n.) There-
fore B,, cannot be definable in <N; EgB,, > U

Remarks. 1. The proof of Theorem 5.4 shows the unique reason of non-definability of B,
in <N; EgB,, > In the structure <N; EgB,,, 1> the function B, is definable.

2. The relation C,, is definable in <N; EqB,, > Conversely EqB, is definable in <N; G, >
However, if n is an odd prime then EqB,, is not definable in <N; Ch >
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