A MEASURE EXTENSION WITH RESPECT TO A MEASURE PRESERVING MAPPING

Peter Maličký

ABSTRACT. Abstract The present paper shows that a measure defined on a σ -algebra and invariant with respect to a measurable mapping may be extended onto a greater σ -algebra such that the mapping is strict measurable with respect to this greater σ -algebra.

1. Preliminaries.

It is known that the continuous image of a Borel set need not be Borel. This result belongs to M. Souslin, which in [5] corrected an error of H. Lebesgue, which in [4] stated that the continuous image of a measurable set is measurable. Let J be the set of all irrational numbers with the standard topology. Then J is homeomorphic to the product of countable many copies of the countable discrete topological space [3, p. 32]. Using results of Exercise 6 of [1, pp. 152 – 153] it may be proved the existence of a continuous mapping $T: J \to J$ such that the set T(J) is not Borel.

In the whole paper we consider a quadruple (X, \mathcal{A}, m, T) , where X is a set, \mathcal{A} is a σ -algebra on X, m is a σ -finite measure on \mathcal{A} and $T: X \to X$ is an \mathcal{A} -measurable m-preserving mapping, i.e. $T^{-1}(A) \in \mathcal{A}$ and $m(T^{-1}(A)) = m(A)$ for any $A \in \mathcal{A}$, see [6, p. 19]. In this case the measure m is said to be T-invariant.

The mapping T preserving the measure m is almost surjective in the following sense. For $A \in \mathcal{A}$ with $A \cap T(X) = \emptyset$ we have $m(A) = m(T^{-1}(A)) = m(\emptyset) = 0$. Particularly, $m(X \setminus T(X)) = 0$ whenever $T(X) \in \mathcal{A}$. As it was said, in a general case \mathcal{A} -measurability of a mapping T does not imply \mathcal{A} -measurability of the set T(X), i.e. $T(X) \in \mathcal{A}$. However, for a strict \mathcal{A} -measurable mapping $T: X \to X$ we can guarantee $T(X) \in \mathcal{A}$ and more generally $T^n(X) \in \mathcal{A}$ for all natural n. The definition of a strict measurable mapping follows.

Definition 1.1. Let X be a set, \mathcal{A} be a σ -algebra on X and $T: X \to X$ be a mapping. Then T is said to be strict \mathcal{A} -measurable if $A \in \mathcal{A}$ if and only if $T^{-1}(A) \in \mathcal{A}$ for any $A \subset X$.

¹⁹⁹¹ Mathematics Subject Classification. 28A05, 28D05

Key words and phrases. measure-preserving mapping, extension of a measure.

The author has been supported by the Slovak grant agency, grant number 1/1470/94.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03B10, 11B65 Secondary 08A99.

Key words and phrases. Elementary definability, Binomial coefficients, Equivalence relations.

The present paper constructs a natural extension \tilde{m} of the measure m onto a greater σ -algebra $\tilde{\mathcal{A}}$, such that T is strict $\tilde{\mathcal{A}}$ -measurable and \tilde{m} -preserving.

2. One step extension and extension by induction.

Let and $T: X \to X$ be a mapping and \mathcal{A} be a σ -algebra on X. Put $\mathcal{A}^T = \{A: A \subset X \text{ and } T^{-1}(A) \in \mathcal{A}\}.$

Proposition 2.1.

- (i) \mathcal{A}^T is a σ -algebra.
- (ii) If T is A-measurable, then $A \subset A^T$ and T is A^T -measurable.
- (iii) $T(X) \in \mathcal{A}^T$.
- (iv) T is strict A-measurable, if and only if $A = A^T$.

Example 2.1. Let $T: X \to X$ be an \mathcal{A} -measurable mapping such that $T(A) \in \mathcal{A}$ for all $A \in \mathcal{A}$. Then \mathcal{A}^T consists of the sets of the form $C = A \cup B$, where $A \in \mathcal{A}$ and $B \cap T(X) = \emptyset$. If moreover T(X) = X then T is strict \mathcal{A} -measurable.

Proposition 2.2. Let m be a measure on A. Put $m^T(A) = m(T^{-1}(A))$ for $A \in A^T$.

- (i) m^T is a measure on \mathcal{A}^T .
- (ii) If the measure space (X, \mathcal{A}, m) is complete, then so is (X, \mathcal{A}^T, m^T) .
- (iii) If T is A-measurable and m-preserving, then m^T is a unique T-invariant extension of m onto A^T ; if T is not strict A-measurable then m^T is a nontrivial extension of m.

Proof. Part (i) is obvious. We shall prove (ii). Let $B \subset A \in \mathcal{A}^T$ and $m^T(A) = 0$. Then $T^{-1}(A) \in \mathcal{A}$ and $m(T^{-1}(A))$. Since (X, \mathcal{A}, m) is complete, we have $T^{-1}(B) \in \mathcal{A}$ and $B \in \mathcal{A}^T$. It proves (ii). Now, let T be \mathcal{A} -measurable and m-preserving. Take $A \in \mathcal{A}$. Then $m^T(A) = m(T^{-1}(A)) = m(A)$, because T is m-preserving. In means that the measure m^T is an extension of m. Take $A \in \mathcal{A}^T$, then $T^{-1}(A) \in \mathcal{A}$ and as we have shown $m^T(T^{-1}(A)) = m(T^{-1}(A))$. The definition of m^T yields $m^T(A) = m(T^{-1}(A))$. Therefore $m^T(T^{-1}(A)) = m^T(A)$ and T is m^T -preserving. Let μ be another T-invariant extension of m. For $A \in \mathcal{A}^T$ we have $\mu(A) = \mu(T^{-1}(A)) = m(T^{-1}(A)) = m^T(A)$, because $T^{-1}(A) \in \mathcal{A}$ and μ is an extension of m. If T is not strict \mathcal{A} -measurable, then $\mathcal{A} \subset \mathcal{A}^T$ but $\mathcal{A} \neq \mathcal{A}^T$ by Proposition 2.1.

Obviously, we can continue extension procedure by induction. Put $\mathcal{A}_0 = \mathcal{A}$, $m_0 = m$ and $\mathcal{A}_{m+1} = \mathcal{A}_n^T$, $m_{n+1} = m_n^T$. Then the measure m_{n+1} is an extension of m_n onto A_{n+1} . The union $\bigcup_{n=1}^{\infty} \mathcal{A}_n$ is an algebra. For $A \in \mathcal{A}_n$ put $\mu(A) = m_n(A)$. Then we obtain a measure

 μ defined on the algebra $\bigcup_{n=1}^{\infty} \mathcal{A}_n$. Denote by \mathcal{A}_{ω} the σ -algebra generated by $\bigcup_{n=1}^{\infty} \mathcal{A}_n$. The measure μ may by uniquely extended onto \mathcal{A}_{ω} [2, p. 40]. Denote this extension by m_{ω} . It is clear that the mapping $T: X \to X$ is \mathcal{A}_n -measurable for all natural n and $T^{-1}(A) \in \mathcal{A}_n$ implies $A \in \mathcal{A}_{n+1}$ for any $A \subset X$. However, we are not able to prove that the mapping

 $T: X \to X$ is strict \mathcal{A}_{ω} -measurable. The problem of a strict measurability of the mapping T will be solved in the following section. We shall show that the σ -algebra \mathcal{A}_{ω} has some interesting properties.

Proposition 2.3. The σ -algebra \mathcal{A}_{ω} contains $T^n(X)$ for all natural n and their intersection $\bigcap_{n=1}^{\infty} T^n(X)$ as well.

Proof. Note that for any $A \subset X$ the iterated preimage $(T^{-1})^n(A)$ and the preimage under iterated mapping $(T^n)^{-1}(A)$ coincide. This set will be denoted by $T^{-n}(A)$. For any natural n we have $T^{-n}(T^n(X)) = X \in \mathcal{A} = \mathcal{A}_0$. By induction $T^{-(n-k)}(T^n(X)) \in \mathcal{A}_k$ for all natural k, $0 \le k \le n$. (The equality $T^{-(n-k)}(T^n(X)) = T^k(X)$ does not hold generally, but it is true for k = n.) It means $T^n(X) \in \mathcal{A}_n$ and $T^n(X) \in \mathcal{A}_\omega$. Therefore \mathcal{A}_ω contains the set $\bigcap_{n=1}^{\infty} T^n(X)$.

Corollary 2.1. If T is strict A-measurable then $T^n(X) \in A$ for all natural n.

Corollary 2.2. Let
$$\bigcap_{n=1}^{\infty} T^n(X) \in \mathcal{A}$$
. Then $m(X \setminus \bigcap_{n=1}^{\infty} T^n(X)) = 0$.

Proof. (Note, that we suppose nothing about the sets $T^n(X)$.) Since all degrees T^n preserve the measure m, they preserve also the measure m_{ω} . Therefore $m_{\omega}(X \setminus T^n(X)) = m_{\omega}(T^{-n}(X \setminus T^{-n}(X))) = m_{\omega}(\emptyset) = 0$ and $m(X \setminus \bigcap_{n=1}^{\infty} T^n(X)) = m_{\omega}(X \setminus \bigcap_{n=1}^{\infty} T^n(X)) = 0$.

3. Extension of A by transfinite induction.

Now, consider only a σ -algebra \mathcal{A} on X and an \mathcal{A} -measurable mapping $T: X \to X$. Denote by $Ext(\mathcal{A})$ the class of all σ -algebras \mathcal{B} on X such that:

- (i) $\mathcal{A} \subset \mathcal{B}$.
- (ii) T is strict \mathcal{B} -measurable.

We shall show, that the class Ext(A) contains the smallest σ -algebra \tilde{A} , which may be described by transfinite induction. Let ω_1 be the first uncountable ordinal. Put

$$\mathcal{A}_0 = \mathcal{A},$$

$$\mathcal{A}_{\alpha} = \mathcal{A}_{\alpha-1}^T , \text{ when } \alpha < \omega_1 \text{ is an unlimit ordinal}$$

$$\mathcal{A}_{\alpha} = \sigma \left(\bigcup_{\beta < \alpha} \mathcal{A}_{\beta} \right) , \text{ when } \alpha \text{ is a limit ordinal and}$$

$$\tilde{\mathcal{A}} = \bigcup_{\alpha < \omega_1} \mathcal{A}_{\alpha} .$$

Proposition 3.1. The σ -algebra $\tilde{\mathcal{A}}$ is the smallest element of the class $Ext(\mathcal{A})$. The mapping $T: X \to X$ is strict $\tilde{\mathcal{A}}$ -measurable.

Proof. Let \mathcal{B} be the element of the class $Ext(\mathcal{A})$. All inclusions $\mathcal{A}_{\alpha} \subset \mathcal{B}$ for $\alpha < \omega_1$ follows immediately by transfinite induction from the strict \mathcal{B} -measurability of the mapping T and the inclusion $\mathcal{A} \subset \mathcal{B}$. We shall show that T is $\tilde{\mathcal{A}}$ -measurable. It suffices to prove that T is \mathcal{A}_{α} -measurable for all $\alpha < \omega_1$. The case $\alpha = 0$ is obvious. If $\alpha < \omega_1$ is an unlimit ordinal, then \mathcal{A}_{α} -measurability follows from $\mathcal{A}_{\alpha-1}$ -measurability and Proposition 2.1. If $\alpha < \omega_1$ is a limit ordinal then \mathcal{A}_{α} contains $T^{-1}(A)$ for all $A \in \bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$ by the inductive

assumption. Since \mathcal{A}_{α} is a σ -algebra, it contains $T^{-1}(A)$ for all $A \in \sigma\left(\bigcup_{\beta < \alpha} \mathcal{A}_{\beta}\right) = \mathcal{A}_{\alpha}$. It shows $\tilde{\mathcal{A}}$ -measurability of T. Finally, if $T^{-1}(A) \in \tilde{\mathcal{A}}$ then $T^{-1}(A) \in \mathcal{A}_{\alpha}$ and $A \in \mathcal{A}_{\alpha+1}$. It completes the proof.

4. Extension of a measure onto \tilde{A} .

Put $m_0 = m$, $m_{\alpha} = m_{\alpha-1}^T$ for any unlimit countable ordinal $\alpha > 0$. For a limit countable ordinal α the measure m_{α} will be defined in the following way. Note that $\bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$ is an algebra on X. Take $A \in \bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$. Then $A \in \mathcal{A}_{\beta}$ for some $\beta < \alpha$ and put $\mu_{\alpha}(A) = m_{\beta}(A)$. Then we obtain a σ -finite measure defined on the algebra $\bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$. The measure μ_{α} may be

uniquely extended onto σ -algebra $\sigma\left(\bigcup_{\beta<\alpha}\mathcal{A}_{\beta}\right)$, [2, p. 40]. This extension will be denoted by m_{α} . Finally put $\tilde{m}(A)=m_{\alpha}(A)$ whenever $A\in\mathcal{A}_{\alpha}$ for some $\alpha<\omega_{1}$.

Theorem 4.1. The measure \tilde{m} is a unique T-invariant extension of the measure m onto $\tilde{\mathcal{A}}$.

Proof. Since $\tilde{\mathcal{A}} = \bigcup_{\alpha < \omega_1} \mathcal{A}_{\alpha}$, it suffices to prove that m_{α} is a unique T-invariant extension of m onto \mathcal{A}_{α} .

The case $\alpha = 0$ is trivial.

Let $\alpha > 0$ be an unlimit countable ordinal. Suppose that $m_{\alpha-1}$ is a unique T-invariant extension of m onto $\mathcal{A}_{\alpha-1}$. By Proposition 2.2. m_{α} is a unique T-invariant extension of m onto \mathcal{A}_{α} . Therefore m_{α} is a unique T-invariant extension of m onto \mathcal{A}_{α} . Now, let α be a limit countable ordinal. Suppose that for all $\beta < \alpha$ the measure m_{β} is a unique T-invariant extension of m onto the algebra $\bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$. The measure m_{α} is a unique extension of μ_{α} onto \mathcal{A}_{α} in the realm of measures. It suffices to prove that m_{α} is T-invariant. To see this for $A \in \mathcal{A}$

realm of measures. It suffices to prove that m_{α} is T-invariant. To see this for $A \in \mathcal{A}_{\alpha}$ put $v_{\alpha}(A) = m_{\alpha}(T^{-1}(A))$. Then v_{α} is a measure, which coincide with μ_{α} on the algebra $\bigcup_{\beta < \alpha} \mathcal{A}$. It means that v_{α} coincide with μ_{α} on \mathcal{A}_{α} and the measure m_{α} is T-invariant.

5. Complete extension.

In this section we describe an extension \hat{m} of the measure m onto a σ -algebra $\hat{\mathcal{A}}$, such that the measure space $(X, \hat{\mathcal{A}}, \hat{m})$ will be also complete.

Let us recall the notion of the completion of a measure space. Let (X, \mathcal{A}, m) be a measure space. Denote be $\overline{\mathcal{A}}$ the system of all sets A of the form $A = A_1 \cup A_0$, where $A_1 \in \mathcal{A}$ and $A_0 \subset B_0$ for some $B_0 \in \mathcal{A}$ with $m(B_0) = 0$, and for such a set A define $\overline{m}(A) = m(A_1)$. Then $(X, \overline{A}, \overline{m})$ is a complete measure space and \overline{m} is an extension of m. It is easy to see, that any \mathcal{A} -measurable m-preserving mapping $T: X \to X$ is also $\overline{\mathcal{A}}$ -measurable and \overline{m} -preserving. It means that T is also $\overline{\mathcal{A}}$ -measurable and \overline{m} -preserving $(\tilde{\mathcal{A}} \text{ and } \tilde{m} \text{ has been constructed in the preceding sections.) Unfortunately, there are no arguments that <math>T$ is strict $\overline{\tilde{\mathcal{A}}}$ -measurable.

So we modify the construction of $\tilde{\mathcal{A}}$ and \tilde{m} in the following way. Put $\mathcal{A}_0 = \overline{\mathcal{A}}$ and $= \overline{m}$. When $\alpha > 0$ is unlimit countable ordinal put $\mathcal{A}_{\alpha} = \mathcal{A}_{\alpha-1}^T$ and $m_{\alpha} = m_{\alpha-1}^T$. (If $m_{\alpha-1}$ is complete then m_{α} is complete by Proposition 2.2.) For a limit countable ordinal α the σ -algebra \mathcal{A}_{α} and the measure m_{α} defined in preceding sections must be replace by their completions $\overline{\mathcal{A}}_{\alpha}$ and \overline{m}_{α} . Put $\hat{\mathcal{A}} = \bigcup_{\alpha < \omega_1} \mathcal{A}_{\alpha}$ and $\hat{m}(A) = m_{\alpha}(A)$ for $A \in \mathcal{A}_{\alpha}$.

Theorem 5.1. The measure space (X, \hat{A}, \hat{m}) is complete and the mapping $T: X \to X$ is strict \hat{A} -measurable and \hat{m} -preserving.

The proof of the last theorem is simiral to the proof of Theorem 4.1.

REFERENCES

- [1] Bourbaki, N., General Topology (Real Numbers in General Topology, Functional Spaces, Summary of Results), Nauka, Moscow, 1975. (Russian translation)
- [2] Doob, J.L., Measure Theory, Springer, New York, 1993.
- [3] Kuratowski, K., Topology, Vol 1, Mir, Moscow, 1966. (Russian translation)
- [4] Lebesgue, H., Sur le probleme de Dirichlet, Rend. Circ. mat. di Palermo XXIV (1917), 371 –
 402.
- [5] Souslin, M., Sur un definition des ensemles mesurables B sans nombres transfinis, C.R.Acad. Sci. CLXIV (1917), 88 91.
- [6] Walters, P., An Introduction to Ergodic Theory, Springer, New York, 1975.

(Received October 25, 1996)

Dept. of Mathematics Matej Bel University Tajovského 40 974 01 Banská Bystrica SLOVAKIA

E-mail address: malicky@fhpv.umb.sk