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GAUGE-NATURAL TRANSFORMATIONS
OF SOME COTANGENT BUNDLES

IvaN KOLAR AND JIRI TOMAS
Dedicated to Anton Dekrét on the occasion of his 65-th birthday

ABSTRACT. For an arbitrary vector bundle £ — M, we determine all gauge-natural
transformations T*E — T*E*. In order to describe the result geometrically, we
characterize some properties of 7*F in terms of an original approach to the concept
of double vector bundle.

In [4] and [7], some important relations between the cotangent bundle of the
tangent bundle T*T M and the cotangent bundle of the cotangent bundle T*7T* M
of a manifold M were studied and applied. In the present paper we discuss the
"pure” case of the cotangent bundle T*FE of any vector bundle £ — M and the
cotangent bundle T*E* of its dual E*. First of all we show that T*E with the
canonical projections to E and E* has the structure of double vector bundle. The
origin of such a concept goes back to [3], [6], [9], but our approach in Section 2
is new and we find it very simple. In Section 3 we construct a canonical isomor-
phism ¢ : T*E — T*E*. In the next section we use the viewpoint of the theory of
gauge-natural bundles, [1], [2], and we determine all gauge-natural (in other words:
geometrical) transformations T*E — T*E*. In Section 5 we clarify how the canon-
ical isomorphism ¢ relates a linear vector field on E and the dual vector field on
E*. All manifolds and maps are assumed to be infinitely differentiable.

1. TWO VECTOR BUNDLE STRUCTURES ON T*FE

Consider a vector bundle p : E — M and its dual bundle p* : E* — M. Write
q1 : T*E — E for the cotangent bundle of E. According to [2], p.227, there exists
another projection ¢» : T*E — E*. For every linear map w : TyF — R, y € E,
we define g2 (w) to be the restriction of w to the vertical tangent space V, E, which
is canonicaly identified with the fiber E,, x = py. Let !, y? be some linear fiber
coordinates on E and z?,2z, be the the dual coordinates on E*. The additional
coordinates on T*E are given by w = v;dz® 4+ u,dy?. Then the coordinate form of
q1 or go is

(1) q1 (xiayp>upyvi) = (mi,yp)’ qZ(mi>yp7up7vi) = (xivup)
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We are going to show that ¢ : T*E — E* is a vector bundle too. We shall
use the well-known fact there are two vector bundle structures 7 : TE — E
and Tp : TE — TM on TE, [2]. If X! = dz', YP = dyP are the additional
coordinates on T'E, then Tp(z?,y?, X, Y?) = (x, X?). The vector addition and
the multiplication by reals on Tp have the following form

(@, 0, X1 YP) + (o, 98, X', YF) = («, o +y5, X7, VP +Y)),
(2) k(' y", X', YP) = (2 kyP, X', kYP).

Consider wy € Ty, E and wy € T, E satisfying g2(wy) = g2(w=). Let us decompose,
with respect to T'p, a vector Y € Ty 4, F as Y1 + Yy, Y1 € Ty B, Yy, € T, E,
Tp(Y) = Tp(Y1) = Tp(Yz2). Then we define wy +w» € Ty 1, E by

(3) (w1 + w2)(Y) = w1 (Y1) + wa(Y2)

The correctness follows from the coordinate form of (3). We have Y = (2%, y} +
yh, X, Yp) Y, = (28,4}, X1, Yp), Yo = (28,98, X4, YF) with YP = YP + VP and
w1 :( aylaupavlz) wo = ( 7212,%,7}21) Then wl(Yl)‘i‘wQ(Yé) —UpY +U11X +
upYy +v2; X8 = up,YP + (v1; + v9;) X . Moreover, the latter expression implies

(4) (@', 9} up, v1i) + (&', 48, up, v2i) = (', 47 + Y5, up, vii + v2y)

Further, if w € T/E, 0 # k € R and Y € Ty, E, we construct %Y with respect to
the vector bundle structure Tp. Hence %Y € T,E and we set

(5) (kw)(Y) = kw(Y)

For k& = 0, we consider the restriction ToE of E to the zero section 0 : M — FE
and the tangent map 70 : TM — TE. We have the following decomposition
ToE=TM xp E. Weset pr1Y =Tp(Y). Then Y —T0(pr1Y") is a vertical vector,
which is identified with proY € E. Now we define Ow € To*(z)E, x = py, by

(6) (Ow)(Y) = (q2w)(pr2Y), Y € Tow)E
In coordinates, one finds easily

(7) k(zt, y?, up, v;) = (2, kyP, up, kv;), keR
Clearly, (4) and (7) imply, that g» : T*E — E* is a vector bundle.

2. DOUBLE VECTOR BUNDLES

We define a fibered square to be a commutative diagram

/\
\/



in which all arrows are fibered manifolds. If there is no danger of confusion, we
shall write Y for (8). The diagonal map in (8) will be denoted by ¢ : ¥ — M.
If (Y,Y1,Ys, M,Gi,G2,P1,D2) is another fibered square, then a morphism ¥ — Y
means a quadruple of maps f:Y =Y |, fi : Y] =Y, fo: Yo = Y5, fo: M - M
such that all pairs (f, f1), (f, f2), (f1, fo), (f2, fo) are fibered manifold morphisms.
Hence we have a category FS of fibered squares.

A fibered square will be called a vector bundle square, if all arrows in (8) are vec-
tor bundles. For example, both (T*E, E, E*, M, q1,q2,p,p*) and (TE,E, TM, M,
7, Tp,p,mr) are vector bundle squares. An FS-morphism (f, f1, f2, fo) of two
vector bundle squares is said to be linear, if all pairs (f, f1), (f, f2), (f1, fo), (f2, fo)
are vector bundle morphisms. Hence we obtain a category VBS of vector bundle
squares.

Consider a manifold A and three vector spaces Vi, V3, V3. Put

(9) Y =MxVy xVy x Vs, Y1 =M xV, Yo =M x Vs

Then we have canonical vector bundle structureson ¥ — Y7, Y — Y5, V1 - M
and Yo — M. We shall say that Y = M x V; x V5 x V3 is a trivial double vector
bundle.

Definition 1. A vector bundle square (8) will be called a double vector bundle,
if for every * € M there exists its neighbourhood U C M such that ¢ *(U) is
VBS-isomorphic to a trivial double vector bundle.

A morphism between two double vector bundles is an VBS-morphism. Thus, we
obtain a category DVB of double vector bundles.

Denote by HY C Y the set of elements which are projected by ¢; into a zero
vector in Y and by ¢» into a zero vector in Y>. By J. Pradines, [5], [6], HY
is called the heart of the double vector bundle Y. In the trivial case we have
H(M x Vi x Vo x V3) = M x V3. This implies that even in the general case both
vector bundle structures ¢; and ¢» coincide on HY and HY — M is a vector
bundle.

If D C R™ is an open subset and V' is a vector space, then Section 1 implies
T*(DxV)=DxV xV*xR".
Quite similarly,
T(DxV)=DxV xR™ xV.
Then one verifies easily

Proposition 1. For every vector bundle E, both TE and T*E are double vector
bundles.

We remark that a direct characterization of double vector bundles in terms of
the underlying vector bundle structures can be deduced directly from the results of

[8].



3. THE CANONICAL ISOMORPHISM T*E — T*E*

We are going to construct a canonical map € : T*FE — T*E*. Consider the
evaluation map e : E xr E* — R. Its differential

de : TE xpy TE* - R

is the second component of the tangent map Te: TE X7y TE* - TR =R x R.

Proposition 2. For every covector C € Ty E, there exists a unique element z € E*
satisfying py = p*z and a unique covector eC' € T}E* such that every vectors
A € TyE and B € T,E* over the same vector Tp(A) = Tp*(B) € T M satisty

(10) de(A, B) = C(A) — (eC)(B)

Proof. The coordinate form of the evaluation map e is yPz,, so that de is of the
form
2pdy? + yPdz,.

Consider C' = (2%,y?,up,v;), A = (2%,yP,a’,a?), B = (2%, g,,a’,b,) and write
D = (2%, gp, h?, k;). Then the condition de(A, B) = C(A) — D(B) reads

gpaf + yPb, = via' + uya? — hPb, — k;a’.
Since a’, a? and b, are arbitrary, the unique D = eC is of the form

(11) gp = Up, h? = —yP, ki = v;.

Definition 2. The map (11) from Proposition 2 will be called the canonical iso-
morphism e : T*E — T*E*.

Clearly, € is an isomorphism of double vector bundles.

4. ALL GAUGE-NATURAL TRANSFORMATIONS T*E — T*E*

Using the viewpoint of the theory of gauge-natural bundles, [1], [2], we can
say that e : T*"E — T*E™* is a gauge-natural transformation. We are going to
determine all gauge-natural transformations T*E — T*E*. For every w € T*E,
we have ¢ (w) € E, ¢2(w) € E* and p1(q1(w)) = pa(g2(w)), so that we can evaluate
(1 (w), g2(w)) € R Write np — (k)11 or n — (k)an, k € R, n € T*E*, for the scalar
multiplication with respect to the first or second vector bundle structure on 7* E*,
respectively.

Proposition 3. All gauge-natural transformations T*E — T*E* are of the form

(12) w — A((q1 (w), @2 (w)1 B({q1 (), g2 (w)))2¢ (w),

where A(t) and B(t) are two arbitrary smooth functions of one variable.

Proof. As remarked in [2], p.409, the category VB, , of vector bundles with m-
dimensional bases and n-dimensional fibers and their local isomorphisms is natu-
rally equivalent to the category PB,(GL(n)) of GL(n)-principal bundles with m-
dimensional bases and their local isomorphisms. Consider the trivial vector bundle
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R™ x R™ and write S = (T*(R™ x R*))p and Z = (T*(R™ x R"™*))y, 0 € R™.
Then both S and Z are W}, GL(n)-spaces and all gauge-natural transformations
T*E — T*E* are in the bijection with the Wl GL(n)-equivariant maps S — Z,
[2], Chapter XIIL

On S, we have the coordinates y”, u,, v; from Section 1. Every element of
T*(R™ x R™) can be written in the form &;dz® + pPdz,, so that z,, u?, & are
the corresponding coordinates on Z. The elements of W, GL(n) are of the form
(a%,ab,al;), deta’ # 0, detab # 0, [2], p.153. Using standard evaluations, one

finds easily the following actions of W! GL(n) on S and Z

TP Py go— a4 5o— gde. _ adapaT a
(13) §* = ajy?, Up = ajug, Vi = Gjvj — Gjapagupy

> — a4 7P — P9 . zi¢. 4 zIzpaT q
(14) Zp = ajzq, B’ = agp §i = a;&5 + ajayag;zpp

where aj or aj is the inverse matrix to aj or af, respectively. To determine all

WL GL(n)-equivariant maps f : S — Z, we shall use the methods from [2]. Thus,
let us start from an arbitrary map

(15) Zp:fp(yauyv)> /J,p:fp(y,u,’[)), gl :fi(y;U,U)~

Consider first the equivariancy with respect to the canonical injection GL(m) X
GL(n) = W,,GL(n), which is characterized by a; = 0. Using the homotheties in
GL(m), we find that f, and f? are independent of v and f; is linear in v;. The
equivariancy with respect to the whole group GL(m) yields

(16) fi=g(y,u)v;.

Then we consider equivariancy with respect to GL(n). The tensor evaluation the-
orem, [2], Section 26, yields

(17) P ==Allu)y?,  fp = By'uy)vp.

Consider now the equivariancy with respect to the kernel K of the canonical pro-
jection WL GL(n) = GL(m) x GL(n), which is characterized by a§- = 6;-, al = db.
This yields

ab; AupBy? = al gupy’.

Thus,

(18) g(y,u) = Ay uy) B(yu,)

Clearly, (16)-(18) is the coordinate form of (12). O



5. LINEAR VECTOR FIELDS

In general, every vector field X : N — T'N on a manifold IV defines a function
X :T*N - R, X(2) = (X(2),2), z € Ty N. Conversely, every function f : T*N —»
R linear on each fiber is of the form f = X for a vector field X : N — TN.

Consider a linear vector field X : E — TE, [2], p.379. Its coordinate form is

, 0 0
i P e Y
X'(x) e + XP(z)y oy
Using flows, one constructs the dual vector field X* : E* — T E*, [2], p.380, whose
coordinate expression is

» 0 0
p

Proposition 4. For every linear vector field X : E — TE, we have

5(::5(\;05.

Proof. In the coordinates of the proof of Proposition 2, X = X(z)v; + XP(z)ylup,
X+ = X'(z)k; — XP(x)gyh?. Then (11) yields our claim.

6. REMARK

It can be expected from the trivialization T'(D x V*) = D x V* x R™ x V*,
that there is no natural isomorphism TE — TE*. To confirm it rigorously, one
can determine all gauge-natural transformations TE — TFE*. Using the basic
methods from [2], one obtains easily the following result. Consider the projection
Tp:TE — TM, the homothetic transformation ky; : TM — TM, v — kv, k € R,
and the tangent map 70 : TM — TE* of the zero section 0 : M — E*. All
gauge-natural transformations TE — T E* are of the form

TOokpyoTp:TE — TE”, kel
Clearly, none of them is an isomorphism.
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EXISTENCE OF INVARIANT TORI OF CRITICAL
DIFFERENTIAL EQUATION SYSTEMS DEPENDING
ON MORE-DIMENSIONAL PARAMETER. PART L

RUDOLF ZIMKA
Dedicated to Anton Dekrét on the occasion of his 65-th birthday

ABSTRACT. In the paper a system of differential equations depending on more-
dimensional parameter with the matrix of the first linear approximation P having
pure imaginary eigenvalues while the others do not lie on the imaginary axis is stud-
ied. Conditions under which such a system has invariant tori are presented (section
1). In sections 2, 3 the cases when P has one and two pairs of pure imaginary
eigenvalues are investigated. In Part II the cases with three and four pairs of pure
imaginary eigenvalues will be analysed.

Introduction

In the monograph [1] Yu. N. Bibikov studies the system of differential equations
depending on a small non-negative parameter pu:

(1) &= X(z,p) + X*(z,p) ,

where z = (z1,...,z,), X(z,u) - a vector polynomial with respect to =z, u,
X(0,0) = 0, X*(z,p) : M > R", M = {(z,p) : ||z|| <K, 0<p<L}-a
continuous vector function with the property:

X*(Vpz,p) = (V)P X (2, p)

p - a natural number, X (z,u) - a function of the class C;g(M). It is supposed
that the spectrum of the linear approximation matrix P of the polynomial X (z, u)
consists of m pairs of pure imaginary eigenvalues while the others have non-zero
real parts. Yu. N. Bibikov found conditions under which to every small parameter
i there exists an invariant manifold of the system (1) that is homeomorphic with
a torus. He also presents in [1] an idea how these results can be utilized in the case
when the parameter p is m-dimensional one, where m is the number of the pairs of
pure imaginary eigenvalues of the matrix P.
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In applications the dimension of the parameter y is not a function of the number
of pure imaginary eigenvalues of P but it follows from the character of a process
which is described by the considered system. Therefore it is worth studying the
system (1) which depend on the more-dimensional parameter p with an arbitrary
dimension.

In this article the system (1) is investigated on the domain:

(2) M:{(x,y):x:(xl,...,a:n), N:(N1,~--,Nd), d21> ||£L’|| <K7 ||/J‘|| <L}

(in the whole article Euclidean norm is used).

Let us take an arbitrary parameter ¢ € M. Consider the beam §(po) = {epo :
0<e<L, pup= ﬁ} (index ”0” at parameters p will always have this meaning).
The system (1) depending on parameters p € d(uo) has the form:

(3) = X(z,epo) + X" (2,e10), 0<e< L.

The system (3) is the system of differential equations depending on one-dimensional
non-negative parameter €. It means the system (3) is the system of the kind (1)
which was studied in [1]. Such an access enables to investigate the system (1) on
the domain (2) and utilize the results achieved in [1]. Doing it the problem of
determining subsets of the set M with respect to p on which invariant manifolds of
the system (1) exist arises.

In section 1 preliminary transformations of the system (1) depending on parame-
ters u from the domain (2) are performed enabling to utilize the results from [1]. In
sections 2, 3 the cases when the matrix P has one and two pairs of pure imaginary
eigenvalues are studied.

1. The existence of invariant tori
Consider the system of differential equations
(1.1) &= X(z,p)+ X" (z,p) ,

where x = (z1,-..,2n), p = (W1,---,1q), T = %’ X (z,p) - a vector polynomial
with respect to z,u, X(0,0) = 0, X*(z,u) : M - R*, M = {z,p) : ||z|]| <
K, ||p|] < L} - a continuous function with the property:

(1.2) X*(Vex,epo) = (VE) P2 X (z, e, o),

0<e< L, p€M, p- anatural number, X (z,, j19) - a continuous function with
respect to x, &, po of the class CL(M).

We suppose that the matrix P = % has m pairs of pure imaginary eigenval-
ues +iAg, ..., i\, and the others Ayjy41,. .., A, have non-zero real parts. Further

we suppose that det P # 0.
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Note 1.1. The requirements on the functions X (z, u), X*(z,u) in (1.1) are not

very limiting as every system & = f(z, u), f(x,p) € C3*T3(M), £(0,0) = 0, can be

expressed in the form (1.1). For that it is sufficient to introduce the function f(z, u)

in the form of the Taylor polynomial with the Lagrange form of the remainder. In
N

this case X (z, 1) = 3 Xp(z1,...,2,) pb ...ufld ,k=k +---+kq, N - the whole
k=0

part of the number %, X (z1,...,2z,) - polynomials of the degree not higher

then 3p + 1 — 2k.

Let us denote F(x,u) = X (x,u) + X*(z,p). In the power of (1.2) F(0,0) = 0.
This means that the origin (z, u) (0,0) is the state of equilibrium of the system
(1.1). Since

0X*(z, 0X*(\ey,e 0 -

8(.’,17 IJ’) = (\g_xy NO) = O [(\/g)3p+2X(y>6)/J’0) =
_0 3p+2 % . 9y _ sp+1 0 5
- 8:1/ [(\/E) X(%&NO)] O - (\/g) 8yX(y757,u0) )

we have:

‘8F00‘_‘8X00 8X(0’0)‘:|P|7é0.
Using Implicit Function Theorem on the function F'(z,u) we get that in a small
neighbourhood O(0) of the origin p = 0 there exists a function z = ¢ (u) with the
following properties:
L 4(0) =
2. F[Yp(u),u) = 0 for p € O(0).

We see that to every small enough parameter pu* € M there exists the state of
equilibrium of the system (1.1) z* = ¢(p*). It will be shown that to such a p*
there exists also under certain conditions an invariant manifold of the system (1.1)
which is homeomorphic with a torus. When such a situation realizes we say that

at u = 0 the bifurcation of an invariant torus arises from the state of equilibrium
z =0.

Lemma 1.1. System (1.1) can be reduced by the transformation
(1.3) r=58+Tu,

where £ = col(y,y,z), y = col(y1,...,Ym), y - the complex conjugate vector to y
(in the article the symbol ”@” always means the complex conjugate expression to a,
z=col(z1,...,2n—2m), S - a regular n x n-matrix, T - n x d-matrix, to the system

y=i\y+Y(y,g,z,n)+ Y (y,7,2, 1)
(1.4) g =iy +Y(y,7,2,01) + Yy, 7,2 1)
2=Jze+ Z(y, g, 2,1) + Z*(y, 4,2, 1)

where A\ = diag(A1, ..., Am),J - a Jordan canonical lower matrix, Y, Y, Z - vector
polynomials without scalar and linear terms, Y*,Y*, Z* - continuous functions
having the property (1.2), i.e. for example

Y (Vey, Vey, Vez, epo) = (VE)PTY (y,9, 2,6, o)
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Y - a continuous function of the class C;@Z in a neighbourhood of the point y =
0,2=0,0<e <L, u €M The second equation in (1.4) is conjugated to the first
one in (1.4) and can be gained from this by the change y for §, § for y and i for —i.
Further equations which will be conjugated to another ones will not be written.

Proof. Expressing (1.1) in the form
(1.5) & =Pr+Qu+ X'z, p) + X*(z,p)
and putting (1.3) into (1.5) we get:
SE=P(SE+Tu) + Qu+ X'(SE+ T, ) + X*(SE+Tp, ) .
From this we have:
(1.6) £E=S"'PSE+ (STIPT+S'\Qu+ S IX 4+ 571X* .

If the matrices S,T are taken in the way to get: S™'PS = diag(i\,—i\,J), T =
—P~1(Q, then (1.6) gives the system (1.4). The proof is over.
Consider now the system
y=ixy+Y(y, 7,21
(L.7)
i=Jz+Z(y,y,2,m) ,

which is gained from the system (1.4) by taking away the functions Y*, Z*.
Lemma 1.2. Let the eigenvalues A = (A1,...,\n) of the matrix P satisfy the
condition:

(1.8) @AM+ A 0 for 0<|q| <3p+2,

lg| = |q1] + -+ |gm|, ¢ - integer numbers, i =1,...,m.

There exists a polynomial transformation

y =u+ h(u,u, p)
(1.9)
z=v+g(u,up),
where u = (u1,-.-,Um), v = (V1,...,Un—2m), h,g are polynomials without scalar
and linear terms, that reduces the system (1.7) to the system
0= i\u 4+ uU(u -, p) + U°(u, @, v, p) + U* (u, @, v, 1)
(1.10)
v=Juv+ VO(U,’[L,U,/L) + V*(u,ﬂ,v,,u) )
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where U(u -1, ut) - a vector polynomial with respect to u - @, u without scalar terms,
U°(u,@,0,u) =0, VO(u,@,0,u) =0, U*,V* have the property (1.2).

Proof. Differentiating (1.9) with respect to ¢ and taking into account (1.7) and
(1.10) we obtain:

iNu+h)+Y(u+h,a+hov+g,p) =ilu+ul+U°+U*+

h h _ _
+ a—(iAu+uU+U0 +U*) + a—,(—i/\ﬂ+ﬂU+U° +0U%)
ou ou

. 0
J(v+g)+Z(u+h,a+h,v+g,,u):JU—l—Vo-{—V*—l-a—Z(Mu—l—uU-{—UO-{—U*H-
69 2y = —T7 70 s
+ =(—=idu+aU+U"+U").
ou

Giving away expressions with the property (1.2) and putting v = 0 we get from
these equations:

L Oh . Oh . L oh _-0h

Z)\’U/%—ZAU%—ZAh—Y(’U,—Fh,U“‘h,g,H)_UUa_UUaﬂ_UU
(1.11)

. O0g .. _Og _ o dg _-0g

ug, —idige = Jg=Zuthuthgp) —ulz —ala .

Expressing the polynomials h, g in the form of the sum of vector homogenous poly-
nomials h(*), g(#) s - the degree, we get from (1.11) that h(®), g(®) are determined
by the equations:

On'®) On'®) S
; — i _ih) = p) () L)y (s)
iAu 50 T 5 iAh PR gV — (ul)
(1.12)
229 3a%9Y o g0, i < s
iA\u o0 — AU o7 =RYW AW ¢V i<s,j<s.

We see that if we calculate h(®),g(®) in the direction of arising s then the func-

tions P(), R(*) will be known for every s. For the coefficients h;cq’q’r), g,(cq’q’r),

¢ = (q, - qm)s @ = (G1s-++Gm), * = (r1,...,74) of the polynomials h(*) =
col(hgs), ey hg,i)), g = col(g%s), e ,gés_)Qm) we get from (1.12) the equations:

(1.13)
i1 (g — @A — Ak-l pletr) = pletn) _pledn) g _q o,
(1.14)

i Z(‘Ij —q@j)A; — >‘2m+l-| gfq’q’r) = Rl(q’q’r), l=1,...,n—2m.
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When (g,q,r) is such a set that ¢; = ¢, g = g+ 1,5 =1,...,m, j # k, then
m ~ ~
> (g — @)Aj — A = 0in (1.13). In this case we put U,gq’q’r) = P,Eq’q’r) and

j=1
~ m

h{T") = 0. For other sets (g,d,7) in the power of (1.8) 3" (g; — @;)A; — Ak # 0.
j=1

(2,d,r)

In these cases we put U hl(cq,q',r)

k

= 0. Then the corresponding coefficient
is determined by equation (1.13) uniquely. The coefficients gl(q’q’r) in (1.14) are

m
determined uniquely for every set of (¢,d,7) as > (¢j — ¢j)A\j — Aam+1 7# O since
i=1
Redom+1 #0, 1 =1,...,n — 2m. The proof is over.
Let us perform the transformation (1.9) on the system (1.4). We again get system
(1.10) but this time with another functions U*, V* having again the property (1.2).
Introducing into this system polar coordinates

(1.15) u=pe?, u=pe ¥,
p=col(pr,...,pm), ¢ =col(pi,...,pm), ¥ = col(e?1,... e¥m), we get:

p=pF(p*, 1) + F°(p, 0,0, 1) + F*(p, 0,0, 1)
(1.16) ¢ =X+3(", 1) +p [ (p, 0,0, 1) + B (p, 0, v, )]
b= Jv+V(pe'?, pe™ v, 1) + V*(pe, pe™ v, 1)

where p2 = (pfv s qun)a pi.l = (pl_'la - '7p7711)7 F :'ReU(ch:li)a ¢ = ImU(pz,,u),
F° + F* = Ree ®[U°pe™, pe ", v,p) + U*(pe'?, pe "¢ v,p)], ®° + &* =
Ime=*?[U%(pe’?, pe='%, v, 1) + U*(pe'?, pe=,v,m)],  F°(p,,0,p) = 0,
®(p,v,0,) = 0, F*(vep, ¢, VEv,ep0) = (V)P F(p, 0, 0,2, o),
D*(\/ep, p,\/EV,Ely) = \/§3p+2<i>(p,ga,v,5,,u0), F, & - continuous functions with
respect to all variables of the class C;’%v. All functions in (1.16) depending on ¢
are 2m-periodic with respect to all components of the vector ¢.

Denote the linear parts of the function F(p?,u) by the expression Bp? + Cp,
where

By By, Ci1 Cio
B=| ... ... , C=|...............
Bml Bmm le C'mo
The equation
(1.17) Bp*+Cu=0

is called the bifurcation equation of system (1.16).

Let us suppose that det B # 0 and that at least one element of the matrix C' is
different from zero.

Take an arbitrary u € M. The bifurcation equation (1.17) on the beam (o) =
{ewo : 0 <& < L} has the form:

Bp? 4+eCupy=0.
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Solving this equation with respect to p? we have:
p® =e(=B " 'Cuo) = ea®(mo) ,

where o (1) = col[a®(uo), - - -, 2, (10)] = Apo

We say that the bifurcation equation (1.17) satisfies the condition of positiveness
at u € M if a®(uo) is positive at every component ai(up), k = 1,...,m. Let
DP denote the subset of all parameters y € M at which the bifurcation equation
satisfies the condition of positiveness. We shall call this subset DP the domain of
positiveness of the bifurcation equation (1.17).

Lemma 1.3. The domain of positiveness DP of the bifurcation equation (1.17) is
an open cone with the apex at the origin u = 0 consisting of beams §(1o) = {epo :
peEM, 0<e<L,a2(u)>0,k=1,...,m}.

Proof. Consider an arbitrary p* € DP and take an arbitrary p € d(u), p = s,ua,
e = ||ull- As o*(uo) = col[af(po), - - -, i, (Mo)] and af (o) = o (aripn + - +

Ohapta) = T (mae ity -+ arae iy ||) e (oL - anapg) = af (ug) >
0, k=1,...,m, we get that 6(us) C DP. This means that DP is a cone. We need
to show yet that to this p* there exists such o > 0 that the sphere O, (u*) C DP.
As p* € DP so a3 (py) = vk, >0, k =1,...,m. Take an arbitrary pu from a sphere
Og(n*), u # p*. Then af (o) = (ki + -+ + akapa) = myler (uf + o1) +

tapg(py+oq)], o0 <o;<o,j=1,...,d, k=1,...,m. From this equation
we have:

1
2 * *
ap (o) > T (kipt + -+ agapg) — g ——dao
[+ o ' ||l = o
a=max{|ay|}, k=1,...,m; I=1,...,d.
If we take o = |“:H then we get from the last inequality:
9 S 9, . da s da
A > A - > - >0
a (1o) s+1ak(ﬂo) s—1 s+1V s—1
for big enough natural number s, v = min{vy,...,vn}, k=1,...,m. The proof is

over.

Let us take an arbitrary p € DP. On the beam 6(uo) = {euo : 0 < e < L} the
system (1.16) has the form:

p = pF(p*,ep0) + F°(p, ,v,210) + F*(p,0,v,p0)
(1.18) ¢ =X+ ®(p* ep0) + p 2% (p, 0,0, 800) + B*(p, 0,0, 00)]
v=Jv+ Vo(peiw7pe_i4p71}75,u’0) + V*(peiﬁa’pe_i@,v,gluo) .
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The system (1.18) is the system of differential equations depending on one-dimensional
non-negative parameter € with the bifurcation equation satisfying the condition of
positiveness. As it was shown in [1] the system (1.18) can be reduced introducing
new variables z1, @1, v by the relations p = v/E[a(po) + z1], 0 = 1, v = ev1 to
the system

i1 =eXy (21,6, o) + VEXD (21, 01,01, €, o)+
+ (VE)PHLX (21, 01,01, €, o)
(1.19) P1=A(e) +ePi(z1,e, o) + VERY (21, 01,01, 8, p10) +
+ (VB i (w1, 01,01, €, o)
By = Juy + VEVL (@1, 01,016, o) + (VE)PT Vi (w1, 01,0156, o)
where X, ®; - vector polynomials, X1(0,0,40) = 0, ®1(0,e,u0) = 0, A(0) =

A, X0,89 V0 X, &, V; - continuous functions in all variables of the class Cay o1

on the domain My = {(z1,¢1,v1,6,1) : ||z1]] < K1, ||n1]] < K1, 1 € R™, 0 <
e <L, peDP}, X?, ®? VP vanishing at v; = 0 and

_ % = 2[diag a(uo)| Bldiag a(uo)] -

We say that P;(u) is non-critical at pu € DP if its eigenvalues do not lie on the
imaginary axis and is critical at u € DP if it has at least one pair of pure imaginary
eigenvalues while the others have non-zero real parts. Let DC denote the subset

of all parameters u € DP at which the matrix P (u) is critical. We shall call this
subset DC the domain of criticalness of the bifurcation equation (1.17).

Theorem 1.1. To every € DP \ DC of the bifurcation equation (1.17) there
exists the invariant manifold of the system (1.19) which is defined by the equations

z1 = [|pln (o1, || pll, po)

(1.20) Py (p)

(1.21)
v = ||ull*©1(p1, [ull, ko)

where m (1, ||pl]; o), O1(p1, |1, o) are continuous functions 2w-periodic in all
components of p1, o1 € R™, 0 < ||p|]| < L, p € DP \ DC. The natural number p
in (1.2) can be taken p = 1.

Proof. Consider an arbitrary p € DP \ DC. The parameter y lies on the beam
d(po) = {epo : 0 < e < L}. On this beam the system (1.16) can be reduced to the
system (1.19). According to Theorem from section 3 of Chapter 1 in [1] there exists
to every €, 0 < € < L (in the case of necessity L is taken smaller) the invariant
manifold

x1 = e (¢1,€, ko)
U = 52@1(%,6,#0) )

where n;,0; are continuous functions 27-periodic in all components ¢y, @1 €
R™, 0<e < L, pcan be p=1. In our case € = ||u||. The proof is over.
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2. One pair of pure imaginary eigenvalues

Suppose that the eigenvalues of the matrix P of the system (1.1) are: +iX, Ag, ..., Ay,
ReM, #0, k=3,...,n
The bifurcation equation (1.17) of system (1.16) is:

(2.1) Bp*+Cu=0,

where Be R,C = (Cy,...,Cq), CL €R k=1,...,d.
We suppose that B # 0 and the vector C' has at least one element different from
ZET0.

Theorem 2.1. If the matrix P of the system (1.1) has one pair of pure imaginary
eigenvalues and the others have non-zero real parts then:

1. DP of the bifurcation equation (2.1) is the whole half-sphere of the sphere
= {p = (u1,-.-,pa) : 0 < ||p|| < L} which is determined by the
hyperplane Ciu; + --+ + Cqug = 0 and by a point pu* € O at which
—5(Capi + -+ Capy) >0 .
2. DC of the bifurcation equation (2.1) is empty set.

Proof. Let us take an arbitrary u € M. The bifurcation equation (2.1) has on the
beam 6(uo) = {s,uo 0<e < L} the form: Bp? +eCup = 0. Solving this equation
with respect to p? we get: p? = ea?(uo), where a? (o) = \uH(Cluﬁ_ +Cypg)-
DP is the set of all u € M at which

1
o (po) = ~ Bl (Cipr + -+ Cypra) > 0 .

From this inequality the first assertion of Theorem 2.1 follows.
The matrix Py (u) of the system (1.19) has on DP according to (1.20) this form:

Py (p) = 2[diag a(po)] Bldiag a(uo)] = 2J B||1 T (Crpa + -+ + Capra)-

1

for all 4 € DP. The proof is over.

Consequence of Theorem 1.1 and Theorem 2.1. To every u € DP of the
bifurcation equation (2.1) there exists the invariant manifold of the system (1.19)
of the kind (1.21).
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3. Two pairs of pure imaginary eigenvalues

Suppose that the matrix P of the system (1.1) has two pairs of pure imaginary

eigenvalues £i\;, +i)2 and the others A5, ..., A\, have non-zero real parts.
The bifurcation equation (1.17) of the system (1.16) is:
(3.1) Bp* +Cu=0,
where
B11 312 Cll s C11d
B = , C= .
<321 BQQ) <021 - ng

We suppose that det B # 0 and the matrix C has at least one element different
from zero.

Let us take an arbitrary up € M. The equation (3.1) has on the beam &(ug) =
{epo : 0 < e < L} the form: Bp? +eCug = 0. Solving this equation with respect
to p? we get

(3.2) p> =e(—=B "Co) = ea*(po) ,

where
2
2 — 041(110) — A A:(al): <0111 ald)
a”(po) (ag(uo)) Ho, o oy o g )
The matrix P; () which is defined by (1.20) has the form:

<a1 ai (ko) By a1(uo)a2(uo)B12>

Py(p) =2 (10)a(po)Ba1 O‘%(MO)B22

where

1 1
a1 (o) = m(anm + -4 arapa),  ao(po) = m(azlul + o+ 2aftd) -

Lemma 3.1. The matrix P;(u) is critical at u € DP only if the following two
conditions are satisfied:

1. det B >0
(3.3)
2. a1 (o) = ai(po)Bi1 + a3 (ko) B =0 .

Proof. The characteristic equation of the matrix P12(“ )

(3.4) X — a1 (po)A + az(po) =0,

where a1 (o) = Tr24# = 03 (o) Bu +03 (10) Bas, ax(po) = det 20 = a3 (o) a3 (uo)-

det B.
Comparing (3.4) with its expression by means of its pure imaginary roots we
gain the conditions for P; (i) to have a pair of pure imaginary eigenvalues:
ar(po) = af (o) Bur + 3 (pt0) Bao = 0, a2 (o) = @i (ko) a3 (o) det B > 0 .

Taking into account that af(uo) > 0, ad(uo) > 0 at every p € DP we get the
assertion of Lemma 3.1.

which is similar to Py (u) is:
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Theorem 3.1. Let the rank h(A) of the matrix A in (3.2) be 1. Then the following
holds for DP and DC of the bifurcation equation (3.1):

1.DP#@¢>&2:ka1,k>0.
2. DC 7é (Z) =4 {(detB > 0) A [(Bll = Byy = 0) \Y (Bll = —]{?BQQ)]}.
3. FDC # 1 = DC = DP.

Proof. The domain of positiveness of the bifurcation equation (3.1) is determined
by the inequalities:
1

ai(po) = m(anm + -+ aigiqg) >0

(3.5)

1
a3 (po) = m(azlm + -+ agapta) > 0.

The first inequality in (3.5) is satisfied at all parameters p € M which belong to
that half-sphere of the sphere O = {p = (p1,...,pa) : 0 < ||p|] < L} which is
determined by the hyperplane a1 + -+ + a1gpeqg = 0 and by a point p* € O at
which af(ug) > 0. As h(A) = 1 so there exists k € R such that as = ka;. Using this
we can express the second inequality in (3.5) in the form: ”’”T"”(a11u1+- ctaraihg) >
0. From this inequality it follows that the parameters p which satisfy the first
inequality in (3.5) will also satisfy the second inequality in (3.5) only when k& > 0.
This gives the first assertion of Theorem 3.1.

Let DC # (. Take an arbitrary u € DP. As as = kay, k > 0, so a3 (o) =
ka2 (uo). Therefore the conditions of criticalness (3.3) of the matrix P; (i) can be
written in the form:

1. det B >0
(36) 2. ay (p,g) = CM%(,U/())(BM + k‘B22) =0.

The equation (3.6) is satisfied only when Bj; = B2y = 0 or By = —kBsy. From
this equation also follows that when Bj; = Bay = 0 or Byy = —kBay then (3.6) is
satisfied at every u € DP. This gives the second and the third assertion of Theorem
3.1. The proof is over.

Theorem 3.2. Let the rank h(A) of the matrix A in (3.2) be 2. Then the following
holds:

1. DP #0

2. DC #0 < {(det B > 0) A[(B11 = B2z = 0) V (B11Ba2 < 0)]}

3. DC =DP & [(det B > 0) A (B11 = B2z = 0)].

Proof. As h(A) = 2 then from the definition of the rank of a matrix follows that the
dimension o of the parameter p is at least 2, i.e. 0 > 2. The domain of positivenes
DP of the equation (3.1) is determined by the inequalities

m(anul + -+ aapa) > 0

(3.7)

1
m(am/u +~'~+a2dud) >0.
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Expressing (3.7) in the form of equations we get:

aripy + o+ agapg — =0
(3.8)
Qi i + -+ aaqpig —t2=0, t1 >0,t2>0.

As the rank of the matrix of the system (3.8) is 2 this system has infinite number
of solutions with ¢; > 0,¢2 > 0. Therefore the inequalities (3.7) have solutions
w* = (pf,..., ). As parameters y = ep* for 0 < ¢ < L also satisfy (3.7) so
DP # ). This gives the first assertion of Theorem 3.2.

Let DC # (). The conditions of the criticalness of the matrix P;(p) are:

(39) aq (,LL()) = CM%(M[})Bll + CK%(,U())BQQ, det B >0.

Let p* € DC. It means that ai(u) = 0, det B > 0. But as at the same time
w* € DP so ad(pug) > 0, a3(uy) > 0. From (3.9) it follows that By = Bas = 0 or
B11Bsy> < 0.

Let

(310) (det B> 0) N [(Bll = B22 = 0) \Y (B11B22 < 0)] .
DC is the set of parameters p € DP satisfying the relations:

aripr + -+ aigpg >0
(3.11) o1y + o+ asgpg > 0
(oq1ppr + -+ -+ augpea)Bin + (@21 pt1 + - -+ + @2afta)B2e = 0 .

We shall show that under the assumptions (3.10) these relations have solutions.
Expressing (3.11) in the form of equations we get:

apipr + -+ agapg — =0
(312) Qg1 U1 + -4 Q24 g - t2 =0
(a11B11 + a21)Baspr + - -+ + (@1gB11 + a2¢B22)pgo = 0 .

If By; = B2s = 0 then the third equation in (3.12) is satisfied for every u € DP
and DC = DP.
If By1 B2y < 0 then the system (3.12) can be reduced to the form:

aripy + o+ agapg — =0
(3.13) Qa1 b1 + -+ Qagllg —to=0
Blltl + B22t2 = 0 .

As h(A) = 2 so the rank of the system (3.13) is 3. One of d — 1 parameters of
this system is t5. For t; we get: t; = —g—ffh > 0 as t2 > 0. So the system (3.13)
has infinite number of solutions (uf,. .., un}, t1,t3) with ¢f > 0,t5 > 0. This means
that at these solutions a?(ug) > 0, a3(ug) > 0 and a1 (pg) = 0. Thus parameters
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u=cep*, 0 <e < L, belong to DC and therefore DC # ). This gives the second
assertion of Theorem 3.2 and the relation: [(det B > 0)A(By; = Bz =0)] = DC =
DP.

Suppose that DC = DP. Consider the parameters p*, u+ which are the solutions
of (3.8) corresponding to the pairs (t; = 1,t5 = 1), ¢t = 1,t5 = 2) respectively
and an arbitrary choice of the other parameters of (3.8). Then we have from (3.8):

iy + -+ anapy =1
o1y + -+ angpy =1

and also

anpf + -+ arguy =1

g pf 4+ asapt =2
Take an arbitrary €9,0 < g9 < L and consider the parameters p*(g9) = eou* €
DP, ut(gg) = eopt € DP. According to the assumption DC = DP we have:

w*(e0) € DC, pt(g0) € DC. Thus the conditions of criticalness at u* (o), ut(gp)
are satisfied what means:

o3 [ (20)]B11 + a3 g (€0)] B2 = 0
(3.14)

afpg (€0)]Bi1 + a3[pg (€0)]Baz = 0 .

As af[ug(eo)] = a3lugleo)] = ﬁ and af[ug (€0)] = Mt a3 [pg (€0)] = Mt
the equations (3.14) have the form:

1 1
B+ — B2 =0
|12 [112%]]

1
—Bll + —BQQ =0.
|| ||
But this system is satisfied only when By; = Bsy; = 0. This gives the relation:
DC = DP = [(det B > 0) A (B11 = Baa = 0)]. The proof of Theorem 3.2 is over.

According to Theorem 1.1 to every u € DP \ DC there exists an invariant man-
ifold (1.21) which is homeomorphic with an invariant torus. Suppose now that
u € DC of the bifurcation equation (3.1). This means that Py (u) is critical on the
beam of parameters d(uo) = {epo : 0 < e < L}. On this beam the system

(315) i’l :6X1(1’1,€,,U0)

which is gained from the first equation of (1.19) is two-dimensional system with
the critical matrix P (u) = %’?’“0). Denote its eigenvalues +i\!. The system
(3.15) is the system of the same character as the system & = X (x,¢, pio) which is

gained from the system (1.1) being expressed on the beam §(ug). As it was shown
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in [1] we can do on (1.19) the analogical sequence of transformations as it was done
on the system (1.1). During this process we get the bifurcation equation

(316) Blp% +eCy (,UO) =0, B;eR, Cl(,uo) eR.

If (3.16) satisfies the condition of positiveness, i.e. p = e[—5-Ci(uo)] = ea’(uo),
a?(po) > 0, the system (1.19) can be reduced to the system

iy = e Xo(x2, €, o) + X2 (T2, P12, P22, V12, €, o)+
+ (VE)*P Xy (22, P12, P22, V12, €, o)
(3.17)

P1a = A1 (€) + 2®12(22, 6, po) + 05 (22, 012, P22, V12, €, o)+
+ (VE)*PD13(x2, P12, P22, V12, €, o)

$22 = eXa(e) + 2Pz (w2, €, o) + B9 (22, P12, P22, V12, €, o)+
+ (VE)* @22(72, 012, 22, V12, €, o)

b12 = Juiz + Vb (22, 012, 022, V12, €, fio) +

+ (VE)*P Vg (22, 012, 022, V12, €, o)

where dim x5 = dim 95 = 1, dim @12 = 2, dimwviz = n—4, A\ (0) =\, X2(0) = \!
and the functions X, @15, ®9o, Xg, (I)[1)2, ‘I>(2)2, ‘/102, X5, @15, Doy, V1o have the same
character as the analogical functions in (1.19).

Denote Py(u) = %’2’“0). It was shown in [1] that Py(u) = 2a2(uo)By =
—2C1(up). As the bifurcation equation (3.16) satisfies the condition of positiveness
we have P»(u) # 0 what means that P»(u) is non-critical. Therefore according to

Theorem of section 3 Chapter 1 in [1] the following assertion is valid.

Theorem 3.3. Let p € DC of the bifurcation equation (3.1). If the bifurcation
equation (3.16) satisfies at p the condition of positiveness then p in (1.2) can be
taken p = 2 and to this p there exists the invariant manifold of the system (3.17)
which is defined by the equations

T2 = [|pl[m2 (@12, @22, [l o)
U12 = ||M||292(9012,9022, 1l], o)

where 12, ©4 are continuous functions in all variables 2w-periodic at Y12, Y22, P12 €
]RQ,QOQQElRl, 0<e<L.
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MINIMAL ECCENTRIC SEQUENCES
WITH LEAST ECCENTRICITY THREE

ALFONZ HAVIAR, PAVEL HRNCIAR AND GABRIELA MONOSZOVA
Dedicated to Anton Dekrét on the occasion of his 65-th birthday

ABSTRACT. An eccentric sequence is called minimal if it has no proper eccentric
subsequence with the same number of distinct eccentricities. All minimal eccentric
sequences with least value 2 were found by R. Nandakumar (see [1]). In the paper it
is shown that there are exactly 13 minimal eccentric sequences with least eccentricity
three (see Theorem 5.1).

1. INTRODUCTION

In this paper we consider undirected connected graphs without loops and multi-
ple edges. If G is a graph we denote by V(G) the set of all its vertices and by E(Q)
the set of all its edges. We write |V (G)| for the cardinality of V(G). The subgraph
of G induced by a set of vertices {vy,...,v,} will be denoted by < vy,...,v, >.
Let degv denote the degree of a vertex v and d(u,v) denote the distance between
vertices u, v. If u, v are vertices of a graph then uv is the edge which is incident
with each of two vertices u and v. Let us denote by diam G the diameter of the
graph G.

The eccentricity of a vertex v € V(G) is the integer

eq(u) = max{d(u,v);v € V(G)}.
We write simply e(u) when no confusion can arise. The eccentric sequence of a
graph G is a list of the eccentricities of its vertices in nondecreasing order. Since
often there are many vertices having the same eccentricity we will simplify the
sequence by listing it as
ert, ey, ... ems

where the e; are the eccentricities for which e; < e;;; and m; is the multiplicity of
e;. For example 3%, 43, 52 is the eccentricity sequence of the graph in Fig. 1.1 (at
each vertex its eccentricity can be found).

1991 Mathematics Subject Classification. 05C12.
Key words and phrases. Eccentricity, eccentric sequence, minimal eccentric sequence.
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Fig. 1.1 Fig. 1.2

Isomorphic graphs have the same eccentric sequence (we will identify them).
Obviously, the converse is not true.

A sequence of positive integers is called eccentric if there is a graph which realizes
the considered sequence as the sequence of its eccentricities. An eccentric sequence
is called minimal (by R. Nandakumar) if it has no proper eccentric subsequence with
the same number of distinct eccentricities. For example, the eccentric sequence
32,47 52 is not minimal since the graph in Fig. 1.2 has the eccentric sequence
32,42,52,

Now we remind some well known properties of eccentric sequences (see [1]).

For every eccentric sequence e]*!,e}*?, ..., e holds

1. ej41 =e;+1fori=1,2,...,s—1,1e. the e}s are consecutice positive itegers,
2. es < 2ey, i.e. the diameter is at most twice the radius.
The next assertions can be found in [2].
Theorem 1.1. Ifel", ey, ... e is an ecentric sequence then m; > 2 for every
7> 2.
Theorem 1.2. A sequence of positive integers is eccentric if and only if some its

subsequence with the same number of distinct integers is eccentric.

All minimal eccentric sequences with least value 2 were found by R. Nandaku-
mar (see [1]). In this paper it is shown that there are exactly 13 minimal ec-
centric sequences with least eccentricity three, namely 3% 3% ,42; 3% 4%,
33,46, 32,48; 3,40, 342 52, 3,43 5% 3,4457; 3,45,5% 3,47,5%
32,42 5%, 3,4%,5%,6%, (Theorem 5.1).

Now we will give some statements which we will use in the paper.

Lemma 1.3. Let G be a graph and let uv € E(G). If degv = 1 and e(u) > 2 then
e(v) =e(u) + 1.

Proof. Any nontrivial path contained the vertex v also contains the vertex wu.

Lemma 1.4. If uwv € E(G), vw € E(G), degv = 2, degw = 1, e(u) > 3 then
e(w) =e(v) +1=-e(u)+ 2.

Proof. 1t is obvious.
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2. ECCENTRIC SEQUENCES OF TYPE 3,4' AND 3,4/, 5", [ +r = 9.

In this section we will show that there are only two 10-vertices graphs with
eccentric sequences of type 3,4' or 3,4',5". From this (by Theorem 1.2) it is
possible to obtain some properties of minimal eccentric sequences (Corollary 2.5
- 2.7).

Lemma 2.1. If the eccentric sequence of a graph G is 3,4' or 3,4',5" then G
contains the subgraph in Fig. 2.1 satisfying e(vs) = 3 and

(21) d(U3,’U7) = d(Ul,’U5) = 4,
or the subgraph in Fig. 2.2 satistying e(vs) = 3 and
(22) d(’l}4,’l}1) = d(’l}4,’U7) = d(v4,w3) =3
w3
w2
w1
r——0— 00— 00— 00—
(%1 V2 V3 V4 Vs Vg (% (%1 V2 V3 V4 Vs Vg (%
Fig. 2.1 Fig. 2.2

Proof. Let vg be a vertex of G for which e(vs) = 3. Since e(v4) = 3 there is a path
v4,V3,V2,v; with the property d(vq,v;) = 3. Let Vi = V(G) — {v1,v2,vs,v4}. If
d(v,vs) < 2 for any vertex v € V] then e(vs) < 3, a contradiction. If for any vertex
v € Vi for which d(v,v4) = 3 we would have that a shortest path between v, v4
contains one of the vertices ve, v3 then again e(vs) < 3, which is impossible. Hence
the graph G contains a path vg,vs,ve,v7 satisfying d(vg,v7) = 3 that is disjoint
with the path vy, vs,v3. Thus the graph G contains the subgraph in Fig. 2.1.

If the distance between vertices from the set Vo = V(G)—{v1,v2,v3, v4, v5, v, 07 }
and the vertex vy is at most two then d(vs,v7) = d(vi,vs) = 4 (because e(vs) =
e(vs) = 4). Let there exist a vertex ws € V5 for which d(vs,w3) = 3. If for every
vertex ¢ € Vh satisfying d(v4,z) = 3 every shortest path between vertices vg, x
contains at least one of the vertices vy, vs, vs, vg then without loss of generality we
can assume that (2.1) is satisfied. In the opposite case G contains the subgraph in
Fig. 2.2 satisfying e(vs) = 3 and (2.2). O

Lemma 2.2. Let the eccentric sequence of a graph G be 3,4 or 3,4, 5" and
e(vy) = 3. Let v1,v2,v3,v4,05,06,07r be a path for which d(vy,vs) = d(vr,v4) = 3
and let Gy, G2 be subgraphs of the graph G satisfying the following conditions

() V(G1)NV(G2) C {va},

(13) V(G) = {va} CV(G1) UV(Ga),

(i) v1 € V(G1), vr € V(G2).
Then none of the following assertions holds

(a) there is no edge uwv with u € V(G1) — {va} and v € V(G2) — {va},

(b) wv € E(G), u € V(G1)—{va}, v € V(G2)—{vs} and eq, (u) < 2, eq,(v) <3

(or ea(u) <3, eay(v) < 2).
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Proof. In the case (a) a shortest path between vertices vy, vy contains the vertex
vy and it yields that d(vq,v7) = d(v1,v4) + d(v4,v7) =3 +3 = 6. Then e(v;) > 6,
a contradiction.

In the case (b) we have eg(v) < 3, v # vy but vs is the only vertex with
eccentricity less than four, a contradiction. O

Corollary 2.3. There exists no graph satisfying all assumptions of Lemma 2.2 and
simultaneously diam G < 2, diam G2 < 3 (or diam Gy < 3, diam G» < 2).

Theorem 2.4. Ifthe eccetric sequence of a graph G is 3,4' or 3,4', 5% and |V (G)| = 10
then G is the graph in Fig 2.3 or in Fig. 2.4.

Fig. 2.3 Fig. 2.4

Proof. Let V(G) = {v1,...,v10}. We distinguish two cases (with respect to Lemma
2.1).

I. Let G contain a path vy, vs,...,vr and let e(vs) = 3 and (2.1) hold.

From (2.1) follows that the subgraph (vi,vs,...,vr) has six edges. It is easy to
see that neither degv; = 1 and degvs = 2 nor degv; = 1 and deguvg = 2 is possible
(see Lemma 1.4).

Since e(v4) = 3 it is sufficient to consider the following cases with respect to sym-
metry, suitable denotation and to the number of vertices from the set {vs,vg,v10}
which are adjacent to at least one of the vertices from the set {vs, vs, v4, vs, vg}.

a) Each of the vertices vg, vy, v19 is adjacent to at least one vertex from the set
VI - {UQ,U3,U4,U5,U6}.

al) V48, Ualg, Ugl10 € E(G) Q—I—Q—I—Q—I—Q

By Lemma 2.2 we have degvs = 1 (in the opposite case the graph G would not
exist). Since any shortest path between v, vy can not contain the vertex vy we
have that an edge of type v;v;, i € {1,2,3,9}, j € {5,6,7,10} belongs to G. With
respect to (2.1), e(vy) > 4 and e(vg) > 4 this is possible only for i =9, j = 10, i.e.
vgv19 € E(G). Therefore, the graph G contains the subgraph in Fig. 2.4 with the
eccentric sequence 3,47,52. It is easy to check that if we add an edge to the graph
in Fig. 2.4 we obtain a graph in which eccentricities at least two vertices are at
most three.
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ag) V48, V3V, UsV1p0 € E(G) O—Q—I—I—I—Q—O

Let the subgraphs Hy = (vy,v2,v3,v9) and Hy = (vs,vg, v7,v10) have at least four
edges (i.e. their diameters are at most two). The inequality degwvg > 1 is impossible
by Lemma 2.2. So, let degwg = 1. Since any shortest path between vertices vy,
v7 can not contain v4 and (1.2) holds we get v;v; € E(G), i € {3,9}, j € {5,10}.
Hence e(v;) < 3 (and e(v;) < 3, too), a contradiction.

Thus (with respect to symmetry) we can assume that the subgraph H; has three
edges. Since degv; > 1 or degvs > 2 we get (with respect to (2.1)) vovs € E(G).
Since degwv; > 1 or degvg > 2 we get a contradiction (e(vs) < 3 or by Lemma 2.2).

a3) V48, V3Vg, VU109 € E(G) .—Q—I—I—Q—I—o

Let the graph Hy = (v1,v9,v3,v9) have at least four edges. By Lemma 2.2 we have
again degvs = 1. With respect to (2.1) any shortest path between vy, v7 can not
contain v4 and thus an edge of type v;v;, i € {2,9}, j € {5,10} belongs to E(G).

Hence e(v;) < 3, a contradiction. Now, we can assume that |E(H;)| = 3. Then
degv; =1 (by (2.1)). By Lemma 2.2 we get degvs = 2, a contradiction (see Lemma
1.4).

as) v4vg,v4v9 € E(G) and the vertex vy is adjecent to at least one of the vertices
V2, U3.

Deg v7 =1 (by (2.1)) and so deguvs > 2 (by Lemma 1.4). Hence we have (with
respect to (2.1) and Lemma 2.2) one of the cases a1), as).
as) Let vgug € E(G) and each of the vertices vg, v19 be adjacent to at least one of
the vertices vs, v3.
This is impossible by Lemma 2.2.
ag) Let vsvg € E(G) and each of the vertices vy, v19 be adjacent to at least one of
the vertices v, v3.

Since degvy > 1 or degwvs > 2 we obtain (with respect to (2.1)) that the graph
G does not exist by Lemma 2.2.
a7) Each of the vertices vs, vg, v19 is adjacent to at least one vertex from the set
{’U2, Vs, ’U4}.
From (2.1) it follows degwv; = 1. Since deguvg > 2 we get one of the previous cases.
b) Let vgvg € E(G) and each of the vertices vg, v19 be adjacent to at least one
vertex from the set V' = {v,...,v6}. We distinguish six subcases.

b1) V408, V3019 € E(Q) D—O—I—E—O—O—Q

Since neither degv; = 1 and degvs = 2 nor degv; = 1 and degwvg = 2 can holds,
we have (by (2.1)) that e(vsg) < 3 or the graph G does not exist by Lemma 2.2, a
contradiction.
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b2) V408, V4019 € E(Q) b—O—OXE—O—O—Q

Similarly, since neither degv; = 1 and degwvs = 2 nor degv; = 1 and degvg = 2
holds we have (by (2.1)) that either e(vg) < 3 or e(vig) < 3 holds or the graph G
does not exist by Lemma 2.2, a contradiction.

b3) V4Vg, V2V10 S E(G) D—I—O—E—O—O—Q

If degvy > 1 then vrvg € E(G) by (2.1) and the graph G does not exist by Lemma
2.2. If degvg > 2 then vgvip € E(G) or the graph G does not exist by Lemma 2.2.
If vev190 € E(G) we get that the graph G contains the subgraph in Fig. 2.3 with
the eccentric sequence 3,4%,5*. It is easy to check that if we add an edge to the
graph in Fig. 2.5 we obtain a graph in which eccentricities at least two vertices are
at most most three, a contradiction.

bs) V308, VU109 € E(Q) D—O—E—O—O—I—Q

Since degvy > 1 or degws > 2 we obtain (with respect to (2.1)) that the graph
G does not exist by Lemma 2.2.

b5) ’1}3’1}8”[}51}10 € E(G) D—O—E—O—I—O—Q

Since degv; > 1 or deg vy > 2 the subgraph (vy,vs,vs,vs,ve) has at least five edges
(with respect to (2.1)). Since degvr > 1 or degvs > 2 the graph G does not exist
by Lemma 2.2.

bs) vsvs € E(G) and the vertex vy is adjacent to at least one vertex from the set
{’U2, U3, ’U4}.

By (2.1) we have degvry = 1. If degwy > 2 then e(vs) < 3 or it takes place the
case by).

c¢) It remains the next three cases:
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(C) V4Vg, VgVg, UgU109 € E(G)

(d) V3Vg, UgVg, UgV1g € E(G)

St

(e) V4Vs, Vgly, V9V19 € E(G)

Since neither degv; = 1 and degvs = 2 nor degv; = 1 and degvg = 2 is possible
we have e(vg) < 3 or e(vg) < 3 (with respect to (2.1)), a contradiction.

II. If it does not take place the case I then by Lemma 2.1 the graph G has the
subgraph in Fig. 2.2 and without loss of generality we can asuume

(2.3) d(vz,w3) = d(wy,v7) = d(vs,v1) =4

We first show that at least two of the vertices vy, v7, ws have degree one. On the
contrary we may suppose (without loss of generality) that degv; > 1 and degvr > 1.
This is possible only (with regard to (2.3)) if vyws € E(G) and v7vs € E(G). Then
we obtain e(vy) < 3, a contradiction. So let degv; = degws = 1. The inequality
d(vi,wsz) <5 yields d(v2, w2) < 3. With respect to (2.3) we get that vaws ¢ E(G)
and any shortest path between the vertices vy, ws can contain neither vertex wvs
nor v7. It can contain only the vertex w; and this is possible only if vow; € E(G).
Since e(vz) = 4 we get degvy; = 1 and so d(ve, w2) < 3. As in the previous case
we obtain vgwy ¢ E(G) and moreover, any shortest path between vertices ws, vg
can not contain the vertex w;. This path can contain only the vertex vs and this
is possible only if wevs € E(G). Then e(ws) < 3, a contradiction. O

Corollary 2.5. The eccentric sequence 3,4 is minimal.

Proof. The sequence 3, 4'° is the eccentric sequence of the graph in Fig. 2.5. Ac-
cording to Theorem 2.4 and Theorem 1.2 there is no graph with eccentric sequence
3,4, 1<10. O

Fig. 2.5
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Corollary 2.6. The eccentric sequences 3,4%,5* and 3,47, 5% are minimal.

Proof. The sequence 3,4%, 5% is the eccentric sequence of the graph in Fig 2.3. The
sequence 3,47, 5% is the eccentric sequence of the graph in Fig 2.4. Now we will show
that there is no graph with eccentric sequence 3,4!,5", I + 7 < 9. On the contrary,
let such graph G exist. According to Theorem 1.2 it is sufficient to consider the
case | +r = 8. Let e(vs) = 3 and let we obtain a graph G’ from the graph G by
adding a vertex v ¢ V(G) and an edge vqv. Then, evidently, eq (v) = 4 and for
any vertex u € V(G) it holds eq(u) = eqr(u) (because dgr(u,v) < 4). Then the
graph G’ has to be one of the graph in Fig. 2.3 or Fig. 2.4 but it is easily to see
that G’ is not any of them, a contradiction. O

Corollary 2.7. A sequence 3,45,5" is not a minimal eccentric sequence for any 7.

Proof. There is no graph with the eccentric sequence 3, 4%, 53 according to Theorem
2.4. Then it is sufficient to use Corollary 2.6. O

Minimal eccentric sequences with least eccentricity 2 can be found in [1], but
with a mistake in Fig. 9.4. Therefore we will touch this case in the last part of this
section.

Theorem 2.8. The eccentric sequence 2,3°® is minimal and it is realized by only
the graph in Fig. 2.6.

vr
Ve
—o—o 0o o
V1 Uz V3 Vg4 Us V1 VU2 V3 V4 Us
Fig. 2.6 Fig. 2.7 Fig. 2.8

Proof. In the same way as in the proof of Lemma 2.1 we can show that the graph G
with the eccentric sequence 2, 3¥ contains the subgraph in Fig. 3.4 where e(v3) = 2
and d(vy,v3) = d(vs,vs) = d(vr,v3) = 2 or it contains the subgraph in Fig. 2.8
satisfying e(vs) = 2 and d(vy,vs) = d(v2,v5) = 3 (if the vertices of G are suitable
denoted).

I. In the first part of the proof we will show that the eccentric sequence 2,3 is
minimal.

Suppose on the contrary that there exists a graph G with the eccentric sequence
2,3°. Tt is obvious that the graph in Fig. 2.8 is a subgraph of G, where e(v3) = 2
and d(v1,v4) = d(v2,v5) = 3.

Since e(v3) = 2 it is sufficient to consider two possibilities for the vertex vg .

a)Let vavg € E(G). The equality d(vs,vs) = 3 implies that degvs = 1 and so
e(vs) = e(vs) + 1 (by Lemma 1.3), a contradiction.

b) Let vsvs € E(G). Since e(vy) = e(vs) = 3 we get degv; > 1 and deguvs > 1
(by Lemma 1.3) and so v1vs € E(G) and vsve € E(G), which gives e(vg) < 2, a
contradiction.
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II. We will show that the eccentric sequence 2, 3% is realized by only the graph
in Fig. 2.6.

a) Let G contain the subgraph in Fig. 2.7 where e(vs) = 2 and d(vi,v3) =
d(vs,v3) = d(vr,vs) = 2.

Firstly, let vsv7; € E(G). Since degv; > 1 (by Lemma 1.3) we have e(vy) < 2 or
e(vg) < 2, a contradiction.

Secondly, let vsv7 ¢ E(G). With respect to symmetry we can also assume that
vivy ¢ E(G) and vyvs ¢ E(G). Since d(vs,vs) = 2 and degvs > 1 (by Lemma
1.3) we can assume (without loss of generality) that vsvg € E(G). From degv; > 1
and e(vg) = 3 we have that vivy € E(G). From degv; > 1 and e(vy) = 3 we
have vov; € E(G). Hence the graph in Fig. 2.6 is a subgraph of G. It is easy to
check that if we add an edge to the graph in Fig. 2.6 we obtain a graph in which
eccentricities of at least two vertices are at most 2.

b) Let G contain a subgraph in Fig. 2.8 where e(vs) = 2 and d(vi,v4) =
d(UQ, ’1}5) =3.

In this case the subgraph (vi,vs,vs,vs,vs) has 4 edges. Since e(vs) = 2, it is
sufficient to consider (with respect to symmetry) the next four possibilities.

1) Vg Vg, V2U7 € E(G)

Since d(vs,vs) = 3 we get degvs = 1 which is impossible (by Lemma 1.3).
2) V3Vg, V3V7 € E(G)

In this case a shortest path between v; and vs contains a vertex v;, i € {6,7}
and so e(v;) < 2, a contradiction.
3) vave,vav7 € E(Q)

If vive ¢ E(G) we obtain that e(vs) < 2 (because degv; > 1 and degvg > 1 by
Lemma 1.3), a contradiction. Now, let vy € E(G). Any shortest path between
vy and vs does not contain the vertex vz (because d(vy,vs) < 3) and so there exists
an edge v;v; € E(G), where i € {1,2,6}, j € {4,5,7}. This yields e(v;) < 2, a
contradiction.

4) vovg, v3v7 € E(G)

Since degvs > 1 and e(v2) = 3 we obtain vsv; € E(G). Analogously as in the
previous case it can be shown that vyvg ¢ E(G). Since degv, > 1 and d(vy,v4) =3
we have v1v7 € E(G). Similarly, degvs > 1 and e(v7) = 3 imply vevs € E(G).
Thus we obtain the graph in Fig. 2.6. O

Remark. Theorem 2.8 implies that the graph corresponding to the eccentric se-
quence 2,35 in [1, Fig. 9.4] is wrong. Its eccentric sequence is 2,3%,4% and it is easy
to see that it is not even a subgraph of the graph in Fig. 2.6.

3. MINIMAL ECCENTRIC SEQUENCES OF TYPE 3F 4! &k > 2.

Lemma 3.1. Let G be a graph with an eccentric sequence 3% 4!, k> 2. Then G
contains the subgraph in Fig. 3.1 satisfying e(vs) = 3 and

(3.1) d(vi,vs) = d(va,v7) = 3,
or the subgraph in Fig. 3.2 satisfying e(vs) = e(v4) = 3 and
(32) d(’l}l,’U4) = d(U3,’U6) =3
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(provided that the vertices of the graph G are suitable denoted).

*—o—0o 0o 0 0o o *—o—90o 0o 0o o
U1 U2 U3 U4 U5 Vg U7 U1 V2 V3 V4 Vs Vg
Fig. 3.1 Fig. 3.2

Proof. Let vg € V(G), e(vy) =3 and let the graph G do not contain the graph in
Fig. 3.1 satisfying (3.1). There exists a vertice vy € V(G) with d(v1,v4) = 3. Let
v1,v2,v3,04 be a path from v; to vy of the length 3. We denote

V' =V(G) — {v1,v2,v3,04}.

Evidently, V' # 0. If v € V' with d(v,vs) = 3 then every shortest path from v to
v4 contains the vertex vq or vs. Therefore, d(v,v3) <2. If v € V' with d(v,vs4) =1
then again d(v,v3) < 2. If also for each vertex v € V' with d(v,v4) = 2 we have
d(v,v3) < 2 then e(vs) < 2, which is impossible. Hence there exists a vertex v
which satisfies d(v,v4) = 2 and d(v,v3) = 3. Consequently, the graph G contains
the subgraph in Fig. 2 satisfying (3.2) (we put v =v). O

Lemma 3.2. Let G be a graph with an eccentric sequence 3*,4' and Iet vy, v, vs,
v4, Vs, V6 be a path of G such that e(vs) = e(vy) = 3 and (3.2) are satisfied. Let
Gy and G2 be subgraphs of G satisfying the following three conditions:

(k) V(G1) NV (Gs) =0,
(kk) V(G1) UV(G2) = V(G),
(kkk) v1,V2,V3 € V(Gl), V4, Vs5,V6 € V(GQ)

We claim that

a) there exists an edge wv € E(G) for which
u € V(G) —{vs}, veV(G2)—{vs},

b) wve€ E(G), ue V(Gy)—{vs}, ve V(Gz) — {va} and
diam(G;) < 3, diam(G2) <2 give k>3,

c) w € E(G), ue V(Gy) —{uvs},v € V(G2) — {v4} and
diam(G;) < 2, diam(G2) <2 give k> 4.

Proof. a) Suppose, contrary to our claim, that there is no edge uv with u €
V(G1)—{vs}, v € V(G2)—{va}. Then every shortest path between the vertices v;
and vg contains the vertex vz or vy, which implies d(vy,vg) > 5. This contradicts
to our assumption (e(v;) < 4).

b) It is clear that e(u) <3 .

c) It follows easily that e(u) < 3 and e(v) < 3. O

36



Lemma 3.3. Let G be a graph with an eccentric sequence of type 3*,4' and let
V(G) = {v1,v2,...,v8}. If acircle vy,vs,...,0m,v7 withm € {4,5,6,7} is a
subgraph of G and each vertex vj, j > m, is adjacent to at least one vertex from
the set {vy,va,...,un}, then k> 4.

Proof. 1t is clear that k > 5 if m = 7. Let m = 6. At most one vertex of the circle
V1,Vs,...,U;, is at distance 4 from vy and at distance 4 from vg. It implies that
[ <4 and so k > 4.

Let m € {4,5}. It is easily seen that d(v;,v;) < 3 for each i € {1,2,...,m},
je{m+1,...,8}. It implies e(v;) < 3foreachi=1,2,....,m. O

Lemma 3.4. Let G be a connected graph such that |V (G)| =7 and let a circle of
the length at least 6 be its subgraph. Then the eccentricities of at least 5 vertices
of G' do not exceed 3.

Proof. Tt is immediate. O
Lemma 3.5. A graph G with the eccentric sequence 32,47 does not exist.

Proof. Suppose that there is a graph G with the eccentric sequence 32, 47. Let
V(G) = {v1,v2,...,v9}. Suppose that the assertion is false. We will use Lemma
3.1 and hence we distinguish two cases.

I. Let the graph G contains a path vy,ve,...,v7 such that e(vs) = 3 and the
equalities (3.1) hold.

If degv; = degvr = 1 then (by Lemma 1.1) e(v2) = 3 and e(vs) = 3, a contra-
diction. Therefore we will suppose that at least one of the vertices vy, vy has the
degree at least 2. If we take symmetry and the equality e(vs) = 3 into account, we
see that it is sufficient to distinguish the following subcases.

a) Each of the vertices vg, vg is adjacent to at least one vertex from the set
{’1}2,’1}3,’1}4,1)5,1)6}.
a1) The vertex vg is adjacent to vy or vz and the vertex vg to vs or vg.

Without loss of generality we may assume that both vertices with the eccentricity
3 belong to the set {vy,vs,v3,v4,v8}.

Firstly, suppose that vovgs € E(G) or the subgraph (vi,vs,v3,vs) of G has at
least 4 edges. Any shortest path between v; and vy does not contain vy (with
respect to (3.1)) hence there is an edge v;v;, i € {1,2,3,8}, j € {5,6,7,9}. It
gives e(v;) < 3, a contradiction.

Secondly, let vsvg € E(G) and the subgraph (vq,vs,vs,vs) has exactly 3 edges.
The assumption degwv; > 1 implies e(vs) < 3, a contradiction. If degv; = 1 then
degvy > 3 (by Lemma 1.4) and so E(G) contains an edge vvj, j € {5,6,7,9}.
Thus e(v;) < 3, a contradiction.
as) Each of the vertices vs, vy is adjacent to at least one vertex from the set
{v2,v3,v4} and vavg ¢ E(G).

Firstly, let degwvy; > 1. In this case we have that eccentricities of at least two
vertices from vo, vs, vs,v9 are at most 3, a contradiction. (Note that vqvs € E(Q)
gives v7vg ¢ E(G) because d(vyg,v7) = 3.)

Secondly, degvr = 1 gives e(vg) = 3 and degwvs > 2 (by Lemma 1.3 and 1.2).
Hence we have either the case a;) or at least one of the inequalities e(vg) < 3,
e(v3) < 3 holds, which is impossible.
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a3) Let vqvs,v409 € E(G).
The inequality degv; > 1 gives (with respect to (3.1)) e(vs) < 3 and e(vg) < 3,
which is impossible. Similarly, degv; > 1 yields e(v2) < 3 and e(v3) < 3.

b) The vertex vg is not adjacent to any vertex from the set {vs,vs, v4, vs, vg }.

In this case we have vgvg € E(G) and it is sufficient to consider two possibilities.
b1) Let vqvg € E(G).

Without loss of generality we may assume that both vertices with the eccentricity
3 belong to the set {v1, va, U3, v4, Vs, Vg }.

Firstly, if degv; > 1 we obtain vivg € E(G) (because e(vs) = 4). By our
assumption e(vy) = e(vg) = 4 and so degv; > 1. Therefore eccetricities of at least
two vertices from the set {vy,v3,vs,v9} are at most 3, a contradiction.

Secondly, if degv; = 1 then e(ve) = 3 and deg vy > 2 (by Lemmas 1.3 and 1.4).
Since e(vs) = 4 we obtain that degve > 1 (by Lemma 1.3). Therefore, vyvg € E(G)
holds. From degvs > 2 we get vov; € E(G), j > 4. This yields e(v;) < 3, a
contradiction.
by) Let vsvg € E(G).

If degvy > 1 then eccentricities of at least two vertices from the set {vs, v3,vg} are
at most 3. The equality degv; = 1 guarantees e(vg) = 3 and degvg > 2. This
forces e(v2) < 3 or e(vg) < 3. It again contradicts our assumption.

II. Let the graph G contain a path vy, vs,...,vs (see Fig. 3.2) such that e(v3) =
e(vq) = 3 and (3.2) hold.

From e(vz) = e(vs) = 4 we get degv; > 1 and degvg > 1 (by Lemma 1.3). Since
we may assume that the case I does not take place and e(vs) = e(vq) = 3, it is
sufficient to consider the next possibilities.

a) Each of the vertices v7, vg, vy is adjacent to at least one vertex from the set
{’l}2,'l)3,'U4,U5}.
ay) If at least one of the vertices v, vs is adjacent to no vertex from the set
{v7,vs, vy} then we obtain a contradiction (by Lemma 3.2).
ay) Let vgvr, vavs € E(G).

We may suppose that the vertex vg is adjacent to vy or v3. Since degvg > 1 we have
either e(vz) < 3 or vgvg € E(G). In the second case we again obtain a contradiction
by Lemma 3.2.

b) Let vsv7,v7vs € E(G) and let the vertex vs be adjacent to no vertex from the
set {’UQ, V3, V4, ’1}5}.
b1) In each of the subcases vovg € E(G), vsvg € E(G), vrvg € E(G) we can obtain
e(ve) <3 or e(vr) < 3 (because degvg > 1).
by) Let vqv9 € E(G).

If vgvg ¢ E(G) then e(vy) < 3 or e(vr) < 3 (because degvs > 1 by Lemma 1.3). If
vgUe € E(G) then e(v2) < 3 (because degwvy; > 1 and d(v1,v4) = 3) or the graph G
does not exist by Lemma 3.2.

b3) Let vsvg € E(G)

If the subgraph (vq,vs,vs,v7,vs) contains at least 5 edges using Lemma 3.2 we
obtain a contradiction. Otherwise, we have e(vs) < 3 (because degv; > 1 and
degvs > 1 by Lemma 1.3). O

Lemma 3.6. A graph with the eccentric sequence 33,4 does not exist.
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Proof. Suppose that there is a graph G with the eccentric sequence 33, 4°. We
again use Lemma 3.1 and hence the proof splits into two parts.

I. Let G contain a path vy, vs,...,v7 such that e(vs) = 3 and the equalities (3.1)
hold.

Since e(vs) = 3 the vertex vg is adjacent to at least one vertex from the set
{va, v3,v4,v5,v6}. We consider two cases.

a) The subgraph (vy,vs,...,v7) of G contains at least 7 edges.

Evidently d(vi,v7) < 4 and in accordance with Lemma 3.3 it is sufficient to
consider two subcases.
0,1) VU5 € E(G)
Since e(vs) > 3 we obtain vsvg € E(G). In the case degvz > 1 we may use (3.1) and
Lemma 3.3 and we get a contradiction. The equality degwvy; = 1 yields degwvs > 2
(by Lemma 1.4) and we have again (by Lemma 3.3) a contradiction.
0,2) V3Us € E(G)
In this case e(vs) < 3 and e(vs) < 3. The case ay) implies that vovs ¢ E(G) and
with respect to symmetry also vsvg ¢ E(G). Then using the Lemma 3.3 we get that
every shortest path between v; and v; must contain the vertex vg and so e(vs) < 3.

b) The subgraph (vy,vs,...,v7) contains only 6 edges.
By Lemma 1.4 we have vivg € E(G) or vavs € E(G). Analogously, vgvs € E(G) or
v7ug € E(G). Hence we get a contradiction (with Lemma 3.3 or e(vg) < 2).

II. The graph G contains a path vy,vs, ..., vs where e(vs) = e(vs) = 3 and (3.2)
holds.

Since we can assume that the case I does not take place it is sufficient to consider
the next possibilities.

a) Each of the vertices v7, vg is adjacent to at least one vertex from the set
{’1}2,’1}3,’1}4,1)5}.
We distinguish two cases.
a;) The subgraph (vy,vs,...,vs) contains at least 6 edges.
In this case we get vivg € E(G) or vevs € E(G) (in accordance with (3.2)), which
is impossible by Lemma 3.3.
as) The subgraph (vy,vs,...,vs) contains only 5 edges.

The case degvg = 1 and degwvs; = 2 is impossible ( by Lemma 1.4). If we take
symmetry into account it is sufficient to distinguish the next subcases.
1) Vg U7, V508 € E(G)

In this subcase we have that eccentricities of at least 4 vertices are at most 3 (by
Lemma 3.2).
2) vavr,vavs € E(Q)

Since degvg > 1 or degvs > 2 we can again get that eccentricities of at least 4
vertices are at most 3 (by Lemmas 3.2 and 3.3).
3) vavr,v3us € E(Q)

With respect to (3.2) and Lemma 3.3 we have degvy = 1. Then degwvs > 2 and
we obtain a contradiction (by Lemmas 3.2 and 3.3).
4) VU7, V2Ug € E(G)

By Lemma 3.3 we obtain degvg = 1 and degvs; = 2, a contradiction (by Lemma
1.4).
5) V3U7,V4U8 € E(G)
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If degvs > 2 or deg vy > 2 we obtain one of previous cases. In the opposite case
we have (by Lemma 1.4) degv; > 1, degwvg > 1 and this is impossible by Lemma
3.2.

6) V3U7, V308 € E(G)

With respect to the equalities (3.2) we get deguvg = 1. If degwvs > 2 we obtain
the case 2). Otherwise we have a contradiction by Lemma 1.4.

b) The vertice vg is adjacent to no vertex from the set {va, v3,v4,v5}.

With respect to symmetry we may assume that vsvr, vrvg € E(G). We distinguish
two possibilities.

b1) A subgraph (vy,vs,...,vs) has at least 6 edges.

In this case we get v1vg € E(G) or vovs € E(G). By Lemma 3.3 we get deguvg =1
and deg vy = 2. Accordingly to Lemma 1.4 it is impossible.

ba) A subgraph (vi,vs,...,vs) has 5 edges.

Firstly, let v4vr ¢ E(G) and so d(vs,vs) = 3. With respect to the previous case
we may assume that the subgraph (vs,vs,vs,ve,v7,vs) has 5 edges which implies
degvg = 1 and degvs = 2, a contradiction (by Lemma 1.4).

Secondly, let v4v7 € E(G). By Lemma 3.2 we obtain that degvs = 1. Hence, a
shortest path between v, and ve contains v7 and so e(v7) < 2 (because viv7 ¢ E(G)
and vgvr ¢ E(G) by (3.2)). O

Lemma 3.7. A graph G with the eccentric sequence 3*,4> does not exist.

Proof. On the contrary, let there exist such a graph G.

Similarly as at the previous proofs we distinguish two cases.

a) Let G contain a path vy, ve,...,v7 where e(vs) = 3 and (3.1) holds.

By (3.1) and Lemma 3.4 we deduce that degv; = 1. From this it follows that
degvg > 2 (by Lemma 1.4). By Lemma 3.4 and the equalities (3.1) we obtain
vivg € E(Q) for some i € {2,3}. It implies e(v;) < 2, a contradiction.

b) Let G contain a path vy, vs,...,vs where e(vs) = e(vs) = 3 and (3.2) holds.

It suffices to consider the next two cases.
bl) VU7 € E(G)

Applying (3.2) and Lemma 3.4 gives degvg = 1. Therefore e(vs) > 2 by Lemma 1.4.
This clearly forces vsv; € E(G), i € {2,7} (with respect to (3.2)) an so e(v;) < 2,
a contradiction.

b2) U3V7 € E(G)

We have degvg = 1 using Lemma 3.4 and the equalities (3.2). This gives e(uvs) > 2
by Lemma 1.4. Consequently, vsv; € E(G), i € {2,7}.

Firstly, if vsve € E(G) then e(v2) < 2, a contradiction.

Secondly, if vsv; € E(G) (and vsvs ¢ E(G)) then a shortest path between
v; and vg contains vy and in consequence, e(v7) < 2 (because d(ve,v7) = 2 and
d(Ul,'Uﬁ) S 4) O

4. MINIMAL ECCENTRIC SEQUENCES OF TYPE 3,4!, 5", [ +r > 9.

In this section we will use the following basic idea.

Let G be a graph. Fix the vertex with the eccentricity 3 and denote it by s (a
source). In this case we denote

A :={v e V(G);d(s,v) =1},
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B :={v e V(G);d(s,v) = 2},

C:={v e V(G);d(s,v) = 3}.
If v € C (v € B), there exists a vertice u € B (u € A) such that wv € E(G). If
v € A then vs € E(G). On the other hand, vs ¢ E(G) ifv € BUC and vu ¢ E(G)
if ve C, u e A. The distance of vertices u, v is at most 2 if u,v € A, is at most 3
if v € A, u € B, respectively, etc. In the case degs = 2 we divide the vertices of G
more carefully. In this case we put A = {a,da'}. Further, we will denote

by b1, bs,...,b, the vertices from the set {v € B;d(v,a) =1},

by b},b,,...,b., the vertices from the set {v € B;d(v,a’) =1},

by c1,¢2,...c, the vertices from the set C which are adjacent to at least one
vertex from the set {by,ba,...,bn},

by ¢i,¢5, ..., ¢, the vertices from the set C' which are adjacent to at least one
vertex from the set {b},b},..., b}

It is possible that, ¢; = ¢} for some 4, j. On the other hand, if aa’ € E(G) then
e(a) < 3, which is impossible in the considered case. Similarly, if b; = b’ for some
i,7 then e(b;) < 3.

Lemma 4.1. Let G be a graph with the eccentric sequence 3,4',5", where | < 4.
Let e(s) = 3 and degs > 3 hold. Then

a)|C| > 2,

b) d(c;,cj) > 2 for every i # j if |C| = 3.

Proof. By our assumption |A| > 3 and e(v) = 4 if v € A. Therefore the eccentricity
of at most one vertex from B is 4 (because [ < 4).

a) The inequality |C| > 2 follows by Lemma 2.1. Let C = {c1,c2}. If the
eccentricity of a vertex b € B is 5 then d(b,c1) = 5 or d(b,c2) = 5. If a shortest
path between ¢; and c» contains at least two vertices b;,b; € B then e(b;) < 4
and e(b;) < 4, a contradiction. Otherwise, d(c1,c2) < 2 and there exist edges
c1bi,c2b; € E(G), i # j (by Lemma 2.1) and so e(b;) < 4 and e(b;) < 4, a
contradiction.

b) Let C' = {c1,¢2,c3} and let (on the contrary) d(ci,cz) < 2. It is sufficient to
distinguish the following two cases.
bl) Cc1Cy € E(G)

Firstly, let d(ci,c3) < 2 or d(cs,c3) < 2. By Lemma 2.1 there are edges ¢;bj,
csbe, j #t. Then we conclude that e(b;) < 4 and e(b;) < 4, which contradicts our
assumption | < 4.

Secondly, let d(c1,c3) > 2 and d(cs, ¢3) > 2. In this case we consider a shortest
path between c¢; and c3

Cl1 =U1,U2y...,U;,Uj4+1 = C3
and a shortest path between ¢y and c3

C2 = V1,V2,...,Vj,Vj4+1 = C3.

Both of the paths contain at least two vertices from B. If one of the paths contains
all vertices from C' then the eccetricities of all vertices of this path from B are at
most 4, a contradiction. For otherwise we have either e(us) < 4 and e(vz) < 4
provided that us # ve or e(uz) < 4 and e(u;) < 4 provided that us = vs.

b2) blcl,b162 S E(G)

We distinguish three cases.
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If d(c1,c3) < 3 and d(cz,c3) < 3 then there exists an edge ¢;b; € E(G), j > 1
(by Lemma 2.1) which implies e(b1) < 4 and e(b;) < 4, a contradiction.

If d(c1,e3) > 3 and d(ca,c3) > 3 we obtain a contradiction in the same way as
in the second case of the part b).

Let d(c1,e3) <3 and d(c2,c3) > 3. Obviously, e(by) < 4. Let

Cy = V1,V2,...,0;,Vi4+1 = C3
be a shortest path between the vertices co and c3. If this path contains by or ¢; we
have e(v;) < 4. Otherwise we get e(v2) < 4. These conclusions contradict [ < 4. O

Lemma 4.2. Ifb;c; € E(G) and b; is a cut vertex of G then e(c;) = e(b;) + 1.

Proof. Tt is obvious that e(c;)

> 3. If d(u,c;) > 3 then a shortest path between u
and c¢; contains the vertex b;. O

Lemma 4.3. A graph G with the eccentric sequence 3,42, 5" exists if and only if
r>12.

Proof. In this case A = {a,a’}. Vertices from B adjacent to the vertex a will
be denoted by bq,bs,...b, and vertices of B adjacent to a’ will be denoted by
by, b, ..., b, etc.

It is easily seen that aa’ ¢ E(G) (in the opposite case we get e(a) < 3 which
is impossible). Further, b; # b and b;b; ¢ E(G) for each i € {1,2,...,n}, j €
{1,2,...,m} (otherwise, we have e(b;) < 4 which is impossible). Analogously
ci # ¢ foreach i € {1,2,...p}, j € {1,2,...,q}. Since d(c1,c}) <5 there exists an
edge c;c; € E(G), for some i, j.

We denote the subgraph (a,by,...,bs,c1,...¢p) by H. If diamH < 3 we obtain
e(cf) < 4 (because c;c; € E(G)), a contradiction. Thus, we can suppose that
diamH = 4. Now we are going to show that |V (H)| < 6 is impossible.

On the contrary, suppose that diamH = 4 and |V(H)| < 6. Without loss of
generality we can assume that the following conditions are satisfied: dg(c1, o) = 4,
a shortest path between ¢; and co is ¢1,b1,a,b2,¢0, degy ey = 1 and if p = 3 (i.e.
there is a vertex c3) then c3b, € E(H). If there is no edge of type c¢1¢} then we have
e(by) = 4 (because e(c1) = 5), a contradiction. Analogously, if degy ¢ = 1 then
caoc), € E(G) for some k. If degy co > 1 then either cobs € E(H) or cacs € E(G). If
there is no edge of type c;cj, j € {2,3} then we have e(a) = 3 (because e(cz) = 5),
a contradiction. Thus we may assume that ¢ ¢, c;jc), € E(G) for some i,5,k, j > 1.
Let b; be a vertex adjacent to ¢j,. Then, obviously, we get e(b;) < 4, a contradiction.

Thus, we conclude that |V (H)| > 7.
IfH" = {(a',b},...,b,,c1,- -, cy) then with respect to symmetry we get [V (H')| >
7, too. Therefore, the graph G has at least 15 vertices.

The graph with the eccentric sequence 3,4%,5'? is in Fig.4.1. O

It is possible to show that the eccentric sequence 3,42, 5'2 is realized by only the
graph in Fig. 4.1, but we will not deal with this point here.
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Fig. 4.1

Lemma 4.4. A graph G with the eccentric sequence 3,43,5% does not exist.

Proof. Suppose on the contrary, that there is such a graph G. We distinguish two
cases.

I. Let degs = 2.

Suppose that the vertices of the graph G are denoted as in the proof of Lemma
4.3. If there exists an edge of type b;b; then e(b;) < 4 and e(b;) < 4, i.e. there exist
at least 4 vertices with eccentricity at most 4, a contradiction. Since d(ep,c}) < 5,
either ¢; = ¢ or G contains an edge of type c;c]; for some i, j.

a) Let ¢; = c}.

Without loss of generality we can assume that ¢; = ¢} and the graph G contains
the subgraph in Fig. 4.2.

¢ =¢ ¢ =d

by b,

S S
Fig. 4.2 Fig. 4.3

Then e(c;) < 4 and so each vertex from the set V(G) — {s,a,a’,c1} has the
eccentricity 5. It implies that G contains the subgraph in Fig. 4.3 satisfying

(f) d(by,chy) =5=d(b},ca).

Since d(eg, ch) < 5 there exists a path

Cy =U1,V3,...,V0s,Vsp1 = Ch
of the length at most 5 (i.e. s < 5). The path contains no vertex from the set
{s,a,a’,by1,b},c1} because (f) holds. For the same reason this path contains at
least one vertex v & {bs, b}, ca,ch}. It follows easily that e(by) < 4 or e(b}) < 4, a
contradiction.

b) Let cic; € E(G).

Without loss of generality we may assume that the graph in Fig. 4.4 is a subgraph
of G.
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Fig. 4.4 Fig. 4.5

Since at most one vertex from the set {b1,c1,b], i} has the eccentricity 4 the
graph in Fig. 4.5 is a subgraph of G, too.

Besides the vertices of the graph in Fig. 4.5 the graph G has one another vertex
w. Without loss of generality we may assume that d(a,w) < 2. The inequality
deg ¢y > 1 yields either e(a) <3 or e(b1) < 4 and e(c1) < 4, a contradiction.

Let degch = 1, i.e. e(by) =4 (by Lemma 1.3). Then degbd, > 2 by Lemma 1.4
and we conclude e(c;) < 4 or e(be) < 4, a contradiction.

II. Let deg s = 3.

Since |A| = 3 we have |B| + |C| = 8 and every vertex from the set BUC has the
eccentricity 5. Then, by Lemma 4.2, degc¢; > 2 for every vertex ¢; € C. Lemma
4.1 implies that |C| > 2 and if |C| = 3 then |B| > 6 (a contradiction). Therefore,
we can suppose that |C| > 4. We will distinguish three cases.

1) Let |C| = |B| = 4.

Denote H = (c1,¢2, ¢3, ¢4, b1, ba, b3, bs). We consider two possibilities.

a) The vertices ¢, ca, c3, ¢4 belong to the same component H; of H.

If V|H,| = 8 then there exists a vertex v for which e, (v) < 4 (for example, we
can take a vertex from the centre of a spanning tree of H;). This clearly forces
ec(v) <4, a contradiction.

Let V|(Hy)| < 7 and suppose that by does not belong to V(H;). Since every
vertex ¢ € C' is adjacent to a vertex b € B we may assume that bycy,bico € E(G).
Clearly e(b;) = 5 and so we may assume (without loss of generality) that d(by,cs) =
5. This yields that a shortest path between b; and ¢4 in the subgraph H; contains
the vertices be, b3, c3. It implies either e(by) < 4 or e(b3) < 4, a contradiction.

b) The vertices ¢, ¢2, c3, ¢4 do not belong to the same component of H.

With respect to Lemma 4.2 they belong to only two components. It is sufficient
to consider two subcases.
bl) Let Hl = <b17 b27 617627C3>7 H2 = <b37 b47 C4>.

A shortest path between ¢; and ¢4 contains a vertex b;, i € {1,2}, which implies
e(b;) <4, a contradiction.
by) Let Hy = (by,bo,c1,c2), Ho = (b3, by, c3,c4). Consider two paths P, and P
from four shortest paths (in G) between vertices ¢; and ¢;, i € {1,2}, j € {3,4},
which contain a vertex by, k € {1,2}. If P, and P, have the same initial vertex
then e(by) < 4. In the opposite case we have e(by,) < 4, m € {3,4}, where b, is a
vertex of P; or Ps.

2) Let |B| =3, |C] =5.

We put H = (c1, ¢, C3, 4, C5, b1, b2, b3). The vertices ¢y, cq, c3, ¢4, c5 belong to
the same component Hy; of H (by Lemma 4.2). If |V(H;)| = 8 then there exists
a vertex v with eg, (v) < 4 and so eg(v) < 4. If [V(H)| < 8 and the vertex b3
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does not belong to H; then e(by) < 4, e(b2) < 4. In the both cases we get a
contradiction.

3) Let |B| =2, |C|] =6.

It is easy to check that we again get e(b;) < 4 and e(by) < 4, which is impossible.

Since the set B contains at least two elements (by Lemma 2.1), the proof is
complete. [

Lemma 4.5. There is no graph G with the eccentric sequence 3, 4*,56.

Proof. Suppose, contrary to our claim, that there is such a graph G. Let s € V/(G)
be the vertex with the eccentricity 3. We again distinguish two cases.

I. Let degs = 2.

We will suppose that the vertices of G are denoted as in the proof of Lemma, 4.3.
a) Suppose there exists an edge b;0; € E(G).

We may assume that the graph G contains the subgraph in Fig. 4.6.

C1

by b, by

!
1

S S

Fig. 4.6 Fig. 4.7

Since e(a) = e(a’) = 4, also the graph in Fig. 4.7 is a subgraph of G, where
(g) d((l, cll) = d(ala cl) =4

Therefore, the eccentricity of every vertex from V(G) — {s,a,a’,by,b}} is 5. We
may also assume that d(bs,c}) = 5.

Besides the vertices of the graph in Fig. 4.7 the graph G has another vertices z,
y. With respect to symmetry it is sufficient to consider the next cases.
ay) Let d(z,a’) < 2 and d(y,a’) < 2. Then degc; = 1 and so e(c1) # e(b2) (by
Lemma 1.3) or e(a’) < 3, a contradiction.

ay) Suppose that d(a,z) < 2 and d(a',y) < 2.

Let

€1 =U1,02,...,0, = ¢}
be a shortest path between vertices ¢; and ¢}. Since d(bs, ) =5 and d(c1,¢}) <5
we obtain vy # by and k € {5,6}. The equalities (g) and e(b}) = 4 yield that vy =
and v3 = y and so e(y) < 4, a contradiction.

b) Let ¢; = ¢} for some i, j.

We may assume that the graph G contains the subgraph in Fig. 4.2 and, more-
over, only one vertex from V(G) — {s,a,a’,c1} has the eccentricity 4.

Let e(b}) = 5. Then G contains the subgraph in Fig. 4.8, where d(cs,b]) = 5.
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Fig. 4.8 Fig. 4.9

It is sufficient to consider two possibilities.
b1) Let G contain a subgraph in Fig. 4.3 satisfying d(ch,b1) = 5 and let d(a’,z) <2
for a remaining vertex x.

If degco = 1 then e(bs) = 4 and degby > 2 (see Lemma 1.4). Hence, we obtain
e(b)) < 4ore(by) <4. If degea > 1 then d(b},c2) < 5. In both cases we have a
contradiction.
by) In the opposite case to bl) the graph G contains the subgraph in Fig. 4.9
(because e(by) = e(a) = 4) and the eccentricity of every vertex from V(G) —
{s,a,a’,b1,c1} is 5. Then clearly degea > 1 (by Lemma 1.1). If the remaining
vertex x satisfies d(a’, z) < 2 we obtain d(b}, c2) < 5, a contradiction. Let d(a,z) <
2. If a shortest path P between ¢ and ¢ contains by then we get e(bs) < 4, a
contradiction. In the opposite case we get d(cz,b}) < 5 or e(a) < 3, a contradiction.

¢) Let ¢;cj € E(G) for some i, j.

We may assume that the graph G contains the subgraph in Fig. 4.10 (other-
wise the eccentricity each of the vertices b1, b, ¢1, ¢} is at most 4) and moreover
d(b},cz) = 5. We distinguish two subcases.
¢1) The graph G contains the subgraph in Fig. 4.5 satisfying d(by,c}) = 5.

Let deges = degcy = 1. If bobh, € E(G), then e(a) < 3. In the opposite case
(i.e. baby ¢ E(G)) we denote by v a vertex of a shortest path between by and b}
satisfying v # by, v # b,. Since d(by,b}) < 3 (it follows from d(cs, cb) < 5) we have
v # s and e(v) < 3, a contradiction.

The inequality dege, > 1 implies d(b),c2) < 4 (and similarly for ¢}), a contra-
diction.

2@ C1 ch C2 ch
by & by b} b>
a a'
s s
Fig. 4.10 Fig. 4.11

¢2) In the opposite case to c¢;) the graph G contains the subgraph in Fig. 4.11
(note that bic), ¢ E(G) gives e(a) < 3) and the eccentricity of every vertex from
V(G) — {s,a,a’,by,c1} is 5.

Firstly, let d(a’,z) < 2 for the remaining vertex x. The equality degcs = 1
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yields e(by) = 4 (by Lemma 1.3), a contradiction. If degcs > 1 then d(b), c2) < 4,
a contradiction.

Secondly, let d(a,z) < 2. If degc), = 1 then e(b)) = 4 (by Lemma 1.
contradiction. On the other hand, if degch > 1 then e(a) < 3 or e(by) <
contradiction.

II. Let degs > 3.

a) Suppose that degs = 4.

In this case we have |B| + |C| = 6 and the eccentricity of every vertex from
BuUC( is 5. Denote by H the subgraph of G induced by the set BUC'. All vertices
from C' belong to the same component H; of H by Lemmas 4.1 and 4.2. We can
assume (with respect to Lemma 4.2) that by, b2 € V(H;). Since e(b;) = 5 we may
suppose (without loss of generality) that d(by,c1) = 5. Therefore, |V (H;)| = 6 and
a shortest path between by and ¢; (in H;) contains every vertex from B U C. This
yields e(b2) < 4, a contradiction.

b) Suppose that degs = 3.

Then |B| + |C] = 7 and the eccentricity of at most one vertex from B is 4. By
Lemma 4.2 the degree of at most one vertex from C is 1. We get (by Lemma 4.1)
|C| > 2 and moreover if |C| = 3 then |B| > 5 (a contradiction).

Therefore, we may assume that |C| > 4. We distinguish two subcases.

1) Let |C| =4, |B| = 3.

Consider the subgraph H = (c1, ¢2, ¢3, ¢4, b1, b2, b3) of G. There are two possibil-
ities.

A) All vertices from C belong to the same component H; of H.

Firstly, if |V (H;)| = 7 then the eccentricities of at least 3 vertices from V (Hy)
are at most 4 (in H; and so in G, t00), a contradiction.

Secondly, if (for example) by ¢ V(Hy) then e(b;) < 4 and e(b2) < 4, a contradic-
tion.

B) In the opposite case to A) the vertices ¢, ¢2, ¢3, ¢4 belong to two components
H,, H, of the graph H (by Lemma 4.2). We may assume, without loss of generality,
that by,c; € V(Hy) and by, bs, cq € V(Hz). This yields e(b;) = 4 by Lemma 4.2. A
shortest path between ¢; and ¢4 (in G) contains the vertex b or b3 and so e(b2) < 4
or e(bs) < 4, a contradiction.

2) Let |C] =5, |B| = 2.

By Lemmas 2.1 and 4.2 the graph H = {(c1,...,¢s5,b1,b2) is connected and so
e(b1) <4 and e(b2) < 4.

The set B has at least two elements by Lemma 2.1 and so the proof is com-
plete. O

3),
3

)

a
a
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5. THE MAIN RESULTS.

Theorem 5.1. There are exactly 13 minimal eccentric sequences with least eccen-

tricity three, namely

Sy :
Sy :
S3 ¢
Sy :
Ss :
Se :

36

35, 42
31 41
33,4°
32, 48
3, 410

S13 .

S7:  3,42,5'2

Sg . 3,4%,5°

So:  3,4% 57

Sio:  3,4% 5%

Sii: 03,4752

Sia i 32,4252
3,4%,5%,62

Proof. The sequence S; is the eccentric sequence of the graph in Fig 5.1. We will
show that it is minimal. Let G be a connected graph with |[V(G)| < 5 and let H
be its spanning tree. Let a vertex v belong to the centre of H. It is obvious that
eg(v) <2 and so eg(v) < 2.

The sequences Sy, S35, Sy, S5 and Sg are the eccentric sequences of the graphs
in Figs. 5.2, 5.3, 5.4, 5.5 and 2.5, respectively.

()

Fig. 5.1

O

Fig. 5.3

O

Fig. 5.2

O

Fig. 5.4
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Fig. 5.5

By Theorems 1.1, 1.2, Lemmas 3.7, 3.6, 3.5 and Corollary 2.5 the eccentic sequences
S, S3, S4, S; and Sg are minimal and there are no other minimal eccentric se-
quences of type 3%, 4!,

S7, Ss, So, S10, S11 and Si2 are the eccentric sequences of the graphs in Figs.
41,5.6,5.7, 2.3, 2.4 and 5.8.

Fig. 5.6 Fig. 5.7
*—o—0—0—0—9° *——0—0—0—0—9°
Fig. 5.8 Fig. 5.9

By Theorems 1.1, 1.2, Lemmas 4.3, 4.4, 4.5 and Corollaries 2.6, 2.7 the eccentric
sequences S7, Sg, Sg, S19, S11 and Si» are minimal and there are no other minimal
eccentric sequences of type 3% 4/ 57.

S13 is the eccentric sequence of the graph in Fig 5.9. By Theorem 1.1 it is
minimal O
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AFFINE COMPLETENESS OF KLEENE ALGEBRAS II

MIROSLAV HAVIAR AND MIROSLAV PLOSCICA

ABSTRACT. A characterization of affine complete algebras in the variety of all Kleene
algebras was given in [8]. Also local polynomial functions of Kleene algebras and
locally affine complete algebras were characterized there. In this paper alternative
proofs to these three main results of [8] are presented. Also examples illustrated the
results are given.

1. INTRODUCTION

A polynomial function of an algebra A is a function that can be obtained by
composition of the basic operations of A, the projections and the constant func-
tions. A local polynomial function of A is a function which can be represented
by a polynomial function on any finite subset of its domain. A well-known fact
about polynomial and local polynomial functions of any algebra A is that they are
compatible functions in the following sense: a function f : A™ — A is compatible
if, for any congruence 6 of A, (a;,b;) € 0,i=1,...,n, implies that

(f(a’17"'va'n)vf(bl,-..,bn)) € 0.

An algebra in which (local) polynomial functions are the only compatible func-
tions is called (locally) affine complete. (The concept ‘locally affine complete’ has
sometimes also another meaning in the literature - see e.g. [11].) The problem
of characterizing algebras which are affine complete was originally formulated in
[6]. Since every algebra is a reduct of an affine complete algebra (for example, of
that which contains all its compatible functions among the basic operations) and
hence affine complete algebras are in general very diverse, in [3] the problem was
reducted into the following formulation: characterize affine complete algebras in
your favourite variety. Many varieties for which the problem has already been
solved are mentioned in [3] or [9].

In [8] we characterized (locally) affine complete algebras in the variety of all
Kleene algebras. Previously, only a finite case was entirely solved: a finite Kleene
algebra is affine complete if and only if it is a Boolean algebra (see [7]). Moreover, in
[8] we characterized locally polynomial functions of Kleene algebras as those which

1991 Mathematics Subject Classification. 06D15, 08A40.

Key words and phrases. Kleene algebra, compatible function, (local) polynomial function,
(locally) affine complete algebra
The authors were supported by the Slovak GAV grants 1/4057/97 and 1/1230/97, respectively.
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preserve the congruences and one important binary relation called ‘uncertainty
order’.

The aim of this paper is to give alternative proofs to the main three results of the
preceding paper [8] which are presented here in Theorems 3.3, 3.4 and 3.9. Close
to our considerations are some ideas of the papers [5], [7]-[10] and [12]-[13]. We use
several preliminary results of [8] which are summarized in section 2. Our alternative
approach to the main results of [8] starts in section 3 with crucial Lemmas 3.1 and
3.2. In addition to [8] we present examples at the end which illustrate the results.

2. PRELIMINARIES

First we recall a few basic facts about Kleene algebras. For more information
we refer the reader, for example, to [1] or [2].

A Kleene algebra is an algebra (K, V,A,',0,1) where (K,V,A,0,1) is a bounded
distributive lattice, ' is a unary operation of complementation and the identities

0'=1,2"=z,(@vy' =2"ANy, (@A )V(yVy)=yVy

and their duals are satisfied. Every Boolean algebra is clearly a Kleene algebra, a
smallest Kleene algebra which is not Boolean is 3 = {0,a,1} with 0 < a < 1 and
a' = a. The algebra 3 is subdirectly irreducible and generates the variety of Kleene
algebras.

Two subsets of a Kleene algebra K often play an important role: a subset
KY = {z Vv z'|x € K}, which is a filter of the distributive lattice K, and a dually
defined ideal K”. The complementation operation clearly induces an antiisomor-
phism between KV and K. Further, the union K'Y U K" is a subalgebra of the
Kleene algebra K. The variety of Kleene algebras has the congruence extension
property and we have the following lemma.

1.1 Lemma ([8; 1.1]). For every Kleene algebra K, any congruence of the lattice
KV is a restriction of some congruence of the Kleene algebra K.

In [7] it was proved that a Kleene algebra K with a finite filter KV is (locally)
affine complete if and only if it is a Boolean algebra. To characterize affine com-
plete Kleene algebras in general, we will need the following generalization of affine
completeness: if A is a subalgebra of an algebra B then A is affine complete in B if
every compatible function on A can be interpolated by a polynomial of B. (Hence
we allow elements of B to be used as constants to represent compatible functions
of A.)

We can establish a canonical way of defining any n-ary polynomial function of
a Kleene algebra in the following way: to every pair of subsets ag, a; C n =

{1,...,n} we assign the n-ary Kleene term
Colz1,. .. 2n) = ( \/ x,) V( \/ x;)
i€ap i€ay

From the axioms of Kleene algebras it follows that that every n-ary Kleene poly-
nomial can be represented as a meet of so-called elementary polynomials k, V C,
where k, are constants from K.
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Let K be an affine complete Kleene algebra. Let g : (KV)" — KV be a compat-
ible function of the lattice K. We can extend the function g to a compatible func-
tion
f K™ —» K by

fx1,...,zn) =g(@r Vai,...,z, V) forallaz,...,z, € K.

This function must be polynomial, hence representable as a meet of elementary
polynomials of K. One can show that its restriction to KV, which is the function g,
is therefore a lattice polynomial (obtained by omitting all z} in the representation
of f). Hence we get:

2.1 Lemma. Let K be a Kleene algebra. If K is affine complete, then K and
K" are (as lattices) affine complete in K.

The following lemma, which is a special case of [7; Theorem 1], can be proved
similarly.

2.2 Lemma ([8; 2.2]). If K is a locally affine complete Kleene algebra then the
lattices KV and K" are locally affine complete. [

To describe situations in which the lattices K¥ and K” are affine complete in
the lattice K we will use the following two concepts introduced in [12] (see also
[9]): a filter F of a distributive lattice L is almost principal if for every z € L the
filter FNtz = {y € F' | y > x} is principal, i.e. has a smallest element. An almost
principal ideal of L is defined dually. Further, a filter or an ideal of L is proper if it
is not equal to L while an interval of L is proper if it contains at least two elements.

2.3 Lemma ([8; 2.3]). Let D be a sublattice of a distributive lattice L. Suppose
that D is affine complete in L. Then

(B) D does not contain a proper Boolean interval;
(F) for every proper almost principal filter F' in D there exists b € L such that

F =Dn1b;
() for every proper almost principal ideal I in D there exists ¢ € L such that
I=Dnle. O

Let us summarize the known results for distributive lattices.

2.4 Theorem.

(1) A bounded distributive lattice is affine complete if and only if it does not
contain a proper Boolean interval ([5]).
(2) A distributive lattice is locally affine complete if and only if it does not
contain a proper Boolean interval ([4; p. 102]).
(3) A distributive lattice is affine complete if and only if the following conditions
are satisfied:
(i) it does not contain a proper Boolean interval;
(ii) it does not contain a proper almost principal ideal without a largest
element;
(iii) it does not contain a proper almost principal filter without a smallest
element ([12; 2.7]). O
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Throughout the paper we assume that the Kleene algebra K is embedded in 37,
a power of the Kleene algebra 3 = {0,a,1}. Accordingly, we will write the elements
of K in the form z = (x;);cr. Clearly, s € KV iff s; € {a,1} for every i € I.

As the proofs of the following two lemmas from [8] are very short, we include
them here.

2.5 Lemma. Let f: K" — K be compatible, z;,y; € K, j=1,...,nandi€[.
Then x1; = Y1iy- - -, Tni = Yni implies f(z1,...,2n)i = fY1,. -, Yn)i-

Proof. Consider the compatibility relative to the kernel congruence of the i-th pro-
jection. O

For any s € KY we define the subalgebra K* of K:
K°={zeKl|lzVvz >s}.
2.6 Lemma. Let s € KV. If two n-ary compatible functions of K coincide on
{0,s,1}™ then they coincide on (K?®)™.
Proof. Let f and g coincide on {0, s,1}". We prove that

flxe,...,zn)i =g(x1,. .., x0);

for every z1,...,2, € K® and i € I.
First we define for every x; the element y; € {0,s,1} having the same i-th
component as ;:
0 if Tj; = 0;
yj=+¢1 if z; =1,
S if Tj; = Q.

Now by Lemma 2.5,
[, an)i=flyn - yn)i =9, un)i = g(@1, - @n)ie O

The uncertainty order of a Kleene algebra K is the binary relation C defined by
zCy <<= zAs<y<zVs forsomese K.

Hence the uncertainty order on K = 3 is the relation

{(0,0), (a,a), (1,1),(0,a), (1,a)}.

This relation on 3 can really be found under the name ‘uncertainty order’ in the
literature.

2.7 Lemma ([8; 3.4]). The uncertainty order on K is inherited from the uncer-
tainty order on 3, i.e. x C y iff x; Cy; for everyi € I. O

It can easily be seen that C is indeed a partial order relation on K which is a
subalgebra of K x K. Hence every local polynomial function preserves C.

2.8 Lemma ([8; 3.6]). If all compatible functions on the lattice K" are order
preserving then all compatible functions on the Kleene algebra K preserve C. O
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3. THE RESULTS - AN ALTERNATIVE APPROACH

In this section we give alternative proofs to the three main results presented in
[8]. Our approach is based on calculations presented in the following two lemmas.

3.1 Lemma. If a compatible function f : K — K preserves C then, for every
s, te KV,

> f(1) then s > f(s).

Proof. We prove that f(1); As; < f(s); < f(1); Vs; for every i € I. If s; = 1 then
f(s); = f(1); by 2.5. Let s; = a. Now the case f(s); = aistrivial, let f(s); € {0,1}.
Since 1 C s, we have f(1); C f(s);, which is only possible if f(s); = f(1);. Thus,
(1) is proved.

(2) is trivial on those components i where s; = 1 or f(s); = a. The remaining
case is s; = a and f(s); € {0,1}. Then, by 2.5, f(s); = f(s'); and from 0 C s' we
deduce that f(0); = f(s);.

To see (3), notice that s; = a implies f(s'); = f(s);, while s; = 1 implies
£(s); = £

It is clear that f(s); < s;V f(t); if s, =1 or s; = t; or f(s); < a. The remaining
case is s; = a, f(s;) =1 and t; = 1. Then 1 C s implies that f(1); C f(s); = 1,
hence f(t); = f(1); =1 = f(s);. This proves (4).

(5) follows from (2) and (4). O

3.2. Lemma. If a compatible function f : K — K preserves C then, for every
se KV,

f(s) =(f(s) AFO)A L)V (f(1) As) v ((f(s)
(fFW) V) AF(S)VFO) VL) Af(s)

Proof. The equality of the last two expressions follows from the distributivity, since
s'<sand f(s) A f(O)A f(1) < f(1) < f(s') V f(0) V f(1).

Obviously, f(s) > f(s) Af(0)A f(1). By 3.1 we have f(s) > f(1)As > f(1)A s,
f(s) 2 F(O)As" and f(s) > f(s') A's', hence f(s) > (f(s) A F(O) A (1)) V (f(1) A
s)V((f(s) vV FO)V Q) As').

It remains to prove the inverse inequality. By 3.1, f(s) < f(1) v f(s

)
f(s") vV f(1), f(s) < f(0) Vs and f(s) < f(1) Vs and obviously f(s) < f( )V
which completes the proof. O

<
s

)

The previous lemma will be used to characterize local polynomial functions of
Kleene algebras and consequently also locally affine complete Kleene algebras.

3.3 Theorem ([8; 4.1]). Let f be an n-ary compatible function on a Kleene algebra
K. Then the following conditions are equivalent:

(1) f is a local polynomial function of K;
(2) f preserves the uncertainity order of K ;
(3) f can be interpolated by a polynomial on K* for every s € KV.
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Proof. Since C is a subalgebra of K x K, we have (1) => (2). Clearly, every finite
subset of K is contained in some K*, s € KV, which yields (3) = (1). Hence the
key implication is (2) = (3).

By 2.6 it suffices to interpolate f on the set {0,s,1}. We proceed by induc-
tion on arity n of f. The claim is obviously true for n = 0. Suppose now
that n > 0 and that the implication (2) = (3) is true for all functions of ar-
ity less than n. Hence, the (n — 1)-ary functions f(0,x2,..., %), f(s,22,--.,%n),
f(s' xa, ... xn), f(1,2a,...,2,) (of variables xs, . . . , 2, ) are representable by poly-
nomials po, ps, Ps', P1, respectively. Let us set

p(@1s- %) = (ps APo A1)V (D1 AT1) V (o ATY) V ((Psr V po V1) Ay Ah).

We claim that p represents f on {0,s,1}"™. Let z,...,z, € {0,s,1}. It is easy to see
that

p(x1,...,xn) = f(x1,...,2y) whenever z; € {0,1}. Finally, for 21 = s we have
s’ < s and therefore p(s,z2,...,Zn) = (s Apo Ap1)V (p1 As)V ((psr Vpo V1) As'),
which is equal to f(s,za2,...,z,) by 3.2. (Apply 3.2 to the unary function g defined
byg(y):f(yam%)xn)) g

3.4 Theorem ([8; 4.2]). Let K be a Kleene algebra. The following are equivalent:

(1) K is locally affine complete;
(2) KV is a locally affine complete lattice;
(3) KV does not contain a proper Boolean interval.

Proof. The equivalence of (2) and (3) was given by 2.4(2). We stated (1) = (2)
in 2.2. By (2), every compatible function of the lattice KV is order preserving and
by 2.8 and the previous theorem, every compatible function on the Kleene algebra
K is a local polynomial function. O

Before characterizing affine complete Kleene algebras in general we can already
state the following special result.

3.5 Proposition ([8; 4.3]). Let K be a Kleene algebra such that K has a smallest
element. The following are equivalent:

(1) K is affine complete;
(2) KV is an affine complete lattice;
(3) KV does not contain a proper Boolean interval.

Proof. The equivalence of (2) and (3) was given by 2.4(1). The implication (1) =
(3) follows the fact that every affine complete algebra is locally affine complete
and from Theorem 3.4. If (3) holds, then the algebra K is locally affine complete
by 3.4 and hence by 2.6 every compatible function of K can be interpolated by
a polynomial function on any K*®. But clearly K = K*® where s is the smallest
element of KV, which completes the proof. 0O

For a subset Y of an ordered set X we denote 1Y = {z € X |z > y for some y €
Yiand | Y ={x € X | z <y for some y € Y'}.
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3.6 Lemma ([8; 5.1]). Let f : K — K be a local polynomial function of a
Kleene algebra K. Then KVN 1 f(KV) is an almost principal filter in KV and
K" | f(K") is an almost principal ideal in K.

Proof. Denote F = KVN 1 f(KY) ={z € KV | f(2) < z for some z € KY}. We
show that, for z € KV,

zV f(z) =min{y € F | z < y}.

Clearly, z < x V f(x) € F. Conversely, let x < y € F. Then y > f(z) for some
z € KV. By Lemma 3.1, f(z) <z V f(z), hence z V f(z) <z V f(2) < y.

It remains to show that F' is closed under meets. Let x,y € F, z = z Ay,
t=min{fu € F | z <wu}. Then z <t <z, t <y, thus z =¢ € F. We showed that
F is an almost principal filter in KV.

The other statement can be proved dually. O

Let P denote the set of all pairs a = (ag, 1) with apg, a1 C n, ap Nay = B. We
introduce an order relation on P by a < g iff ag C [y and a1 C (.
Suppose now that a Kleene algebra K satisfies the following conditions:

(B) KV does not contain a proper Boolean interval;
(F) for every proper almost principal filter F' in KV there exists b € K such
that F = KVN 1b.
Since ' is a dual automorphism of the lattice K, (F) is equivalent to the dual
condition

!

(Z) for every proper almost principal ideal I in K there exists ¢ € K such that
I=K"nle.

Let f : K™ — K be a compatible function. By (B) and 3.4, f is a local

polynomial function. For every a € P we define a unary function f, : K — K by

the rule
0 if ¢ € Qp;

faly) = f(x1,...,zpn), wherez; = ¢ 1 if i€ ay;
y otherwise.

It is clear that the functions f, are compatible. Therefore by (F) and (Z) we have
constants by, ¢, such that

(*) KNt fa(KY) = KYN 1ha;
K"} fo(K™) = K™ |c,.

From the proof of Lemma 3.6 we see that

zV fo(z) =min{y € KYN 1 fo(KY) | 2 <y} = by V z;
2A fo(z) =max{y € KN L foa(K") | 2>y} =ca Az

for every x € KV, z € K.
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3.7 Lemma. If a < 3 then K¥N 1 fo(KY) D KVN 1 fa(KVY).

Proof. Tt suffices to deal with the case when (8o U 81) \ (o U «r1) is a one-element
set, say, {j}. Let z € KVN 1 fg(K"). Then = > fs(y) for some y € K and by
3.1 we have x > fa(y) Vo > fa(x). Let us define a unary compatible function g as
follows:

0 if 1€ Qo
1 if i€ ay;
g(y) = f(x1,...,x,), where z; = o
y if i=y;
x otherwise.

If j € By then g(0) = fz(x). If j € By then g(1) = fz(x). Hence, either z > ¢(0) or
x> g(1). By 3.1(5) then z > g(z) = fa(z), hence z € KVN 1 fo(KY). O

3.8 Lemma. The constants by, ¢, in (*) can be chosen in such a way that

(i) if ap Uy = n then both b, and ¢, are equal to the value of the constant
function fy;
(ii) if a < B then by < bg < cg < cq.

Proof. If ap U a1 = n then f, is a constant function equal to some k € K. We set
ba = co = k. Clearly, (*) is satisfied.

Let by, co be arbitrary elements satisfying (*). We set b, = Ns>a b8 ct =
Vs>q ¢s- Now the constants by, c;, fulfil (i) (notice that for 8o U 41 = n we have
bs = cg) and it remains to show that (*) is valid when we replace by, ¢, by bl, cl,.

For any z,y € K we have KVN 1 (zAy) = (KVN 1z)V(KYN Ty), ie. KY 1t (zAy)
is the least filter containing both K¥N 1tz and KVN ty. By induction we obtain
that, for any a € P,

EVntoh =\ KVntbg = \/ KN 1fs(KY) = KVN 1 fa(KY)
a<lp a<p

using Lemma 3.7. Hence, the elements b}, fulfil (*). The proof for ¢! is analo-
gous. [

3.9 Theorem. Let K be a Kleene algebra. The following conditions are equiva-
lent:

(1) K is affine complete;

(2) KV is affine complete in K;

(3) K" is affine complete in K;

(4) KV does not contain proper Boolean intervals and for every proper almost
principal filter F in KV there exists b € K such that F = KVN 1.

(5) K’ does not contain proper Boolean intervals and for every proper almost
principal ideal I in K there exists ¢ € K such that F = KN |ec.

Proof. The existence of the dual automorphism ' for the lattice K yields that the
conditions (2) and (3) and similarly the conditions (4) and (5) are equivalent. The
implications (1) = (2) = (4) follow from Lemmas 2.1 and 2.3. So we have to
prove only the implication (4) = (1). Let K be a Kleene algebra satisfying (4)
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and f : K™ — K a compatible function. Hence, we have the constants b, ¢, that
satisfy (*) and 3.8(i),(ii). For a € P we define polynomials Cy, D, by the rule

Ca:\/mjv\/:r;-; D, = \/ z; V \/ .

JEao JjE€a1 jen\a1 JjEn\ao

Let us set

p(x1,.. ., @n) = /\ (ca VCq) A /\ (ba V Dy).

aEP aeP

To prove that p represents f, it suffices to show that p(z1,...,z,) = f(z1,...,2n)
for z1,...,x, € {0,s,1}, where s is an arbitrary element of K. Without loss of
generality, z; = -+ =23, =0, 2441 = =z =sand ;41 = --- =z, = 1. Let us
denote 8 = (k,n\l), vy = (k,n\k). If k =1 then p(z1,...,2,) =cg = f(@1,...,Zp)
by 3.8. Suppose that k < I. We claim that

p(z1,...,zn) =cag A (bgVs)A(byVs).

Clearly, p(z1,...,2n) < cg A (bg V s) A (by V s'), because Cg = 0, Dz = s and
D, = s'. The other inequality follows from the facts that

Cy,=1 ifag Zlorar €n\k;
c3 if o < 3;
ca V Cq > , , , .
caVs >cy Vs =byVs ify>a<£p;
ca V8 2>cauupVs>buugVs>bgVs otherwise
and

D,=1 if 8 £ a;
bo VDo > boVs' =by,vs ifg<a=r;
boVs>bgVs if < a#n.

We wish to show that f(z1,...,2,) = fa(s) = p(z1,...,2,). We havecg > ¢,
f3(1) and also cg > fa(s') A's, thus, by 3.1, c¢g > (fa(1) V fa(s")) A (fs(1) vV s)
fa(s). Further, bg Vs = fz(s) Vs > fa(s) and by, Vs’ = fg(1) V s" > f3(s) by 3.
Hence, fs(s) < p(z1,...,%n).

By the distributivity (using inequalities bg < b, = ¢y < cg) we can write

el AVARI

p(x1,...,2,) =bg V (by As)V (cgAs").

Using the equalities bg Vs = fg(s) Vs, cg A's' = fz(s') A's" and the inequalities

from 3.1 we have bg < (f3(s) V s) A fg(1) = (fa(s) A fa(1)) V (s A f5(1)) < fa(s),
by As = fg(1)As < fg(s) and cg As" < fg(s). Hence, p(z1,...,2,) < fa(s). O

3.10 Examples.

(1) Let Ky = {(—00,—00)} UR x RU {(00,00)} be the Kleene algebra with the
complementation defined by (z,y)" = (=, —y). Then Ky = {(z,y) e Rx R |z >
0,y > 0} U {(00,00)} is obviously an affine complete distributive lattice by 2.4(1).
Hence K is affine complete in the lattice K; and by 3.9 (or straightforward by
3.5) the Kleene algebra K is affine complete.
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Note that for the same reason, the Kleene algebra K{* & K, where & means
the linear sum, is affine complete. In general, for every affine complete distributive
lattice D, the Kleene algebra D @ D is affine complete where D? is a dual of D
and the complementation operation is the antiisomorphism between D and D<.

(2) Let K2 = K1\ {(0,y) | y € R} be a subalgebra of K;. Then Ky = {(z,y) €
RxR|x>0,y>0}U{(c0,00)} is not, according to 2.4(3), an affine complete
lattice because F = {(z,y) € Rx R|z > 0,y > 1} U {(00,00)} is a proper almost
principal filter in Ky without a smallest element. One can verify that the unary
function g : Ky — K3 given by g(x) = min{y € F | # < y} is a compatible
function of the lattice K3 but cannot be represented by a polynomial function of
K (see a similar verification in [12; 2.2]). However, note that there is an element
b in K, for example, b = (—1,1) such that F = KYN 1b. It can easily be seen
that the condition (4) of 3.9 is satisfied, hence again, K is affine complete in the
lattice K> and the Kleene algebra K is affine complete.

(3) Let K3 = K> \ {(z,y) € Rx R|z-y <0} be a Kleene subalgebra of K». Then
Ky ={(z,y) e RxR |z >0,y >0}U{(c0,00)} = K3 is again not an affine
complete lattice. But note that for the almost principal filter without a smallest
element F' defined in (2) there is now no element b € K3 such that F = Kyn 1.
Hence K:;/ is not affine complete in the lattice K3 and the Kleene algebra K3 is not
affine complete. It can be verified that the unary function f : K3 — K3 given by
f(z) =min{y € F |z VvV 2' <y} is a compatible function of the Kleene algebra K3
but cannot be represented by a polynomial of Kj.
However, by 3.4 it is clear that K3 is a locally affine complete Kleene algebra.

(4) Every finite Kleene algebra which is not a Boolean algebra is not affine com-
plete. O
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DUALITY OF BOUNDED DISTRIBUTIVE ¢-LATTICES

IvaAN CHAJDA AND MIROSLAV PLOSCICA

ABSTRACT. By a g-lattice is meant an algebra with two binary operations satisfying
all normal lattice identities. We establish a duality in the sense of B. Davey and
H. Werner for the quasivarieties of constant g-lattices and bounded distributive g-
lattices.

1. INTRODUCTION

Let p, ¢ be terms of the same similarity type. An identity p = ¢ is called normal
(see [3], [7], [8], [9]) if it is either of the form = = x (z is a variable) or none of p,
q is equal identically to a single variable. So the lattice idempotence or absorption
are not normal identities.

An algebra A = (A4;V,A) of type (2,2) is called a g-lattice if it satisfies all
normal identities of lattices. In fact, see [1], [2], [3], A is a g-lattice if it satisfies
the following identities:

(commutativity) rVy=yVzx TAYy=yAzx
(associativity) zV(yvz)=(xVy Vz zAYANz)=(zAYy) Az
(weak idempotence) zV(yVy)=xzVy zA(YyAy)=zAy
(weak absorption) zV(zAy)=zVz zA(zVy) =zAz
(equalization) rVr=zAz.

A g¢-lattice A is distributive if it satisfies the distributive identity:
zV(yAz)=(@Vy A(zVz2)

(which is equal to its dual similarly as in the case of lattices). In every g¢-lattice
A= (4;V,A) we can introduce a binary relation @) as follows:

(a,b) € Q@ ifandonlyif aAb=aAa.

1991 Mathematics Subject Classification. 06D05, 06E15, 08C15.

Key words and phrases. Algebraic duality, normal identity, g-lattice
The first author was supported by GACR - Grant Agency of Czech Republic, Grant No 201/98/0330.
The second author was supported by the Slovak VEGA Grant 1/4379/97.
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It is easy to show that it is equivalent to a Vb = bV b and, moreover, @ is a
quasiorder on A (i.e. a reflexive and transitive relation). A g¢-lattice A is a lattice
if and only if @) is an order on A; in such a case, @ is the lattice order of A.

Fig. 1

Example. The following quasiordered set {0,z,y,z,v,w,1} is a distributive ¢-
lattice which is not a lattice (the fact (a,b) € @ is visualized in Fig. 1 by a
connected path of arrows from a to b):

Here e.g. (0,v) € @ and (v,0) € @, (w,1) € @, (1,w) ¢ Q etc. The operation
tables for V and A are as follows:

A 0 v wax Yy 2z 1 0 v wax Yy 2z 1

000 O0O0OOTP O 0 0 0wz 2z 2z 1
v 0 00 O0O0O0OP O v 0 0wz 2z 2z 1
w 0 0w 0 00 w w www 1 1 1
x 00 0 z 2z z =z x z z 1 2z z 2z 1
Yy 00 0 =z z z =z Yy z z 1 2z z z 1
z 00 0 =z z z =z 4 z z 1 2z z z 1
1 0 0wz =z 2z 1 1 1111111

An element b of a g-lattice A = (4;V, A) is called an idempotent if bV b =10 (or,
equivalently, b A b = b). The set of all idempotents of A is called the skeleton of A
and it is denoted by Sk A. It is easy to see that Sk A is the maximal sublattice of
A.

Evidently, the restriction of @ onto Sk A is the lattice order of Sk.A. Moreover,
see [1], the ¢-lattice A is distributive if and only if Sk A is a distributive lattice.
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Further, we introduce a binary relation ¢ on A by (a,b) € ¢ iff (a,b) € Q and
(b,a) € Q. Then (see [4] or [3]), ¥ is a congruence on A and A/yp = SkA. The
congruence classes of ¢ are called cells of A.

In the foregoing Example, the elements 0, w, z, 1 are idempotents and the skeleton
Sk A is the four element distributive lattice {0, z,w,1}. A has four cells and the
congruence v is shown in Fig. 1.

Hence, every cell of A contains exactly one idempotent (idempotents are the only
results of operations). If d is the idempotent of a cell C of A, then zVy =d =z Ay
for any z,y € C. For more details of g-lattices, see e.g. [1], [2] and [4].

Let us recall some necessary concepts of duality theory given by B. Davey and
H. Werner [6]. Let ¥V = ISP(P) be a quasivariety generated by a non-trivial finite
algebra P = (P; F). Let P = (P;G,H, R,7) where 7 is the discrete topology on
P and G is the set of operations, H is a set of partial operations and R is a set of
relations on P. Suppose that all those operations, partial operations and relations
are subalgebras of appropriate powers of P. In this case, P is called algebraic over
P.

Let W = IS.P(P) be the class of all topological structures of the same type
as P which are isomorphic (i.e. simultaneously isomorphic and homeomorphic)
to a closed substructure of a power of P. For every A € V the set D(A) of all
homomorphisms 4 — P is a closed substructure of EA, hence D(A) € W. Similarly,
for each X € W the set E(X) of all morphisms X — P (i.e. continuous maps that

preserve G, H and R) is a subalgebra of P~, hence E(X) € V. (See Lemmas 1.1
and 1.2 in [5].) We have thereby defined two contravariant hom-functors

D:V—W, E:W—YV,

which are adjoint to each other. Further, for every a € A, the evaluation mapping
eq : D(A) — P given by

eo(z) =x(a) foreach z € D(A)

is a morphism. Similarly, the evaluation mapping ¢, : E(X) — P given by ¢,(a) =
a(z) foreach « € E(X) is a homomorphism for each z € X. The natural
maps e: A — ED(A) and e : X — DE(X) given by evaluation (i.e. e(a) = eq,
e(r) = e,) are embeddings for every A € V, X € W.

Definition. If for all A € V the map e is an isomorphism (equivalently: if evalua-
tion mappings are the only morphisms D(A) — P), we say that P yields a duality
on V. If moreover, the map ¢ is an isomorphism for each X € W, the duality is
called full.

Our aim is to establish a duality of this type for the quasivariety of all bounded
distributive g-lattices. We shall use the well-known Priestley duality for bounded
distributive lattices (see [11], [12], [13]).

2. CONSTANT ¢-LATTICES

A g-lattice C is called a constant g-lattice if it contains exactly one cell, i.e. if A
consists of one cell which equals to A. Hence, a constant g-lattice has the unique
idempotent 0 and z Vy = 0 = z A y for all elements z,y of A.
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We consider constant g-lattices as algebras with binary operations V, A and a
nullary operation 0. It is easy to see that constant g-lattices form a quasivariety (in
fact, a variety) V* = ISP(B), where B is a two-element constant lattice defined
on the set B = {0, c}.

Let us define B = (B, V,A,0,7), where 0 is a nullary operation, 7 is a discrete
topology and V, A are the lattice operations derived from the ordering 0 < c.

It is easy to see that the structure of B is algebraic over B. (Notice that p C B
is a subalgebra of B™ iff (0,0, ...0) € p.) Hence, for any C = (C;V, A,0) € V*, the
dual space D(C) is the set of all homomorphisms C — B with the structure inherited
from B. This dual space is easy to describe. A map C — B is a homomorphism
iff it preserves 0. Clearly, (D(C),V,A) is isomorphic to the Boolean lattice of all
functions (C'\{0} — B). (Equivalently, the Boolean lattice of all subsets of C'\ {0}.)
The space D(C) inherits its topology from the usual product topology of BY. There
is a close connection between this topology and the lattice operations V, A. We need
the following fact taken from [10].

Lemma 2.1. Let a sublattice L of QX be topologically closed. Then N A € L,
VVAe€eLforevery() #A C L.

Proof. Let a = A\ A. Clearly, for z € X, a(z) = 0 iff b(z) = 0 for some b € A. To
prove that a € L, it suffices to show that a belongs to the topological closure of L.
The base of open sets of the topology of QX consists of all sets of the form

S={peB* | pz1)="-=plam) =0, ply) =+ =pyn) =c},
where x1,...,Tm,Y1,---,Yn € X. Suppose that such a set S contains a, hence
a(z1) = =alzm) =0, a(y1) =+ = alyn) = c. We need to show that SNL # (.
There exist by,...,by € A such that b;(z;) = 0 and b;(y1) = -+ = bi(yn) = ¢. If

m = 0, then clearly z € SN L for arbitrary z € A. If m > 1, we set z = A", b;.
Since the lattice operations in QX are pointwise, we have z € S. Since L is a
sublattice, we have z € L. Hence, SN L # (.

Similarly we can prove that \/ A€ L. O

For any a € C we have h, € D(C) defined by hy(a) = ¢ and hy(z) = 0 for every
x # a. It is easy to see that this map is an atom in D(C) and every atom has this
form.

Theorem 2.2. The structure B = (B,V,A,0,7) yields a duality on V*.

Proof. Let C € V. Let 6 : D(C) — B be a morphism. We need to show that ¢ is
the evaluation map for some a € C. If § is constant 0 then § = eg. Let 6 be non-
constant. Since § is a lattice homomorphism and D(C) is a Boolean algebra, the set
U = 6 !(c) must be an ultrafilter. Since J is continuous, the set U is closed. By 2.1
used for A = U = L, the ultrafilter U must have a smallest element. This smallest
element is some atom h, of D(C). Therefore, for h € D(C) we have 6(h) = c iff
h € U iff h, < hiff h(a) = ¢, which shows that 6 =e,. O

This duality is not full in the sense of [5] because every dual D(C) is an atomic
Boolean algebra but IS.P(B) contains also non—-Boolean lattices. It is worth men-
tioning that our duality is very similar to the duality for sets in [5].
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3. BOUNDED ¢-LATTICES

A g¢-lattice A is called bounded if there exist elements 0 and 1 in C such that
xA0=0 and zVvVl1i=1

are identities of A and either 0 # 1 or card A = 1. Let us note that contrary to the
case of lattices, it implies neither  V 0 = = nor z A 1 = z. Further, in a bounded
g-lattice, (0,a) € @ and (a,1) € @ for each a € A. Let us note that it can happen
also (b,0) € Q or (1,¢) € @ for some b,c € A.

We consider bounded distributive g-lattices as algebras with binary operations
A,V and nullary operations 0,1. They form the quasivariety V = [SP(P), where
P is the four element bounded g-lattice visualized in Fig. 2. This follows from the
fact that 2-element constant lattice and 2-element lattice are the only subdirectly
irreducible distributive g-lattices. (See [4].)

S

0\/-a

Fig. 2

Let us define the partial orderings <, <., <p, <4 and the binary relation 7" on
the set P = {0, 1, a, b} by the following rules:
r<yiffz=yor (z,y) =(0,1) or (z,y) = (a,b),
r<,yiffzr=yor (m,y) = (O,Cl),
z<pyiff z =y or (z,y) = (1,0),
r<pyiffx <pyorz <y,

(z,y) € Tiff {w,y} C {0,1} or {z,y} C {a,b}.

Now we set P = (P, <,V,A, <4, <p,T,{0,1},7), where V,A are partial lattice
operations determined by <, {0, 1} is a unary relation and 7 is the discrete topol-
ogy.

It is easy to verify that the structure of P is algebraic over P. Now we describe
the dual space of a bounded distributive ¢-lattice C = (C;V, A,0,1). Let N¢ denote
the set, of non-idempotents of C. Let C* be the constant g-lattice defined on the set
{0} U N¢ with a new idempotent 0 ¢ N¢. Every homomorphism f: C — P must
map idempotents of C into {0,1}. The restriction f|gy ¢ is a lattice homomorphism.
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Let us introduce an equivalence relation ® on D(C) by (f,g) € ® iff flskc = glske-
Let [f]e denote the equivalence class containing f. It is easy to see that fVg and
fAg are defined iff (f,g) € ®. In fact, every ®-equivalence class with V, A is a
Boolean lattice. Every such class contains a unique skeletal homomorphism, i. e.
homomorphism that maps whole C into {0,1}. Every such skeletal homomorphism
is the least element in its equivalence class (with respect to V, A). Let Dg(C) denote
the set of all skeletal members of D(C)

Lemma 3.1. W = ([hla;V, A, h,7|w) is the dual space of the constant g-lattice
C* for every skeletal h € D(C) (in the sense of the previous section).

Proof. To every f € [hle we assign f* : C* — B by f*(0) = 0 and (for z €
N¢) f*(z) = 0if f(z) € {0,1} and f*(z) = c if f(z) € {a,b}. This defines an
isomorphism of W and the dual space of C*. O

Similarly, the order relations <,, <; compare only elements of the same ®-
equivalence class. On the other hand, the order relation < compares only elements
of different classes.

Lemma 3.2. V = (Dg(C); <,7|v) is isomorphic to the Priestley space of the
lattice Sk C.

Proof. For every f € Dg(C) we define f*: SkC — {0,1} by f* = flskc- This
defines the required isomorphism. O

Hence, we have the following picture of D(C). In the Priestley space of SkC,
every point is replaced by the Boolean lattice representing the constant g-lattice C*.
Besides that, we have relations <,, <;, T and {0,1}, whose role will be explained
in the sequel.

Lemma 3.3. Let h,k € D(C). Then there is exactly one g € D(C) such that
(9:h) € ®, (9,k) €T.

Proof. If x € SkC then we set g(z) = h(z), to ensure that (g,h) € ®. Let z € N¢.

We set )
0 if k(z) €{0,1} and h(z) € {0,a}
1 if k(z) € {0,1} and h(z) € {1,b}
9@ =9 4 it k() € {a,b} and h(z) € {00}
b if k(z) € {a,b} and h(z) € {1,b}.

It is clear that g has the required properties. O

Theorem 3.4. Let V be a quasivariety of all bounded distributive g-lattices. Then
P yields a duality on V.

Proof. Let 6 € ED(C). We need to show that § is an evaluation map. The preser-
vation of the unary relation {0,1} means that § must map skeletal members of
D(C) into {0,1}. By the Priestley duality and 3.2, there is an idempotent z € C
such that d(h) = (h|skc)(z) = h(z) for every skeletal h.

Now, let h € Dg(C) and let C* and W be as in 3.1. The morphism ¢ : D(C) — P
induces the morphism ¢’ : W — B by the rule ¢'(k) = 0 if §(k) € {0,1} and
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0'(k) = c otherwise. By 3.1, 6’ must be an evaluation map, i.e. §' = e, for some
x € C*. Hence, §'(k) = k*(x) for every k € [h]s. (See the proof of 3.1.)

If x € N¢, we have
0 if k(x) € {0,1}

¢ otherwise.

v ={
In other words,
o(k) € {0,1} iff k(z) € {0,1}. (%)

Equivalently, (6(k), k(z)) € T. We claim that this is true for arbitrary k € D(C),
not only for k € [h]s. Indeed, by 3.3 for every k € D(C) there is g € [h]s with
(9,k) € T. Then clearly (g(x),k(z)) € T, (g9(x),0(g)) € T and also, since ¢
preserves T', (6(g),0(k)) € T. This implies that (§(k), k(z)) € T.

Similarly, if z = 0, we have d(k) € {0, 1}, which also holds for every k € D(C).

Now we claim that § = e, if x € No and § = e. if x = 0. First we settle the
case ¢ = 0.

Let x =0 and k € D(C). Then there is a skeletal h € D(C) with (k,h) € . We
have d(h),d(k) € {0,1}. Since hvk = k, also d(h)Vd(k) = d(k) which is possible
only if both d(h), (k) equal to 0 or both of them equal to 1. Since h and k coincide
in idempotents, we have

which was to prove.

Suppose now that x € N¢. Next we prove that  belongs to the cell containing z.
For contradiction, suppose that this is not the case. Then there exists k € Dg(C)
such that k(z) # k(z). Without loss of generality, k(z) = 0, k(z) = 1. Let us
define k; € D(C) by the rule that k1 (z) = a and k1 (y) = k(y) for all y # . Then
k <, ki, therefore 6(k) <, d(k1) which is a contradiction, because (k) = k(z) =1
and 0(k1) € {a, b} (since k1(z) = a and (6(k1), k1 (x)) € T).

Now let k € D(C) be arbitrary and let h € Dg(C) be such that (k, h) € . Again
we have §(h)Vd(k) = 0(k). We distinguish four cases.

If 6(k) = 0 then d(h) = 0 (h is skeletal), hence 0 = h(z) = h(z V z) = h(z) V
h(z) = h(z) and therefore k(z) € {0,a} (from (h,k) € ®). On the other hand,
from (*) we have k(z) € {0,1}, hence k(z) =0 = 6(k).

If 6(k) = a then 6(h) = 0, which implies k(z) € {0,a}. From (*) we have
k(x) € {a,b}, hence k(z) = a = §(k).

If 6(k) = 1 then 6(h) = 1, which implies h(z) = 1 and k(z) € {1,b}. From (*)
we have k(x) € {0, 1}, hence k(z) =1 = (k).

Finally, if 6(k) = b then we get 6(h) = 1, h(z) =1 and k(z) € {1,b}. From (*)
we have k(x) € {a, b}, hence k(z) = b= (k).

Thus, §(k) = k(z) holds in all cases, which means that § = e,. The proof is
complete. [

Let us show how the duality works for the ¢-lattice A on Figure 1.
Evidently, D(A) consists of exactly 16 homomorphisms given by the following
table:
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Ol v|lwl| z| | Y| 1
ho 0|00 1] 1| 1] 1
hi 0| 0|0 1| 1| b 1
ha 000 1] b 1, 1
hs 000 1] b b 1
hy O|la| 0| 1| 1| 1] 1
hs 0O|lae| 0 1] 1] b 1
he O|la| 0 1] b 1} 1
h7 0O|la| 0| 1| b| b 1
hsg 0| 0|1 0| 0f 0] 1
hg 0/ 0|1 0] 0] a 1
hio 0| 0| 1| 0| a/ 0] 1
hi1 ol o| 1| 0| a| al 1
hi2 O|la| 1) 0] Of 0] 1
hi3 0O|a| 1) 0] O a 1
hia 0O|a| 1) 0] a 0 1
his O|la| 1| 0| a| a 1

€ | ey | ew| €| €z| €y €1

Clearly hg, hg are skeletal homomorphisms, i.e. Dg(A) = {hg, hg}. This corre-
sponds to the fact that Sk A is the four element Boolean lattice and its Priestley
space is the two—element antichain.

The dotted lines denote <; and the solid lines denote <,. The equivalence
relation T' consists of all pairs (h;, hiys), ¢ = 0,...,7. The equivalence relation
® has two equivalence classes, which are isomorphic to the dual of the constant
g-lattice A*.

The dual space D(A) looks as shown in Fig. 3.
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HISTORY OF THE NUMBER OF FINITE POSETS

Jirf KLASKA

ABSTRACT. In this paper we introduce the survey of all main known results on the
number of finite partially ordered sets. We also present the similar and connected
problems. The historical review of related works is also included. In this context
there are introduced author’s works and results in this branch.

1. INTRODUCTION

In the first section we remind the main basic notions and some their relations.
Let us denote by N the set of all positive integers and put Ny := N U{0}. Further,
let A be a finite n-element set, n € Ny. By |A| we shall denote the number of all
elements of A. As usual, a binary relation p on A is a subset of A x A. We define:

Definition 1. A binary relation p on A is called

(1) reflexive if Vo € A : [z, 2] € p,

(2) symmetric if Vz,y € A : [z,y] € p= [y, ] € p,

(3) antisymmetric if Vz,y € A: [z,y] € pAy,z] Ep=>z =1y,

(4) transitive if Vz,y,z € A: [z,y] € pAly,z] € p = [z,2] € p.
A binary relation p is called a quasi-order if it is reflexive and transitive. Fur-
thermore, p is called an equivalence if it is reflexive, symmetric and transitive and
finally p is called a partial order or an ordering if it is reflexive, antisymmetric and
transitive. A partially ordered set (A, p) or poset, for short, is a set A together
with a partial order p. We also call (A4, p) a labelled poset.

Definition 2. A topology on A is a family 7 of subsets of A such that

(1) beTnAer,

(2) VX,)Yer:XUY e,

B)VX,)Yer:XnYer.
The elements of 7 are called open sets. A topology is said to be Tj if for all a, b in
A such that a # b there exists an open set containing one of a, b but not the other.

At the very beginning we recall an important fact that there is a connection
between binary relations on A and topologies on A. In 1937 P. S. Alexandrov
[1] and also G. Birkhoff [2] observed that there is the one-to-one correspondence
between topologies on A and quasi-orders on A, and furthermore, there is the one-
to-one correspondence between partial orders on A and Typ-topologies on A (see [2],
3.ed, p.117).

1991 Mathematics Subject Classification. 01A65, 05A15, 05A16, 06A07.
Key words and phrases. Partially ordered sets, counting.
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Definition 3. A partition of a finite n-set A is a collection & = {4,,..., A} of
subsets of A, where 1 < k < n, such that

(1) Yie{1,...,k}: A; #0,

(2) Vi,je{l,...,k}i#j: AinA; =0,

(3) AU---UA, = A
We call A; blocks of & and we say that &2 has k blocks. Then we define S(n, k)
to be the number of partitions of an n-set into k blocks. S(n, k) is called a Stirling
number of the second kind. By convention, we put S(0,0) = 1. Furthermore, the

total number of partitions of an n-set A is called a Bell number and is denoted by
B(n). Thus we have the relation B(n) = ,_, S(n, k).

Now we remind further important and well-known result on the set-partitions
and equivalence relations on a set A. We have the following assertion: There is a
one-to-one correspondence between the set of all partitions of an n-set A and the
set of all equivalence relations on A. Consequently, the Bell number B(n) is the
number of all equivalence relations on an n-set A. This correspondence is given in
such a way that the elements which are equivalent lie in the same block.

Definition 4. Let p be an ordering on A and ¢ be an ordering on B. We say that
two posets (A4, p) and (B, o) are isomorphic if there is an order-preserving bijection
f A — B whose inverse is order-preserving as well (i.e. Vz,y € A : [z,y] € p &
[f(z), f(y)] € o). This isomorphism decomposes the set of all posets on A into
blocks, which we call non-isomorphic posets or also unlabelled posets.

Finally, it is necessary to recall the following notions of a partition and a com-
position of an integer n.

Definition 5. A partition of an integer n € N is a sequence (z1,...,z;) € NF,
where 1 £ k < n, such that 1 +---+xp =n and 21 2 --- 2 5. A composition of
n is a sequence (z1,...,7;) € N* where 1 £ k < n, such that z; + -+ + x5, = n.

If exactly k£ summands appear in a partition, we call it a k-partition. Analogously,
a composition of n in which exactly k£ summands occur, is called a k-composition.

It is known that there is a bijection between all k—compositions of an integer
n and (k — 1)—subsets of {1,2,...,n — 1}. Hence there are (fj) k—compositions
and 2"~! compositions of n. On the other hand, it is not possible to count the
number of partitions so easily. All the same, there are more ways to enumerate

these numbers (see e.g. our paper [27]).

2. COUNTING THE BINARY RELATIONS

One of the basic problems from the combinatorical analysis is to find the number
of all configurations of the specific type. For example, to find the number of all
binary relations, the number of set-partitions, the number of topologies and so on.
It is well-known that the number of all binary relations on an n-set A is equal to 2n”
Quite easily we can count the numbers of reflexive, symmetric and antisymmetric
relations. Let Z(A) be the set of all reflexive relations on A, .#(A) the set of all
symmetric relations on A, &/(A) the set of all antisymmetric relations on A and let
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J (A) denote the set of all transitive relations on A. Thus we have:

(3)

(1) |‘0](A)| =4 ’
G

(2) |7 (A)] =2 ;

(3) | (A)] = 2" 3(2),

(4) |2(A) N 7 (A)| = 2(2),

(5) |2(A) N o (A)]| 23(2),

(6) |/ (A) NS (A)] =2".

These formulas can be deduced by means of elementary combinatorical tech-
niques (i.e. by means of the rules of sum and product). The problem of finding
these numbers is often submitted as an exercise. But the difficulties begin when
we start to engage with counting binary relations which have the property of tran-
sitivity. For the number of equivalences and their classes we still have reasonable
formulas. It is easy to verify that S(n,k) = 0 if £ > n, S(n,0) =0, S(n,1) =1,
S(n,2) =2""1—1,5(n,n—1) = (3), S(n,n) = 1. Now we introduce a short survey
of possibilities how to count these numbers. We have the following formulas:

(7) S(n,k)=kS(n—1,k)+S(n—1,k—1),
®) SOED 9 (g B!
k
) S0k = ) -0t (B
(10) Smk)y= Y 1mTlammlopmet
T14tzp=n

where the sum extends over all k-compositions of an integer n. Moreover, for the
Bell numbers B(n) we have the recursion

n

(11) Bin+1)=3 (Z)B(k).

k=0

The Bell numbers can be also computed by means of the scheme (12), analogously
to the Pascal triangle for counting binomial coefficients.
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In the following section we shall continue in our list of enumerative combinator-
ical results on binary relations with the property of transitivity. We shall also pay
an attention to the numbers of such relations. We shall concentrate especially on
our basic subject, which is the number of finite posets.

3. COUNTING FINITE POSETS

Our main combinatorical counting problem is the following: How many posets
are there on n elements (enumeration of labelled posets) and what is the number of
their isomorphism classes (enumeration of unlabelled posets)? These problems are
unsolved up till now. No reasonable explicit or recursive formula for these numbers
is still known. By reasonable we mean that the number of involved operations is
of considerably smaller order than the numbers which we want to compute. The
enumeration of all finite posets is a long-standing open problem. G. Birkhoff with
his well-known book Lattice theory (see [2], third ed., pages 4 and 19) was in 1948
one of the first who formulated this problem. We quote: “Let G(n) denote the
number of nonisomorphic posets of n elements and G*(n) denote the number of
different partial orderings of n elements. Compute for small n, and find asymptotic
estimates and bounds for the rates of growth of the functions G(n) and G*(n).”

Now we make a short remark on the notation of the number of posets. This
notation did still not stabilise. We already know the notation from Birkhoff’s
book. Several authors used this notation too, but it did not root. There was used
the whole range of notations for the number of labelled posets up till now. For
example G*(n) in [2], H(n) in [46], d,, in [13], Ag(n) in [22], To(n) in [3], v, in
[24], pp in [26] and P, in [23]. Next, in the case of numbers of unlabelled posets we
have the similar situation. In this paper we shall use the following notation: p, will
denote the number of all partial orders of an n-element set A and P, the number
of non-isomorphic posets on A. Now we introduce the fundamental results on the
number of posets.

For p,, we have the following explicit expression (see M. Erné, [23])

2"2—1 n—1 n—1 n—1

(13) pn= Z H wan-i H (1- wnmi+jmnmj+i) H (1—- w%jw%k(l - w%k)),
m=0 i=0 j=0 k=0

where

(14) " = |27'm| — 2|27 'm]|

is the i-th digit in the binary expansion of m (0 £ i < n?). Each binary relation
on the set {0,...,n — 1} is represented by one summand, where m runs from 0 to

76



27" — 1. The value of Tpi sl if i and j are related, and 0 otherwise. The product
over i codes reflexivity, that over j antisymmetry, and that over k transitivity. Thus
the whole product is 1 iff the relation is a partial order, and it is 0 in all other cases.
The formula (13) is evidently not practical for computing p,,.

In 1966 L. Comtet [13] introduced the important and often used and occured
formula

(15) Pn = Z ni!'V(xl,...,xm),

1! !
(#1,esTm) "

where the sum is taken over all compositions of the number n and V(z1,...,z,,) is
the number of certain posets with respect to the composition z1+- - -+x,, = n. This
formula was in 1979 rediscovered by Z. I. Borevich. More exactly, V(z1,...,Tn) is

the number of all so called V-nets of the type (z1,...,%n). The detailed definition
and explanation of this concept can be founded in [3]. In [4] and [5] Borevich
derived a special case of V(z1,...,,,) and determined some values of p,,. He also
proved that all values V(zy,...,z,,) are odd numbers.

The following enumerative results show that nearly all the problems on finding
the number of binary relations, where transitivity is one of the properties, can be
converted to finding the values of p,,. Above all, it is possible to show that it holds:

(16) |/ (A) N T (A)] = 2"pn,
(17) |#(4) N T (A)| = B(n +1).

Now we introduce the following notation. Let ¢, be the number of all transitive
relations on an n-set A and ¢, be the number of all quasiorders on A. In 1967
Evans, Harary and Lynn [24] derived a formula relating the number of all quasi-
orders on a set of n elements and the number of all partial orders or equivalently
the number of topologies on an n-set and Ty-topologies. In particular, they proved
the following formula

(18) g =Y S(n, k)ps.
k=1

This result contributes to the intensive interest in the number of posets. In spite
of the fact that neither the explicit nor recursive formula is still known, there was
discovered the asymptotic estimate for p,. The significant results in this area were
presented in 1970 by D. J. Kleitman and B. L. Rothschild. In [30] they deduced
the formula

1
(19) log, pn = Zn2 + o(n?).

Furthermore, in 1975 the same authors proved in [31] that
@ =00y e S (M) (1 e - i -y
" n i j '

i=1 j=1
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This asymptotic formula was in 1981 simplified by K. H. Kim and F. W. Roush
[26]. From further works which concern about the asymptotic behaviour of p,, we
remark at least the papers of J. L. Davison [19] and D. Dhar [20].

In 1974 M. Erné, [22], showed that quasiorders are asymptotically posets, i.e.

(21) In 51 for n— .

Pn

In 1992 we have derived in [29] the following formula (22) for the number of tran-
sitive relations, which enables to compute numbers ¢,, if the values p, are known:

n k
(22) t, = Z ag(n)py, where ag(n)= Z (Z) S(n — s, k—s).
k=1 s=0

In particular, using (22) we have computed the numbers ¢, for n < 14. Number
t14 constitutes currently the greatest known value of the sequence t,, and exceeds
10%8. In [29] we have also proved the asymptotic formula

tn

2"py,

(23) —1 for n— oco.

In 1987 H. J. Promel [40] proved that the number of unlabelled structures is
asymptotically 1/n! times the same labelled quantity. The paper [40] contains a
short proof of this fact for all classes of structures whose logarithm approaches a
quadratic in the size parameter n. In particular, for posets we have

Pn

nIp, —1 for n— oco.

(24)

This problem was in 1981 introduced by K. H. Kim and F. W. Roush (see [26],
Problem 3). At the end of this section we mention the solitary and very interesting
result of Z. I. Borevich on the residual periodicity of the sequence p,. In the period
1979-1982 Borevich published papers [6], [7] and [8], where he proved the following
assertions. Let m = p be an arbitrary prime number. Then the sequence {p,
mod m}22, is periodical and the length of its period is equal to p — 1. If m = p?,
where a € N, then {p, mod m}2%, is periodical from n 2> p2~! and the length
of its period is equal to ¢(p?) = p® — p®~!. Furthermore, if m = p; ...px, where

P1,..., P are the different primes, then the sequence {p, mod m}22, is periodical
and the length of its period is equal to the least common multiple of the numbers
p1—1,...,pr—1. Finally in the general case it holds: Let m be an arbitrary positive

integer. Then there exists an index no from which the sequence {p, mod m}22,
is periodical. Specially, the periodicity of the last figures of the sequence p,, follows
from Borewich’s results. This visible fact can be seen in Table 1 (see also the
author’s work [29]).

4. THE HISTORY OF THE KNOWN VALUES OF p,

As we remarked, the original stimulation for computing the values p,, for small
n came from G. Birkhoff in 1948. First, finding the values ps,ps and ps is not
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difficult. This problem was often submitted to the reader as an exercise. In 1966
L. Comtet has found in [13] the values ps and ps. In 1967 J. W. Evans, F. Harary
and M. S. Lynn have in [24] found the values p, for n £ 7. Counting and verifying
these values was left to the reader in the third edition of the Birkhoft’s book [2].

The computer enumeration of the values p,, was based on the matrix representa-
tion of binary relations. Binary relations on a set of n elements can be represented
as n X n matrices of zeros and ones. If p is a binary relation on a set of elements
Z1,...,Tn, then we associate to p the matrix M = (m; ;) such that m;; = 1 if
[zi,x;] € p and m;; = 0 if [z;,x;] ¢ p. This gives a one-to-one correspondence
between binary relations and n x n matrices of zeros and ones (see [24], [35] and
[48]). The matrix representation of a partial order was given in 1972 by K. K. H.
Butler [9]. However, the basic idea can be already found even in the paper [48] by
H. Sharp from 1966. It holds that the n x n matrix of zeros and ones represents a
partial order on some n-set iff it is nonsingular and idempotent.

In 1974 M. Erné has published the important paper [22], where he has computed
the values p, up to n £ 9. Further significant results were obtained in 1977 in the
paper [18] of S. K. Das, where the values p, up to n < 11 are computed. At that
time this work presented the full list of values p,. In this historical review it is
necessary to underline the works of the soviet mathematicians in the period 1978-
1982. In the papers [4] and [5] from 1978 and 1979 Z. I. Borevich, V. I. Rodionov
and their coauthors computed the values py and p1g. But at that time these values
were already known. Further, Rodionov in [44] and [45] independently resumed the
common works with Borevich. In 1982 he computed the values p;; and p;2. Now
we introduce the table of the numbers p,, by [23] up to n = 14.

Table 1. The numerical values p,, for n < 14.

P o= (Folklore)

D2 = 3 (Folklore)

Py = 19 (Folklore)

D1 = 219 (Folklore)

D5 = 4231 (1966) L. Comtet

Pe = 130023 (1966) L. Comtet

pr = 6129859 (1967) Evans, Harary and Lynn
ps = 431723379 (1967) Evans, Harary and Lynn
py = 44 511042511 (1974) M. Erné

Pio = 6611065248 783 (1977) S. K. Das

P11 = 1396 281677105899 (1977) S. K. Das

P12 = 414 864 951 055 853 499 (1982) V. I. Rodionov

P13 = 171850 728 381 587059 351 (1991) M. Erné and K. Stege
pra = 98484324257 128207032183 (1991) M. Erné and K. Stege

As late as 1991, after a long pause, M. Erné and K. Stege presented in [23] the
values p,, up to n < 14. Currently the number p;4 constitutes the greatest known
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value of the sequence p,,. At the present time we can use computers for finding
further values of p, by means of contemporary known methods. But the necessary
computing time constitutes the insuperable barrier. Interesting informations on the
time-consuming computation of the values p,, can be found in [23].

5. THE HISTORY OF THE KNOWN VALUES OF NONISOMORPHIC POSETS P,

The number of works which deal with the computation of values P, for small n
is much less than the number of works which deal with the computation of p,,. By
G. Birkhoft, [2], the values P, for n £ 6 were found by I. Rose and R. T. Sasaki. In
1981 N. P. Chaudhuri and A. A. J. Mohammed, [12], were concerned with finding a
method for verifying the results of Rose and Sasaki. In their paper the verification
for n = 4 is shown. The values P, for n < 6 can also be found in [46] by R. A.
Rozenfeld from 1985. The value P; was discovered in 1972 by J. A. Wright in his
PhD-thesis [50]. In 1977 S. K. Das found in [18] the value Ps. Seven years later in
1984 R. H. Mohring introduced the value Py. Further progress came in 1990, when
J. C. Culberson and G. J. E. Rawlins computed the numbers of non-isomorphic
posets up to n < 11. Further, in 1990 A. M. Kutin, [36], was also engaged in
computing P,,. C. Chaunier and N. Lygeros found in 1991 the value P;5 and finally
the latest progress in the computation of P, came in 1992 when the same authors
computed in [14] the value P;3. Now we introduce the known values of P, by C.
Chaunier and N. Lygeros.

Table 2. The numerical values P, for n < 13.

P = 1 (Folklore)

P, = (Folklore)

Py = 5 (Folklore)

P, = 16 (Folklore)

P = 63 (Folklore)

P = 318 (1967) I. Rose and R. T. Sasaki

P = 2045  (1972) J. Wright

P = 16999 (1977) S. K. Das

Py = 183231 (1984) R. H. Méhring

Py = 2567284 (1990) J. C. Culberson and G. J. E. Rawlins
P = 46 749 427 (1990) J. C. Culberson and G. J. E. Rawlins
P, = 1104891746 (1991) C. Chaunier and N. Lygeros

Pi3 = 33823327452 (1992) C. Chaunier and N. Lygeros

In the following section we shall deal with the more special problem of finding
the number of connected posets.
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6. THE NUMBER OF CONNECTED POSETS

Let (A, p) be a partially ordered set, x,y € A. We say that two elements x and
y are comparable and we write x —~ y, if [z,y] € p or [y, z] € p. For z,y € A we put
x ~ yiff there are k € N and k elements 1, ..., x; € A such that x ~ xq,..., 2, —~
y. The poset (A,p) is called connected, if for all z,y € A : z ~ y. By ¢, we
shall denote the number of all connected posets on an n-set A. Furthermore, an
isomorphism decomposes the set of all connected posets on A into blocks, which we
call non-isomorphic connected posets. The number of all non-isomorphic connected
posets on an n-set A will be denoted by C),.

The first mention of the number of connected posets came probably in 1963 from
R. A. Rankin [43]. In [43] there are introduced the values ¢, for n < 4. Next, 11
years later M. Erné [22] found the values ¢, up to n £ 9. In 1991 the same author
and K. Stege [23] presented these numbers for n < 14 (see Table 3). Further, we
have almost no references on the number C,, of non-isomorphic connected posets.
Let us remark that G. Birkhoff [2] did not refer to the numbers ¢, and C,,. In 1985
R. A. Rozenfeld [46] presented the numbers C,, for n < 6. After this solitary paper
we have computed in 1994 the values C,, up to n < 13 (see Table 3), [28]. In [28§]
we have also derived the following formulas (25) and (26) (cf. also our paper [27]):

S|

n—1
Z an—k)P, and a(m)= Zk:Ck,
k=0

k|m

n—1 Cl C
(26) Py = - %Qn—kpk and  Qn =) (~1ftth <k1> (k:>

— s
where the sum extends over the set S of all solutions [ki,...,k,] € {0,1,...,n}"
of the linear Diophantine equation 1ky + 2ks + - -+ + nk, = n.

Table 3. Initial values of the connected posets ¢, and C,,.

¢ = 1 C: = 1
c = 2 Cy = 1
c3 = 12 C; = 3
cy = 146 Cy = 10
cs = 3060 Cs = 44
ce = 101 642 Ce = 238
cr = 5106 612 C; = 1650
cg = 377403 266 Cs = 14512
cy = 40299 722 580 Cy = 163 341
clo = 6138497261 882 Cio = 2360719
c11 = 1320327172853 172 Ci1 = 43944974
c12 = 397571 105288091 506 Ci2 = 1055019099
c13 = 166 330 355795 371 103 700 Ci3 = 32664484238

cia = 96036130723 851671469 482
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7. THE SPECIAL CLASSES OF ORDER STRUCTURES

In the last section we make a short remark on enumeration in the special classes
of order structures. In the scientific literature it was studied the whole range of
ordered structures such as graded posets, interval orders, lattices, semiorders, series-
parallel posets, tiered posets, two-dimensional posets and weak orders. We mention
here only one particular. A lattice is a partially ordered set in which every pair of
elements has the least upper bound (join) and the greatest lower bound (meet). G.
Birkhoff already formulated in [2] the problem to find the number of all n-element
lattices. For the number of lattices we have a similar situation as for the number of
posets. No explicit or recursive formula is known. In 1979 S. Kyuno [37] described
the algorithm for constructing Hasse diagrams of all n-element lattices and also
found the number of lattices for n < 8. As late as 1994 Y. Koda [34] computed
these numbers up to n £ 13. In 1971 W. Klotz and L. Lucht [33] found the lower
bound and in 1980 D. J. Kleitman and K. J. Winston [32] the upper bound for the
number of lattices. The aim of this short section was to show that the enumeration
problem of posets is not solitary and that there exists a whole family of similar
problems. The survey of the enumeration problems in further classes of ordered
structures together with the main results can be found e.g. in the paper [21] by M.
El-Zahar.

At the end of this paper we present the survey of the main works related to our
topic. Of course, this bibliography collection is not complete. The comprehensive
resource of references can be found in the papers [6], [23] and [26].
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GREATEST COMMON SUBGROUP AND SMALLEST
COMMON SUPERGROUP OF TWO FINITE GROUPS AND
RELATED METRICS ON A SYSTEM OF FINITE GROUPS

PETER MALICKY

ABSTRACT. The paper deals with metrics on a system of finite groups which are
defined by the greatest common subgroup and the smallest common supergroup of
two finite groups. An interesting result is obtained for groups S4 and Dj».

INTRODUCTION

Metrics on systems of graphs and posets were investigated in papers [1], [7]
and [4], [6] respectively. Paper [3] of A. Haviar investigated four metrics on a
system of finite universal algebras. The present paper studies metrics on a sys-
tem of finite groups which correspond to the substructure and superstructure met-
ric of A. Haviar.

Two groups are considered to be near if they contain a large isomorphic subgroup.
Alternatively, two groups are considered to be near if they are embedable into a
small group.

1. GREATEST COMMON SUBGROUP AND SMALLEST COMMON
SUPERGROUP OF TWO FINITE GROUPS

Definition 1.1: Let Gy and G» be finite groups. The symbol m(G1, G3) denotes
the maximal order of a group G such that G; and G contain subgroups K; and K>
isomorphic to G. The symbol M (G4, G>) denotes the minimal order of a group H
containing subgroups H; and H, isomorphic to Gy and G2 respectively.

The product of two elements a and b of a group G will be denoted simply ab. If A
and B are subset of a group, then the symbol AB donotes the set of all products ab,
where a € A and b € B. The unity of any group will be denoted by e. The symbol
|A| denotes the cardinality of a set A.

In the whole paper we shall use the following obvious lemma.
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Lemma 1.1: Let G be a group, G; and G2 be finite subgroups of G.

— 1G1]-Go]
Then |G1G2| = m

Proposition 1.2 For any two finite groups G; and G5 the following inequalities
hold.

(i) 1< m(G1,Gs) < gcd.(|G1],|G2]) and m(Gy,Gs) is a common divisor of
|G1| and |G].

(ii) s.cm. (|G1],|G2]) < M(G1,G2) < |Gy|-|G2| and M (G1,G>) is a common
multiple of |G;] and |G2|.

(i) M(G1,G2) > %

Proof: Parts (i) and (ii) are obvious. We shall prove (iii). Let H be a group
of the minimal order containing subgroups H; and H, isomorphic to G; and G4
respectively. Without loss of generality we may assume that Gy = H; and G2 = Hs.
Then G; N G» is a subgroup of Gy and G» which means m(Gy,G2) > |G1 N Ga|.
Since G1 G4 is a subset of H, we obtain

G1l]-|G Gi|-|G
M(G1,Gy) = [H| > |G1Gy| =[Gl > JOlIGl

It completes the proof.

The symbol D,,(n > 2) denotes the dihedral group, i.e. the symmetry group of
a regular polygon with n edges. This group is generated by the elements r and ¢
satisfying relations r® = ¢> = e and trt = r~'. The element r is a rotation through
angle 2= and t is an axial symmetry.

The symbol S,, denotes the group of all permutations of the set {1,...,n}. It is
easy to see that the cycle p = (12...n) and the permutation

(12 3 ... n-1mn
™1 n on-1 ... 3 2

generate a subgroup of S,, isomorphic to D,. For n = 3 the groups S,, and D, are
isomorphic.

Lemma 1.3: Let j and n be coprime integers, 1 <j<n—1land 0 <k <n-1.
There is a unique automorphism ¢ : D,, — D,, such that 1 (r) = v/ and ¥ (t) = r¥t.
Conversely, any automorphism ¢ : D,, — D,, has such a form.

Proof: Under the above conditions about j and k the elements p = r/ and
7 = r*t satisfy the same relations as r and ¢. Therefore, formulas ¢(r) = r/ and
Y(t) = r*t define an automorphism. Let 1 : D,, — D,, be an automorphism. The
order of the element ¢(r) is n, so 1(r) = r?, where j and n are coprime integers
and 1 < 7 < n — 1. The order of the element () is 2 and this element does not
commute with 1(r) = rf. So, ¥(t) = r*¢, where 0 <k <n — 1.

If a natural k is a divisor of n, i.e. n = jk for some natural j, then the elements
s = 1/ and t satisfy relations s* = t> = e and tst = s~' and they generate
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a subgroup which may be identified with Dj. In this situation we shall assume
Dy C D,. The following lemma may be generalised, but we shall use only this
special case.

Lemma 1.4: For any automorphism ¢ : Dy — D, there is an automorphic
extension ¢ : D12 — Dio.

Proof: In this situation n = 12,k = 4,7 = 3 and s = r°. By Lemma 1.3,
we have ¢(s) = s or ¥(s) = s and ¢(t) = s¥t, where 0 < k < 3. For the
definition of an automorphism ¢ : Dis — Dqo it is sufficient to define ¢(t) and
o(r). Put @(t) = ¥(t). If ¢¥(s) = s, then put p(r) = r. In this case p(s) =
o(r®) = (p(r))? =13 = s = ¥(s). If Y(s) = s3, then put p(r) = r'*. In this case
o(s) = p(r®) = (p(r))® = (r'1)3 =33 =19 = §3 = (s). So, ¢ is an extension of

b.

Lemma 1.5: There is a group H of order 96 which contains subgroups H; and
H, isomorphic to Sy and D;s.

Proof: Let C4 be a subgroup of D;» generated by the element s = r® and Dj
be a subgroup generated by the elements p = r* and ¢. Then |C4y N D3| = 1 and

|CyDs| = ‘lg‘iugs‘l = 24 which means C4D3 = D;>. Note that zsz™' = s, when z
1

is a rotation and zsz~! = s~!, when z is an axial symmetry. So, Cy is a normal
subgroup of Dy which is an internal semidirect product of Cy and Dy, [5,p.27].
Using this fact and isomorphism of D3 and Ss, it may be easily shown that D, is
isomorphic to the Cartesian product Cy x S3 with the group operation defined by
the formula [z, o]y, 7] = [zy®9"?, 07|, where z,y € C4,0,7 € S3 and sgn o denotes
the sign of a permutation o € S3. Replacing S3 by Sy in the above construction,
we obtain the required group H.
The following theorem is the main result of this paper.

3

Theorem 1.6: Let Gy = S; and Gy = Di3. Then m(Gy,G2) = 8 and
M(G1,G2) = 96. It means that the inequality M(Gy1,G2) > LG11G2) - can not

= m(G1,G2)
be replaced by the equality M (G1,G2) = %

Proof: We shall show the equality m(G1,G2) = 8. Clearly, both groups G4
and G2 contain a subgroup isomorphic to Dy of order 8. It means m(Gy,G2) > 8.
The group D, is generated by the elements r and ¢ satisfying relations r'? =
e = t? and trt = r~!. The group S; contains only permutations of the form
(ijkl), (ijk), (i7), (kl) and (ij) the orders of which are 4,3,2 and 2 respecively.
On the other hand the group D;» contains the element r, the order of which is
12. The groups GG; and G2 are not isomorphic which means m(Gy,G2) # 24. We
shall show m(G1,G2) # 12. Let G be a subgroup of Dy, with |G| = 12. Then
the index of G is 2. So, G is a normal subgroup of Dji; and the order of the
factor group Di2/G is 2 which particulary means r> € . The order of r? is 6
and Sy does not contain such elements. So, Sy does not contain a subgroup iso-
morphic to G. It means m(G1,G2) # 12. It proves m(G1,G2) = 8. Proposition
1.2 implies M (G1,G2) > 72. We shall show M(G1,G2) # 72. Let H be a hypo-
thetical group of order 72 which contains subgroups H; and Hs isomorphic to Sy
and Di5. So, there are monomorphisms ¢; : S4 — H and ¢y : D1y — H with
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©1(S4) = Hy and ¢3(D12) = Ho. Assume that Sy is group of all permutation of the
set {A, B,C,D}. The elements s = r3 and ¢ generate a subgroup of D;» which is
identified with Dy. Let ¢ : D4 — S4 be a monomorphism defined by the formulas
¥(s) = (ABCD) and 9(t) = (BD). Denote by a = p1(ABC),z = p1(ABCD)
and y = ¢1(BD). Since (ABC)?> = e and (ABC)(ABCD)(ABC) = (BD), we
have a®> = e and aza = y which means ax = ya®. There is an element b € H
such that b # e,ab = ba, zb = bx,by = yb? and b?>y = yb. This is a contradiction,
because ya’b = axb = abx = bax = bya® = yb%a® which means a’b = b%a® = a?b?
and e = b. We shall show the existence of such an element b € H. The images
p1((Dy)) and p2(Dy) are Sylow subgroups of order 8 in H. By Sylow theorem,
they are conjugated by an inner automorphism in H, [5,p.39]. So, without loss of
generality we may assume ¢, (¢(Dy4)) = @2(Dy4). Denote by f = ¢, ' 0 ) 01p. The
mapping f is an automorphism of D4 and by Lemma 1.4.; there is an automorphic
extension ¢ : D1y — Dp2 of f. Now, the monomorphism @y o f : D1y — H is
an extension of ¢; o : Dy — H. Replacing @5 by s o f, we may assume that
w2(2) = p1(¢(2)) for any z € Dy. The element a = 1 (ABC), generates a sub-
group K, of H with |K;| = 3. Since |H| = 72, the subgroup K; is contained in
some Sylow group K of order 9,[5,p.39]. Denote by G = 1 (¢¥(D4)) = @2(D4).
Since |G| = 8, we have |G N K| = 1 and |GK| = 72 which means GK = H.
Therefore, H,K = H and |H, N K| = W&l = 3 Put Ky = Hyn K. Ttis a
subgroup of H, of order 3. The group Dp» contains a unique group of order 3, it
is a subgroup C3 generated by the element p = r*. It means Ko = ¢2(C3). The
element b = ¢5(p) # e has the required properties. The group K is commutative,
because any group of the order p? is commutative, [5, p.39]. It proves ab = ba. Since
ps = sp and p2(s) = @1(¥(s)) = p1(ABCD)) = x, we have zb = bz. Finally,
relations by = yb? and b?y = yb follow from relations p> = ¢> = e, tpt = p~—! and
wa2(t) = @1(¥(t)) = p1(BD) = y. The proof of M (G1,G2) # 72 is complete. The
following multiple of 24 is 96. Now, M (G1,G2) = 96 by Lemma 1.5.

2.SUBGROUP METRICS
For two finite groups G; and Gy put d(G1,G2) = |G1| + |G2| — 2m(G1,G3).

Proposition 2.1: The function d is a metric, i.e. for any finite groups G, G2
and G5

(i) d(G1,G2) >0 and d(G1,G2) =0 if and only if G; and G5 are isomorphic

(i) d(G1,G2) =d(G2,Gh)

(iii) d(G1,G3) < d(G1,G3) + d(G2,G3) and the equality appears only in the
case when G5 is isomorphic to a subgroup of G; or G.

Proof: Parts (i) and (ii) are obvious. Let H; and H» be isomorphic subgroups
of G; and G respectively for which |Hy| = |Ha| = m(G1,G2) and ¢ : Hy — H; be
the corresponding isomorphism. Similarly, let K> and K3 be isomorphic subgroups
of G2 and G5 respectively for which |K»| = |K3| = m(G2,G3) and ¢ : Ko — K3 be
the corresponding isomorphism. Obviously, the groups p(H2NK>) and ¢(Hy N K>)
are isomorphic which implies m(G1,G3) > |Ha N Ko| = |Ha| + | K| — |[Ha U Ka| >
m(Gl,Gg) + m(G2, G3) — |G2|

Therefore, d(Gl,G3) = |G1| + |G3| — 2m(G1,G3) S |G1| + |G3| + 2|G2| —
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2m(G1,G2)—2m(Ga, G3) = d(G1,G2)+d(G2,G3). The equality appears if and only
if |Hy U K5| = |G| which is possible only in the case Hy = G5 or Ky = G». In the
opposite case we should have |HoUK>| = |Ha|+|Ka|—|H2NK>| < 1|Ga|+3[Ga|—1 <
|Gl

Proposition 2.2: For any two finite groups G; and G5

(i) d(G1,G2) =|G1| + |G2| — 2 if the orders are coprime

(ii) d(G1,G2) < |Gi] + |G2| — 2p if the orders are not coprime and p is the
greatest prime number dividing the orders |G| and |G3|.

Clearly, the metric d is unbouded. So, for any two finite groups G1,G2 put:

m(G1,G2
5(Gr,Go) = 1 — lCrCa)

Proposition 2.3: The function § is a metric which attends values in the interval
<0, 1) If |G1| = |G2| =n, then d(Gl,GQ) = QTL(S(Gl,GQ).

Proof: The triangle inequality is obvious if G5 is isomorphic to G; or G3. In the
opposite case m(G1,G2) < smaz(|G1],|G2|) and m(G2,Gs) < tmaz(|Gsl,|G3)).
Therefore §(G1,G3) < 1 = 2+ 1 < §(G1,G2) + (G2, G3). The other properties
are obvious.

IN

3.SUPERGROUP METRIC
Copying the superstructurre metric of [3], we define

p(G1,G2) = 2M(G1,G2) — |G1| — |Gs]

Example 3.1: Let |Gi| = 5,|G2| = 2 and |G3| = 3. Then M(G1,G3) =
15, M(G1,G») = 10, M(G»,Gs) = 6,p(G1,Gs) = 22,p(G1,G2) = 13, p(G, Gs)
7 and p(G1,G3) > p(G1,G2) + p(Ga, G3). So, the function p is not a metric.

Example 3.2: Let G; = C5,Gs = Cy x Cy and G = Cs x Cy x Cs, where
C), denotes the cyclic group of order n. Then m(G;1,G3) = 2,m(G1,G3) = 4 =
m(G2,G3). By Proposition 1.2., we have M(G1,Gs) > 32, M (G1,G2) > 16 and
M(G2,G3) > 16. Using the direct products Cy x Cy x Cg,Cs X Cg and Cy %
Csy X 04, we obtain M(Gl,G3) = 32,M(G1,G2) = (GQ,G3) = 16,/)(G1,G3) =
48,p(G1,G2) = p(G2,G3) = 16 and p(G1,G3) > p(G1, G2) + p(G2,G3). Thus, the
function p is not a metric on the system of all groups of order 8.

Part (iii) of Proposition 1.2. may be rewrite as m(Gy,G2) > % Now,

the right side may be considered as an alternative of the left side and we define
supergroup alternatives of subgroups metrics d and §

Gh| -G
d1<G1’G2>=IGli+|G2|—2%
51(Gy,G) = 1 — 7th 2]
1(G1,G2) MG
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The proof of the next proposition is similar to the proof of 2.3.

Proposition 3.3: The function §; is a metric which attends values in the in-
terval < 0, ].) If |G1| = |G2| =n, then d; (Gl,Gg) = 2nd; (Gl,Gg).

Collolary 3.4: The function d; is a metric on a system of all groups of order n.

Example 3.1: Let G; = S4,G> = D4 and G3 = D1>. Then by Theorem 1.6.,
M(G1,G3) = 96, M (G1,G2) = 24 = M(G2,G3),d1(G1,G3) = 36,d1(G1,G2) =
16 = dy(G2,G3) and di (G1,G3) > di(G1,Gs) + di1 (G2, Gs). So, the function d; is
not a netric on the system of all groups.

Proposition 1.2. and Theorem 1.6. imply

Theorem3.5: For any finite groups G; and G5
di(G1,Gs2) < d(G1,G»)

01(G1,G2) < 6(G1,G2)
If G; = S; and G5 = D5 then the inequalities are strict.

All metrics considered in the present paper are not interesting from the topolog-
ical point of view because they induce the discrete topology on any set of groups
which does not contain isomorphic groups. These metrics are only number charac-
teristics which express the degree of relationship of two groups. The same may be
said about cited papers [1],[3],[4],[6] and[7].
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JUBILEE: THE SIXTIETH BIRTHDAY
OF PROFESSOR TIBOR KATRINAK

MIROSLAV HAVIAR AND PAVOL ZLATOS

Professor RNDr. Tibor Katrindk, DrSc., one of the leading personalities of Slovak
mathematics, celebrated his sixtieth birthday this year.

Tibor Katrindk was born on March 23, 1937 in Kosice. He attended a grammar
school in Spigskd Novd Ves. In 1955-60 he studied Mathematics at the Faculty
of Natural Sciences of the Comenius University in Bratislava. After graduating
in 1960 he commenced and followed the academic career at this faculty and, since
1980, at the newly established Faculty of Mathematics and Physics of the Comenius
University. He received his CSc. (Candidate of Sciences, the former Czechoslovak
equivalent of PhD) degree from the Comenius University in 1965. The academic
year 1967—68 he spent as a Humboldt-Stiftung fellow with the Department of Math-
ematics of the Univeristy in Bonn, Germany, and became an associate professor in
1968, after his come back to Bratislava. He was awarded the degree DrSc. (Doctor of
Sciences) in 1980, and, only after the turn, in 1990 he was promoted a full professor
at the Department of Algebra and Number Theory of the Faculty of Mathematics
and Physics.

Professor Katrinak is a world-recognized authority in the fields of Lattice Theory
and Universal Algebra. Together with his great teacher and, later on, the closest
colleague Professor Milan Kolibiar they have been the central personalities of the
‘Bratislava School of Algebra’ since the late sixties. He contributed a good deal to
the good name of Slovak and Czechoslovak mathematics, as well as to the ranking
of the Comenius University.

His primary research interest has been the study of lattices and semilattices, in
particular the lattices and semilattices with pseudocomplementation. The theory
of pseudocomplemented lattices (p-algebras) and pseudocomplemented semilattices,
which has its origin in the study of non-classical logics, became a vital branch of
lattice theory since the early sixties and Katrindk’s contribution to this theory was
enormous. His papers devoted to the theory of pseudocomplemented lattices and
semilattices were cited, for example, in the monographs [S 69], [G 71], [Bl-J 72],
[B-D 74], [Je 76], [G 78] (20 papers!), [S 82], [Bl-V 94] and in hundreds of papers.
He became famous by characterizations of various classes of pseudocomplemented
lattices and semilattices by means of triples of simpler structures associated with
each member and by a systematic treatment of the triple constructions.
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There are three types of triple constructions for pseudocomplemented semilat-
tices and lattices in the literature: the first one, discovered by W. Nemitz [N 65] for
Heyting semilattices, was improved by P. V. R. Murty and V. V. R. Rao [Mu-R 74].
Their version, which is described, e.g., in C. C. Chen and G. Gréitzer [C-G 69]
for Stone algebras, was later on extended and modified to work for all distributive
pseudocomplemented lattices and Heyting algebras by T. Katrindk [21], [18]. The
third one originated in the papers [12], [23] by T. Katrindk and was later devel-
oped and modified by W. Cornish [Co 74], P. Mederly [M 74], J. Schmidt [JS 75],
and again by T. Katrindk and P. Mederly in [30], [46] and, in particular, in [65]
where the previous triple methods were generalized to the largest possible class of
“decomposable” pseudocomplemented semilattices.

A pseudocomplemented semilattice (PCS) is a bounded meet-semilattice
(S;A,0,1), such that for every a € S there exists the pseudocomplement a* of
a, defined by a* = max{z € S | £ Aa = 0}. A PCS which is even a lattice is
called a pseudocomplemented lattice (PCL). A p-algebra (S;A,V,*,0,1) is a PCL
with the pseudocomplement operation included into its signature. A p-algebra is
distributive or modular if its underlying lattice has the respective property. An
element a of a PCS S is said to be closed if a = a** and an element d € S is called
dense if d* = 0. The sets of all closed and dense elements of S are denoted by
B(S) and D(S), respectively. B(S) is a Boolean algebra and D(S) is a semilattice
with 1, and even a lattice filter in S in case S is a PCL. Unfortunately, these two
“substructures” associated with S do not entirely characterize S. However, in the
late sixties W. Nemitz and, independently, C. C. Chen and G. Gritzer showed that,
under certain conditions, a third bit of information, namely a kind of a connective
map ¢(S) : B(S) — D(9), is sufficient to characterize S by means of the triple
(B(S),D(S),¢(S)). This gave rise to the “triple methods” in the theory of PCS’s,
PCL’s and p-algebras, ellaborated mainly by T. Katrindk.

We shall continue with some concepts and results of [65]. A PCS S is said to be
decomposable if for every x € S there exists a d € D(S) such that z = 2** Ad. In a
decomposable PCS S one can define, for every a € B(S), a semilattice congruence
relation 6,(S) on D(S) by © =y (6,(5)) iff a*Az = a*Ay. The map a +— 0(S5)(a) =
0,(S) is a (0,1)-isotone map from B(S) into Con(D(S)) and (B(S),D(S),0(S))
is the triple associated with the decomposable PCS S. On the other hand, an
abstract triple (B, D, ) consists of a Boolean algebra B, a A-semilattice D with 1
and a (0,1)-isotone map 6 : B — Con(D). Two (abstract) triples (B, D,#) and
(B',D’,0") are isomorphic if there is an isomorphism of Boolean algebras f : B —
B’ and an isomorphism of semilattices g : D — D' such that the diagram

B — Con(D)

/| |s

B —r Con(D')
commutes. (Here g : Con(D) — Con(D') stands for the isomorphism of of congru-
ence lattices induced by g.)

The essence of the generalized triple method presented in [65] lies in the following
two results:

92



1. Two decomposable PCS’s are isomorphic if and only if their associated triples
are isomorphic.

2. Let (B,D,0) be an (abstract) triple. Then one can construct a decompos-
able PCS S such that its associated triple (B(S), D(S),6(S)) is isomorphic to
(B, D,0).

We note that the idea of decomposing a PCS S into triple using congruence
relations on D(S) occured already in Katrindk’s most cited paper [12] and that
especially his paper [23] brought a new idea which later on led to this third type of
triple constructions. Other important achievements of [65] can be summarized as
follows:

3. Connections between all previous triple constructions were clarified.

4. Tt was shown that all the previously studied decomposable PCS’s were “filter-
decomposable”, meaning that every congruence 6,(S) was determined by the
filter D(S) N [a*).

5. A triple construction for a large class of the so-called quasi-modular PCL’s,
obtained by weakening the concept of modularity for PCL’s to the quasi-modular
identity

((xAy)V2*)VANx=(xAy)V (2 Ax),

was presented.

6. It was shown how homomorphisms and congruence relations of PCL’s can be

studied by means of triples.
7. Possible directions of further development of the topic were indicated.

In [22] the Stone and Post algebras of order n were studied. Almost the whole
paper was taken into the monograph [Ba-D 74] (chapter X). G. Epstein and A. Horn
[E-H 74] consider the Stone algebras of order n introduced in [22] to be one of the
most interesting generalizations of the Post algebras which are known as algebraic
models of multi-valued logics.

In [20] and [35] triples associated with the free Stone algebras with m generators
are characterized. This solved the problems formulated in [C-G 69] and [G 71; Prob-
lem 54]. By 1982, all the known papers describing free p-algebras were concerned
with distributive p-algebras. In [61] T. Katrindk extended these results giving a
characterization of free algebras for the whole variety of p-algebras.

The other area of research interests of Professor Katrindk was the study of sub-
directly irreducible algebras in certain varieties of p-algebras [19], [26], [28], [48],
and the study of varieties of p-algebras [27], [66]. In [27] it is shown that the lattice
of lattice varieties can be embedded into the lattice of all varieties of p-algebras,
answering a problem formulated in [G 71] and explaining the major difficulties one
meets when dealing with p-algebras.

A series of papers of T. Katrindk is devoted to the study of double p-algebras,
mainly to the properties of distributive double p-algebras [24], [31], [63], and to
the constructions of regular double p-algebras [32] and modular double p-algebras
[44]. His results about injective double Stone algebras [33] were used by R. Beazer,
B. Davey, A. Romanowska, A. Urquhart and many others. Representations by con-
gruence lattices of distributive p-algebras are investigated in [42] and [84]. Many
results of T. Katrindk concern characterizations of lattices and algebras whose con-
gruence lattices belong to some variety of p-algebras [70], [72], [73], [77]. Charac-
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terizations of projective p-algebras in the classes of distributive p-algebras and all
p-algebras are given in the papers [87] and [78], respectively.

So far we have focused mainly on research activities of Professor Katrindk. But
it is important to say that he has also been an inspired teacher who instructed and
positively influenced the careers of many Slovak mathematicians of the middle and
young generations. He supervised seven PhD students and many others within the
annual “student scientific competition”.

Professor Tibor Katrindk has accepted many responsibilities within the Faculty
of Mathematics and Physics, Comenius University and both the Czecho-Slovak and
the Slovak mathematical community. This has been particularly invaluable after
1989 when, also within the mathematical community, not many poeple were ready
“to give more than they receive”. T. Katrindk has devoted a lot of time and energy
serving in many ways the mathematical community in Slovakia. He did a lot of
professional and organizing work as a chairman of the Committees for candidate and
doctoral dissertations in Algebra and Number Theory, as a member of the Slovak
Grant Agency for Mathematical and Physical Sciences, member of the Scientific
Boards both at the University and Faculty levels, Editor in Chief of the journals
Acta Mathematica Universitatis Comenianae (AMUC) and Mathematica Slovaca,
as a member of editorial boards and a reviewer for other mathematical journals,
organizer and co-organizer of several Summer Schools in Algebra, and we could
follow by many other less official responsibilities like, for example, the responsibility
for the faculty library. By his unselfishness, friendliness and willingness to help or
offer an advice, by his commitment to serve the mathematical community, he nobly
continues in the work and mission of his great teacher and close friend, the late
Professor Milan Kolibiar.

It remains to conclude by saying that on the occasion of his 60th birthday, the
entire Slovak and Czech mathematical community wishes Tibor Katrindk good
health and a lot of success in his scientific, pedagogical and organizational work, as
well as in his personal life.
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