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GAUGE-NATURAL TRANSFORMATIONS
OF SOME COTANGENT BUNDLES
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ABSTRACT. For an arbitrary vector bundle E — M, we determine all gauge-natural
transformations 7*E — T*E*. In order to describe the result geometrically, we
characterize some properties of 7* E in terms of an original approach to the concept
of double vector bundle.

In [4] and [7], some important relations between the cotangent bundle of the
tangent bundle T*T' M and the cotangent bundle of the cotangent bundle T*T* M
of a manifold M were studied and applied. In the present paper we discuss the
”pure” case of the cotangent bundle T*FE of any vector bundle E — M and the
cotangent bundle T*E* of its dual E*. First of all we show that T*E with the
canonical projections to £ and E* has the structure of double vector bundle. The
origin of such a concept goes back to [3], [6], [9], but our approach in Section 2
is new and we find it very simple. In Section 3 we construct a canonical isomor-
phism ¢ : T*E — T*E*. In the next section we use the viewpoint of the theory of
gauge-natural bundles, [1], [2], and we determine all gauge-natural (in other words:
geometrical) transformations T*E — T*E*. In Section 5 we clarify how the canon-
ical isomorphism ¢ relates a linear vector field on F and the dual vector field on
E*. All manifolds and maps are assumed to be infinitely differentiable.

1. TWO VECTOR BUNDLE STRUCTURES ON T*E

Consider a vector bundle p : E — M and its dual bundle p* : E* — M. Write
q1 : T*E — E for the cotangent bundle of E. According to [2], p.227, there exists
another projection ¢, : T*E — E*. For every linear map w : TyE —+ R, y € E,
we define g»(w) to be the restriction of w to the vertical tangent space V, E, which
is canonicaly identified with the fiber E,, x = py. Let z!,4” be some linear fiber
coordinates on F and z?,z, be the the dual coordinates on E*. The additional
coordinates on T*E are given by w = v;dz? + u,dyP. Then the coordinate form of
qu or g is

(1) q1 (xiayp:upavi) = (ﬂfi;yp): qQ(wiiypaupavi) = (xiaup)
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We are going to show that ¢» : T*E — E* is a vector bundle too. We shall
use the well-known fact there are two vector bu}ndle structures 7g : TE — FE
and Tp : TE — TM on TE, [2]. If X' = dz*, YP = dyP are the additional
coordinates on TE, then Tp(zf,y?, X¢,YP) = (2%, X?). The vector addition and
the multiplication by reals on T'p have the following form

(@'t XLV + (2 95, X4 YY) = (297 + 95, X YT + YY),

(2)  k(a'y" XYP) = (af ky", X7 RYP).
Consider wy € T, E and ws € T, E satisfying g2 (w1) = q2(w2). Let us decompose,
with respect to T'p, a vector Y € Ty 4y, F as Y1 +Ys, Y1 € Ty E, Yy € T, E,
Tp(Y) = Tp(Y1) = Tp(Ys). Then we define wy +ws € Ty, 4, E by
3) (w1 +w2)(Y) = wi (Y1) + w2(Y2)
The correctness follows from the coordinate form of (3). We have Y = (z%,4} +
yh, XELYP), Yy = (af, ot , XL YYE), Yo = (2,98, X, YD) with Y? = Y 4+ Y? and
wy = (2%, 47, up, v1i), we = (a°, ¥4, up, v2;). Then wy (Y1) +ws (Vo) = up Y+ X'+
quzp + v9; X" = u,YP + (v1; + v2;) X*. Moreover, the latter expression implies
(4) (xia yf: upa vli) + ('Tia Z/g: up; U2i) - (xia y{) + yg: upa V14 + v2i)
Further, if w € T;E, 0 # k € R and Y € T, E, we construct Y with respect to
the vector bundle structure T'p. Hence %Y € TyE and we set

(5) (kw)(Y) = ku(+Y)

For k = 0, we consider the restriction ToE of E to the zero section 0 : M — E
and the tangent map 70 : TM — TE. We have the following decomposition
ToE =TM xp E. Weset priY =Tp(Y). Then Y — T0(pr1Y") is a vertical vector,
which is identified with proY € E. Now we define Qw € T

o> ©=py, by
(6) (Ow)(Y) = (q2w)(pr2Y), Y € Ty E.
In coordinates, one finds easily
(7) k(mi,yp,up,v,') = (xi,kyp,up,kvi), keR
Clearly, (4) and (7) imply, that ¢» : T*E — E* is a vector bundle.
2. DOUBLE VECTOR BUNDLES

We define a fibered square to be a commutative diagram
Y
R
Y Ys
N
M



in which all arrows are fibered manifolds. If there is no danger of confusion, we
shall write Y for (8). The diagonal map in (8) will be denoted by ¢ : ¥ — M.
If (Y,Y1,Y5,M,q,G,p1,P2) is another fibered square, then a morphism ¥ — Y
means a quadruple of maps f:Y =Y |, fi: Y1 =V, fo: Yo 3 Y5, fo: M = M
such that all pairs (f, f1), (f, f2), (f1, fo), (f2, fo) are fibered manifold morphisms.
Hence we have a category FS of fibered squares.

A fibered square will be called a vector bundle square, if all arrows in (8) are vec-
tor bundles. For example, both (T*E, E,E*, M, q1,q2,p,p*) and (TE,E,TM, M,
e, Tp,p,mar) are vector bundle squares. An FS-morphism (f, fi1, fa, fo) of two
vector bundle squares is said to be linear, if all pairs (f, f1), (f, f2), (f1, fo), (f2, fo)
are vector bundle morphisms. Hence we obtain a category VBS of vector bundle
squares.

Consider a manifold M and three vector spaces Vi, V2, V3. Put

9) Y=MxV; xVy x Vs, Y1 =M x Vi, Yo = M x Vs.

Then we have canonical vector bundle structureson ¥ — Y1, Y - Y5, V1 — M
and Yo — M. We shall say that Y = M x V; x V5 x V3 is a trivial double vector
bundle.

Definition 1. A vector bundle square (8) will be called a double vector bundle,
if for every x € M there exists its neighbourhood U C M such that ¢~ '(U) is
VBS-isomorphic to a trivial double vector bundle.

A morphism between two double vector bundles is an VBS-morphism. Thus, we
obtain a category DVB of double vector bundles.

Denote by HY C Y the set of elements which are projected by ¢; into a zero
vector in Y; and by ¢» into a zero vector in Y,. By J. Pradines, [5], [6], HY
is called the heart of the double vector bundle Y. In the trivial case we have
H(M x Vi x Vo x V3) = M x V3. This implies that even in the general case both
vector bundle structures ¢; and ¢ coincide on HY and HY — M is a vector
bundle.

If D C R™ is an open subset and V is a vector space, then Section 1 implies

T*(DxV)=DxV xV*xR"™.
Quite similarly,
T(DxV)=DxV xR"™ xV.
Then one verifies easily

Proposition 1. For every vector bundle E, both TE and T*FE are double vector
bundles.

We remark that a direct characterization of double vector bundles in terms of
the underlying vector bundle structures can be deduced directly from the results of

[8]-



3. THE CANONICAL ISOMORPHISM T*E — T*E*

We are going to construct a canonical map € : T*E — T*E*. Consider the
evaluation map e : E Xy E* — R. Its differential

de : TE xpy TE* - R

is the second component of the tangent map Te : TE xpy TE* - TR=R x R.

Proposition 2. For every covector C € T,y E, there exists a unique element z € E*
satisfying py = p*z and a unique covector eC € T} E* such that every vectors
A€ TyE and B € T, E* over the same vector Tp(A) = T'p*(B) € TM satisfy

(10) de(A, B) = C(A) — (eC)(B)

Proof. The coordinate form of the evaluation map e is yPzp, so that de is of the
form
zpdy? + yPdz,.

Consider C = (z,yP,up,v;), A = (a%,y?,a%,a?), B = (2%, gp,a’,b,) and write
D = (2%, gp, P, k;). Then the condition de(A4, B) = C(A) — D(B) reads

9pa” + yPb, = via' + uya’ — hPb, — kia'.
Since a?, aP and b, are arbitrary, the unique D = eC is of the form

(11) 9p = Up, h? = —yP, ki = v;.

Definition 2. The map (11) from Proposition 2 will be called the canonical iso-
morphism e : T*E — T*E*.

Clearly, € is an isomorphism of double vector bundles.

4, ALL GAUGE-NATURAL TRANSFORMATIONS T*FE — T*E*

Using the viewpoint of the theory of gauge-natural bundles, [1], [2], we can
say that ¢ : T*E — T*E* is a gauge-natural transformation. We are going to
determine all gauge-natural transformations T*E — T*E*. For every w € T*E,
we have ¢1 (w) € E, ¢2(w) € E* and p1(q1 (w)) = p2(g2(w)), so that we can evaluate
(q1(w), g2(w)) € R. Write 5+ (k)1n or n— (k)an, k € R, n € T*E*, for the scalar
multiplication with respect to the first or second vector bundle structure on T*E*,
respectively.

Proposition 3. All gauge-natural transformations T*E — T*E* are of the form

(12) w = A{g1(w), g2 (w)))1 B({g1(w), g2 (w))) 25 (w),

where A(t) and B(t) are two arbitrary smooth functions of one variable.

Proof. As remarked in [2], p.409, the category VB, of vector bundles with m-
dimensional bases and n-dimensional fibers and their local isomorphisms is natu-
rally equivalent to the category PBn,(GL(n)) of GL(n)-principal bundles with m-
dimensional bases and their local isomorphisms. Consider the trivial vector bundle
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R™ x R® and write S = (T*(R™ x R"))g and Z = (T*(R™ x R"™))p, 0 € R™.
Then both S and Z are W, GL(n)-spaces and all gauge-natural transformations
T*E — T*E* are in the bijection with the W} GL(n)-equivariant maps S — Z,
[2], Chapter XII.

On S, we have the coordinates y?, u,, v; from Section 1. Every element of
T*(R™ x R™) can be written in the form &dz® + pPdz,, so that z,, uP, & are
the corresponding coordinates on Z. The elements of W' GL(n) are of the form
(aé,ag,asi), det ag # 0, detal # 0, [2], p.153. Using standard evaluations, one

finds easily the following actions of W} GL(n) on S and Z

7P = aPy? T b = v — alaPa” q
(13) g¥ = aly", Uy = adug, Ui = Gvj — G;apag;upy
5 — =P — P9 & _le. 4 zizpaT q
(14) Zp = agzy, w’=alp & = a;&j + a;aragzpp

where @} or al) is the inverse matrix to a} or af, respectively. To determine all

WL GL(n)-equivariant maps f : S — Z, we shall use the methods from [2]. Thus,
let us start from an arbitrary map

(15) Zp = fp(yauav)a lj'p = fp(yauav)a &= fi(y:uav)'

Consider first the equivariancy with respect to the canonical injection GL(m) x
GL(n) = W,,GL(n), which is characterized by a}; = 0. Using the homotheties in
GL(m), we find that f, and f? are independent of v and f; is linear in v;. The
equivariancy with respect to the whole group GL(m) yields

(16) fi =gy, u)v;.

Then we consider equivariancy with respect to GL(n). The tensor evaluation the-
orem, [2], Section 26, yields

(17) fPr=-AWrug)y?,  fp = B(ylug)vy.
Consider now the equivariancy with respect to the kernel K of the canonical pro-
jection W GL(n) = GL(m) x GL(n), which is characterized by a} = d%, ab = d%.
This yields

aZiAupByq = agigupyq.
Thus,

(18) g(y,u) = A(yPup) B(ytu,)

Clearly, (16)-(18) is the coordinate form of (12). O



5. LINEAR VECTOR FIELDS

In general, every vector field X : N — TN on a manifold N defines a function
X:T*N - R, X(2) = (X(2),2), z € T:N. Conversely, every function f : T*N —
R linear on each fiber is of the form f = X for a vector field X : N — TN.

Consider a linear vector field X : E — T'E, [2], p.379. Its coordinate form is

i\ 0 3}
X'(x) Py + Xg(w)yqa—yp.

Using flows, one constructs the dual vector field X* : E* — T E*, [2], p.380, whose

coordinate expression is

; 0 0
XZ(.’L') 833’ - Xg(x)zan
P

Proposition 4. For every linear vector field X : E — TE, we have

X=X oe

Proof. In the coordinates of the proof of Proposition 2, X = X'(z)v; + XP(x)yTup,
X* = Xi(z)k; — XP(x)gyh?. Then (11) yields our claim.

6. REMARK

It can be expected from the trivialization T'(D x V*) = D x V* x R™ x V*,
that there is no natural isomorphism TE — TE*. To confirm it rigorously, one
can determine all gauge-natural transformations TE — TE*. Using the basic
methods from [2], one obtains easily the following result. Consider the projection
Tp:TE — TM, the homothetic transformation kpy : TM — TM, v+ kv, k € R,
and the tangent map 70 : TM — TE* of the zero section 0 : M — E*. All
gauge-natural transformations TE — T E* are of the form

TOokpyoTp:TE — TE", kel
Clearly, none of them is an isomorphism.
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