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ABSTRACT. In the paper a system of differential equations depending on more-
dimensional parameter with the matrix of the first linear approximation P having
pure imaginary eigenvalues while the others do not lie on the imaginary axis is stud-
ied. Conditions under which such a system has invariant tori are presented (section
1). In sections 2, 3 the cases when P has one and two pairs of pure imaginary
eigenvalues are investigated. In Part II the cases with three and four pairs of pure
imaginary eigenvalues will be analysed.

Introduction

In the monograph [1] Yu. N. Bibikov studies the system of differential equations
depending on a small non-negative parameter pu:

(1) &= X(w,p) + X*(z,p)

where z = (x1,...,2,), X(z,u) - a vector polynomial with respect to =z, u,
X(0,0) = 0, X*(z,p) : M - R", M = {(z,p) : |]a]] <K, 0<p<L}-a
continuous vector function with the property:

X (i, p) = (V)" X (2, )

p - a natural number, X (z,p) - a function of the class C19(M). It is supposed
that the spectrum of the linear approximation matrix P of the polynomial X (z, 1)
consists of m pairs of pure imaginary eigenvalues while the others have non-zero
real parts. Yu. N. Bibikov found conditions under which to every small parameter
1 there exists an invariant manifold of the system (1) that is homeomorphic with
a torus. He also presents in [1] an idea how these results can be utilized in the case
when the parameter p is m-dimensional one, where m is the number of the pairs of
pure imaginary eigenvalues of the matrix P.
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In applications the dimension of the parameter u is not a function of the number
of pure imaginary eigenvalues of P but it follows from the character of a process
which is described by the considered system. Therefore it is worth studying the
system (1) which depend on the more-dimensional parameter p with an arbitrary
dimension.

In this article the system (1) is investigated on the domain:

(2) M= {(z,y): 2= (21,...,20), p= (1,-.-,pa), d > 1, ||z]| < K, ||p|| < L}

(in the whole article Euclidean norm is used).

Let us take an arbitrary parameter p € M. Consider the beam §(uo) = {epo :
0<e<L, p= HMTH} (index ”0” at parameters pu will always have this meaning).
The system (1) depending on parameters p € d(uo) has the form:

(3) &= X(z,epo) + X (z,ep0), 0<e< L.

The system (3) is the system of differential equations depending on one-dimensional
non-negative parameter €. It means the system (3) is the system of the kind (1)
which was studied in [1]. Such an access enables to investigate the system (1) on
the domain (2) and utilize the results achieved in [1]. Doing it the problem of
determining subsets of the set M with respect to g on which invariant manifolds of
the system (1) exist arises.

In section 1 preliminary transformations of the system (1) depending on parame-
ters p from the domain (2) are performed enabling to utilize the results from [1]. In
sections 2, 3 the cases when the matrix P has one and two pairs of pure imaginary
eigenvalues are studied.

1. The existence of invariant tori
Consider the system of differential equations
(1.1) i = X(z.0) + X0
where £ = (21,...,%,), p = (U1,..., 1), & = ’fi—“t”, X(z,pu) - a vector polynomial

with respect to z,pu, X(0,0) = 0, X*(z,u) : M — R*, M = {z,n) : ||z|| <
K, ||u|| < L} - a continuous function with the property:

(1.2) X*(Vew,epo) = (Ve)P2 X (x, ¢, o),

0<e<L, p €M, p- anatural number, X (z,e, o) - a continuous function with
respect to z, e, o of the class CL(M).

We suppose that the matrix P = % has m pairs of pure imaginary eigenval-
ues £iAq,..., i\, and the others Aojt1, ..., Ay have non-zero real parts. Further
we suppose that det P # 0.
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Note 1.1. The requirements on the functions X (z, ), X*(z, ) in (1.1) are not

very limiting as every system & = f(z, u), f(z,p) € C**T3(M), £(0,0) = 0, can be

expressed in the form (1.1). For that it is sufficient to introduce the function f(z, u)

in the form of the Taylor polynomial with the Lagrange form of the remainder. In
N

this case X (z, 1) = 3. Xp(21,...,2,) pi --~M§d ,k=Fki+---+kg, N - the whole
k=

part of the number %, Xi(z1, ..

then 3p+ 1 — 2k.

Let us denote F'(z,p) = X (x,n) + X*(z, ). In the power of (1.2) F(0,0) = 0.
This means that the origin (z, ) = (0,0) is the state of equilibrium of the system
(1.1). Since

0X*(z, ) OX*(\ey,emo) _ 90 [(\@)3p+2)~((y75,m> =

.,Zp) - polynomials of the degree not higher

Oz B Ox Oz
— 3 3p+2 ¥ @ = 3P+1£ X
= 5y |V X (o) - 57 = (VB 5 Xy p0)

we have:

‘BFOO‘_‘E)XOO 8X00‘_|P|7é0

Using Implicit Function Theorem on the function F(z, u) we get that in a small
neighbourhood O(0) of the origin u = 0 there exists a function z = ¢(u) with the
following properties:

1. ¢(0) =0
2. Fyp(p), u] = 0 for p € O(0).

We see that to every small enough parameter pu* € M there exists the state of
equilibrium of the system (1.1) z* = ¥ (u*). It will be shown that to such a p*
there exists also under certain conditions an invariant manifold of the system (1.1)
which is homeomorphic with a torus. When such a situation realizes we say that
at p = 0 the bifurcation of an invariant torus arises from the state of equilibrium
z =0.

Lemma 1.1. System (1.1) can be reduced by the transformation

(1.3) r=8S+Tu,

where & = col(y,y,z), y = col(y1,--.,Ym), y - the complex conjugate vector to y
(in the article the symbol ”a” always means the complex conjugate expression to a,
z=col(z1,...,2n—2m), S - a regular n X n-matrix, T - n X d-matrix, to the system

y=1i\y+Y (g 20 +Y (4,92, 1)

(14) g =i\ +Y(y,9,2,0) + Y (4,92, 1)
i=Jz+Z(y, g 20 + 27y, 4, 2, 1)

where X\ = diag(\i,...,Am),J - a Jordan canonical lower matrix, Y,Y, Z - vector

polynomials without scalar and linear terms, Y*,Y*, Z* - continuous functions
having the property (1.2), i.e. for example

Y (Vey, VEy, Vez, emo) = (V)Y (y,7, 2, €, ko)
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Y - a continuous function of the class C;,ﬂ,z in a neighbourhood of the point y =

0,2=0,0<e <L, p €M The second equation in (1.4) is conjugated to the first
one in (1.4) and can be gained from this by the change y for g, § for y and i for —i.
Further equations which will be conjugated to another ones will not be written.

Proof. Expressing (1.1) in the form
(1.5) &= Pr+Qx+ X' (z,p) + X*(x, p)
and putting (1.3) into (1.5) we get:
SE=P(SE+Tu)+ Qu+ X' (SE+ Tp, p) + X*(SE+Tp, )
From this we have:
(1.6) E=ST'PSE+ (STIPT+S57'Q)u+ S X + 571 X* .

If the matrices S, T are taken in the way to get: S™!PS = diag(i\, —i),J), T =
—P~1Q, then (1.6) gives the system (1.4). The proof is over.
Consider now the system
y=i\y+Y(y. 9,2, p)
(1.7)
i=Jz+ 2y, 5,2 m)

which is gained from the system (1.4) by taking away the functions Y*, Z*.
Lemma 1.2. Let the eigenvalues X = (A1,...,Ay,) of the matrix P satisfy the
condition:

(1.8) GM A+ gmAm 0 for 0<|g| <3p+2,

lg| = lg1| + - - + |gm|, @i - integer numbers, i = 1,...,m.
There exists a polynomial transformation
y=u+ h(u,u,p)
(1.9)
z=v+g(u,u,p),

where u = (u1,...,um), v = (v1,...,05-2m), h,g are polynomials without scalar
and linear terms, that reduces the system (1.7) to the system

=i+ uU(u- @, pm) + U°(u, @, 0, p) + U*(u, @0, 1)
(1.10)
U= JU + VO(’LL,E,,U,[I,) + V*(u,ﬂ,v,u) 9
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where U (u - @, p) - a vector polynomial with respect to u - @, u without scalar terms,
U%(u,w,0,pu) =0, VO(u,u,0,u) =0, U*, V* have the property (1.2).

Proof. Differentiating (1.9) with respect to ¢ and taking into account (1.7) and
(1.10) we obtain:

iNu+h)+Y(u+ha+hov+g,pu) =ilu+ulU+U° +U*+
h h o
+g—u(z‘Au+uU+U°+U*)+%(—Ma+aU+U°+U*)

J(v-{—g)-{—Z(u-{—h,ﬂ-{—B,v-{—g,u):JU+V0+V*+g—z(iAu+uU+U0+U*)+

+ %(—Ma +aU +0°+0%) .

Giving away expressions with the property (1.2) and putting v = 0 we get from
these equations:

Oh oh - Oh oh

Mua—u—z}\'a——w\h Y(u+h,a+ h,g,p) — uUa——uUa——uU
(1.11)
dg dg 09 _-0g
)\u%—mua—(}g— (u—l—hu—i—hgu)—uUa—— U@u

Expressing the polynomials &, g in the form of the sum of vector homogenous poly-
nomials h(#), g(*) s - the degree, we get from (1.11) that h(%), g(s) are determined
by the equations:

On'®) Oh'®)

_ (5) = ps) (R0 gy — (s)
% a % —iAh PY¥(h ) — (ul)

AU

(1.12)

agls)  _9g®
)

i\u T )\HW:R(S)(h(“,g“)), i< 8,j<s.

We see that if we calculate h(*), g(*) in the direction of arising s then the func-
tions P), R®) will be known for every s. For the coefficients h;q’q’r), g,(cm’r),
¢ = (¢, am), § = (G1,---rGm), * = (r1,...,74) of the polynomials h(*) =
col(hgs), ce hgﬁ)), g®) = col(ggs), . ,gﬁl )Qm) we get from (1.12) the equations:

(1.13)

i Z Ry —Ak] hTT) = plett) —yet) g =1, m

e
=

(1.14)

(g7 — @i)Aj — Aam+t gl(q’q’r) R(q’q’r) l=1,...,n—2m.

NE

~.
Il
-
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When (g, 4¢,r) is such a set that ¢; = G;, qx = ¢ + 1, j =1,...,m, j # k, then
m - —

= G))Aj — A = 0 in (1.13). In this case we put U%?") = P{®T7) ang
> (a5 — G5)A p k k

J=1
m

h;cq’q’r) = 0. For other sets (g, q,r) in the power of (1.8) Zl(qj —qj)\j — A\ #0.
]:

In these cases we put U,gq”j’r) = 0. Then the corresponding coefficient h;cq”i’r)

is determined by equation (1.13) uniquely. The coefficients gl(q’g’r) in (1.14) are
m

determined uniquely for every set of (¢,¢,7) as > (¢; — ¢;)A; — Aomy1 # 0 since
j=1

ReXom+y1 #0, I =1,...,n —2m. The proof is over.

Let us perform the transformation (1.9) on the system (1.4). We again get system

(1.10) but this time with another functions U*, V* having again the property (1.2).
Introducing into this system polar coordinates

1.15 u=pe¥, G=pe ¥
( pe'?, pe”"?,
p=col(piy...,pm) @ =col(Qi,...,0m), ¥ = col(e¥,...,e"m), we get:

p=pF(p*, 1) + F°(p, 0,0, 1) + F*(p, 0,0, 1)
(1.16) ¢ =A+&(p*, ) + p~H[@%(p, 0,0, ) + B (p, 0,0, )]
b= Jv+V(pe'?, pe % v, 1) + V*(pe'®, pe % v, 1)

where p? = (p,...,p2), p~ = (p1*, ..., p5)), F = ReU(p?, ), ® = ImU (p?, ),
FO + F* = Ree™"[U%pe'?, pe™¢,v,p) + U*(pe'?, pe='®,v,p)], ®° + &* =
Ime=[U°(pe'®, pe=i%, v, pu) + U (pe'?, pe= i, v, )],  F°(p,,0,p) =0,
(I’O(Pav,oaﬂ) =0, F*(\/Epa ®s \/EU75N0) = (\/g)3p+2F(p3907U75:/1'0)a
®* (\/ep, p,\/ev,epp) = \/53p+2<i>(p, ©,v,€,10), F, ® - continuous functions with
respect to all variables of the class C;,¢,v- All functions in (1.16) depending on ¢
are 2m-periodic with respect to all components of the vector (.

Denote the linear parts of the function F'(p?,u) by the expression Bp? + Cp,

where

By B, Cu Cio
B=1| ..o ... , C=1 ...
Bml Bmm le C’mo
The equation
(1.17) Bp® +Cu=0

is called the bifurcation equation of system (1.16).

Let us suppose that det B # 0 and that at least one element of the matrix C' is
different from zero.

Take an arbitrary p € M. The bifurcation equation (1.17) on the beam §(ug) =
{ewo : 0 < e < L} has the form:

Bp® +eCup =0 .
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Solving this equation with respect to p? we have:

p* =e(=B™*Cuo) = ea’* (o) ,

where a2(g) = colla® (po), - - -, a2, (t0)] = Apto .
Q11 Qo

A= ..ol
Qm1 Qmo

We say that the bifurcation equation (1.17) satisfies the condition of positiveness
at u € M if a®(ug) is positive at every component a(ug), k = 1,...,m. Let
DP denote the subset of all parameters u € M at which the bifurcation equation
satisfies the condition of positiveness. We shall call this subset DP the domain of
positiveness of the bifurcation equation (1.17).

Lemma 1.3. The domain of positiveness DP of the bifurcation equation (1.17) is
an open cone with the apex at the origin pu = 0 consisting of beams 6(uo) = {epo :
BEM, 0<e<L,ai(u)>0,k=1,...,m}.

Proof. Consider an arbitrary p* € DP and take an arbitrary p € §(ug), p = eug,
e = |lull. As a?(po) = collai(mo), ..., a7, (o)) and o (o) = pu(wrpn + -+ +

hata) = i (emeiin +- +O‘kd5|m H) e (kL + -+ akapey) = o (ug) >
0,k=1,...,m, we get that 6(uy) C DP. This means that DP is a cone. We need
to show yet that to this p* there exists such o > 0 that the sphere O, (u*) C DP.
As pu* € DP so ai(,ufj) =y, >0,k=1,...,m. Take an arbitrary p from a sphere
Og(w*), p# p*. Then aj (ko) = mm(aripn + - + argpa) = mmler (uF + o1) +

taga(py +04)], —0<o;<o,j=1,...,d, k=1,...,m. From this equation
we have:

1
2 * *
ap(po) > T (ki p] + -+ + agapy) — T ——dao
el + o ! |l —o
a=max{|anl|}, k=1,...,m; I =1,...,d.
If we take o0 = ”’?H then we get from the last inequality:
9 S 9. . da s da
— — - 0
(o) > s+1ak(ﬂo) s—1° s+1” 51 >
for big enough natural number s, v = min{v,...,v,}, k=1,...,m. The proof is

over.

Let us take an arbitrary g € DP. On the beam (o) = {ep0 : 0 < & < L} the
system (1.16) has the form:

p = pF(p® epo) + F(p,0,0,ep0) + F*(p, ¢, v,ep0)
(118) SO =A+ ‘}(PZ;EIJO) + pil[(}O(pa @,U,@Mo) + <}*(p7 @,U,@Mo)]
o= Ju+ VO(pe'?, pe v, ep0) + V* (pe'?, pe % v, ep) .
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The system (1.18) is the system of differential equations depending on one-dimensional
non-negative parameter £ with the bifurcation equation satisfying the condition of
positiveness. As it was shown in [1] the system (1.18) can be reduced introducing
new variables z1,¢1,v1 by the relations p = \/e[a(uo) + z1], = p1, v = ev1 to
the system
i1 = eXi(w1,€, o) + VEXT (21,1, 01,6, po) +
+ (V)P Xy (w1, 01,01, €, o)
(1.19) &1 = M(e) +e@i(21, e, po) + VER] (21, 1, v1,, po)+
+ (\/E)3P+1 (51 ('lev ¥1,01,&, MO)
i = Ju + VeV (1,1, 01,6, o) + (V)P TVi (1, 01,01, €, o)
where X;,®; - vector polynomials, X;(0,0,u9) = 0, ®1(0,&,0) = 0, A(0) =
A, X7, 89, VP, Xy, @1,V - continuous functions in all variables of the class Cy, , .,
on the domain My = {(z1,¢1,v1,6, 1) : ||z1]| < K1, ||[v1]] < K1, o1 € R™, 0 <
e <L, peDP}, X9, @ VP vanishing at v; = 0 and
— aXl (07 07 MO)
8561

We say that Pj(u) is non-critical at p € DP if its eigenvalues do not lie on the
imaginary axis and is critical at p € DP if it has at least one pair of pure imaginary
eigenvalues while the others have non-zero real parts. Let DC denote the subset
of all parameters u € DP at which the matrix Py (u) is critical. We shall call this
subset DC the domain of criticalness of the bifurcation equation (1.17).
Theorem 1.1. To every p € DP \ DC of the bifurcation equation (1.17) there
exists the invariant manifold of the system (1.19) which is defined by the equations

w1 = ||pl[m (o1, [l 20)

(1.20) Pi(p) = 2[diag a(po)]B[diag a(uo)] -

(1.21)
v = ||ull?@1 (1, [l no)

where m (o1, ||l o), ©1(p1, |1, o) are continuous functions 2w-periodic in all
components of o1, 1 € R™, 0 < ||u|]| < L, p € DP \ DC. The natural number p
in (1.2) can be taken p = 1.

Proof. Consider an arbitrary y € DP \ DC. The parameter p lies on the beam
d(po) = {epo : 0 <e < L}. On this beam the system (1.16) can be reduced to the
system (1.19). According to Theorem from section 3 of Chapter 1 in [1] there exists
to every €, 0 < € < L (in the case of necessity L is taken smaller) the invariant
manifold

1 =& (Qolaea NO)

v = 62@1(@17671"/0) )
where 11,0, are continuous functions 2w-periodic in all components 1, @1 €
R™, 0<e <L, pcan be p=1. In our case ¢ = ||p||. The proof is over.
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2. One pair of pure imaginary eigenvalues

Suppose that the eigenvalues of the matrix P of the system (1.1) are: i\, Az, ..., Ay,
Rel, 20, k=3,...,n
The bifurcation equation (1.17) of system (1.16) is:

(2.1) Bp* +Cu=0,

where B e R,C = (C4,...,Cy), CL eR k=1,...,d.
We suppose that B # 0 and the vector C has at least one element different from
zero.

Theorem 2.1. If the matrix P of the system (1.1) has one pair of pure imaginary
eigenvalues and the others have non-zero real parts then:

1. DP of the bifurcation equation (2.1) is the whole half-sphere of the sphere
={p = (@1,...,pa) : 0 < ||p|| < L} which is determined by the
hyperplane Cipy + --- + Cqug = 0 and by a point p* € O at which
—5(Cipi + -+ Capy) > 0.
2. DC of the bifurcation equation (2.1) is empty set.

Proof. Let us take an arbitrary pu € M. The bifurcation equation (2.1) has on the

beam §(uo) = {epo : 0 <& < L} the form: Bp? +eCup = 0. Solving this equation

with respect to p® we get: p? = ea?(up), where a2 (i) = —m(c&ul—}—- 4+ Caltq).
DP is the set of all u € M at which

o’ (po) = BH I ——(Cip1 + -+ Capg) >0 .

From this inequality the first assertion of Theorem 2.1 follows.
The matrix P; (u) of the system (1.19) has on DP according to (1.20) this form:

Py (p) = 2[diag a(po)] Bldiag a(uo)] = 2¢ Bl ———(C1p1 + -+ Capa)-

1
B\/ Blu H(Cl,ul-i- -+ Capa) = || ||(C'1u1+ -+ Capa) #0

for all ; € DP. The proof is over.

Consequence of Theorem 1.1 and Theorem 2.1. To every u € DP of the
bifurcation equation (2.1) there exists the invariant manifold of the system (1.19)
of the kind (1.21).
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3. Two pairs of pure imaginary eigenvalues

Suppose that the matrix P of the system (1.1) has two pairs of pure imaginary

eigenvalues £¢A1, +iA2 and the others As,..., A, have non-zero real parts.
The bifurcation equation (1.17) of the system (1.16) is:
(3.1) Bp*+Cu=0,
where o c
By Bis 1 - 1d
B = , C = .
<le B22> <C21 .. Cay

We suppose that det B # 0 and the matrix C' has at least one element different
from zero.

Let us take an arbitrary g € M. The equation (3.1) has on the beam d(up) =
{epo : 0 <& < L} the form: Bp? + eCpup = 0. Solving this equation with respect
to p? we get

(3.2) p* =e(=B~'Cpo) = e’ (o) ,

where
2
2 — ;i (po) — A Ao (@) o (0 - o
“ (MO) <0¢% (/‘0)> Ko, (e} Q21 ... Qag ’
The matrix P (u) which is defined by (1.20) has the form:

_ o3 (o) By ay(po)az(po) Bz
Pilp) =2 <a1(ﬂo)a(M0)B21 3 (10) Bz ) ’

where

1 1
ai(po) = w(anul + -t arapa), (o) = m(amul + -+ aagpea) -

Lemma 3.1. The matrix P;(u) is critical at p € DP only if the following two
conditions are satisfied:

1. det B> 0

(3.3)

2. ai(po) = &f(po)Bi1 + a5 (po) Baa = 0 .
Proof. The characteristic equation of the matrix PlT(“) which is similar to P (u) is:
(3.4) A — ay (po) A + az (o) =0,

where a, (j19) = Tr) = a3 (j10) Bi1 +03 (f10) Bz, a(j1o) = det P4 = a2 (903 (1o )-

det B.
Comparing (3.4) with its expression by means of its pure imaginary roots we
gain the conditions for P; (1) to have a pair of pure imaginary eigenvalues:

a1(po) = o (o) Bir + a5 (p0) Bas = 0, as(po) = i (po) a3 (p0) det B > 0 .

Taking into account that a?(ug) > 0, a3(ue) > 0 at every u € DP we get the
assertion of Lemma 3.1.
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Theorem 3.1. Let the rank h(A) of the matrix A in (3.2) be 1. Then the following
holds for DP and DC of the bifurcation equation (3.1):

1.D73;£@©042:ka1,k>0.
2. DC 7é /=N {(detB > 0) A [(Bn = By = 0) \% (B11 = —kng)]}
3. IfDC # § = DC = DP.

Proof. The domain of positiveness of the bifurcation equation (3.1) is determined
by the inequalities:
1

i (po) = m(anm + -+ aigpna) >0

(3.5)

1
a3 (po) = m(azwl + o+ azapa) > 0.

The first inequality in (3.5) is satisfied at all parameters p € M which belong to
that half-sphere of the sphere O = {u = (p1,...,p4) : 0 < ||p|| < L} which is
determined by the hyperplane ajip; + - - - + aiqug = 0 and by a point p* € O at
which a3 (ug) > 0. As h(A) = 1 so there exists k € R such that ay = ka;. Using this
we can express the second inequality in (3.5) in the form: HkTH(anHl +- - Farapa) >
0. From this inequality it follows that the parameters p which satisfy the first
inequality in (3.5) will also satisfy the second inequality in (3.5) only when & > 0.
This gives the first assertion of Theorem 3.1.

Let DC # (. Take an arbitrary u € DP. As as = kay, k > 0, so a3(uo) =
ka?(uo). Therefore the conditions of criticalness (3.3) of the matrix P; (i) can be
written in the form:

1. det B >0

(36) 2. ay (/J,()) = Oz%([to)(Bll + szg) = 0 .
The equation (3.6) is satisfied only when By; = Bay = 0 or By; = —kBss. From
this equation also follows that when By; = Bas = 0 or By; = —kBay then (3.6) is
satisfied at every p € DP. This gives the second and the third assertion of Theorem
3.1. The proof is over.
Theorem 3.2. Let the rank h(A) of the matrix A in (3.2) be 2. Then the following
holds:

1. DP £10

2. DC # 0 < {(det B > 0) A[(B11 = B2s = 0) V (B11Ba2 < 0)]}

3. DC =DP & [(detB > 0) A (B11 = Byy = 0)]

Proof. As h(A) = 2 then from the definition of the rank of a matrix follows that the
dimension o of the parameter p is at least 2, i.e. 0 > 2. The domain of positivenes
DP of the equation (3.1) is determined by the inequalities

m(anul + -+ aldﬂd) >0

(3.7)

m(azlul + - 4 agapg) > 0.
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Expressing (3.7) in the form of equations we get:

o + -+ aigitd — =0
(3.8)
Qo1 + -+ Qoglig —ta=0, t1 >0, >0.

As the rank of the matrix of the system (3.8) is 2 this system has infinite number
of solutions with ¢; > 0,t2 > 0. Therefore the inequalities (3.7) have solutions
p* = (p,....pny). As parameters p = ep* for 0 < ¢ < L also satisfy (3.7) so
DP # (). This gives the first assertion of Theorem 3.2.

Let DC # . The conditions of the criticalness of the matrix Py (u) are:

(39) ay (Mo) = a%(HO)Bll + a% (Mo)BQQ, det B >0.

Let p* € DC. It means that ai(u5) = 0, det B > 0. But as at the same time
u* € DP so a2 (ug) > 0, a2(ug) > 0. From (3.9) it follows that Bj; = Bas = 0 or
B11B2s < 0.

Let

(310) (det B > 0) A [(Bll = B22 = 0) \ (B11B22 < 0)] .
DC is the set of parameters p € DP satisfying the relations:

i1y + -+ arapg >0
(3.11) Qo1 + -+ asgpg > 0
(al1lt1 + -+ ald/—ld)Bll + (0421,ul + -+ Otzdltd)Bm =0.

We shall show that under the assumptions (3.10) these relations have solutions.
Expressing (3.11) in the form of equations we get:

ap iy + -+ agpg — 4 =0
(3.12) Qo1 + o+ Qg —t=0
(011 Bi1 + a21)Baoopty + -+ - + (14B11 + a2gBas)ppgo = 0 .

If Biy = By = 0 then the third equation in (3.12) is satisfied for every u € DP
and DC = DP.
If B11 B2y < 0 then the system (3.12) can be reduced to the form:

aiip + -+ agpg — 4 =0
(3.13) Qorpir + -+ Qoqlig —t2 =0
Byt + Baaty =0 .

As h(A) = 2 so the rank of the system (3.13) is 3. One of d — 1 parameters of
this system is t5. For t; we get: t; = *%tg > 0 as ta > 0. So the system (3.13)
has infinite number of solutions (uf,...,ps, tf,t3) with ¢§ > 0,¢5 > 0. This means
that at these solutions a?(ug) > 0, a2(ug) > 0 and a; () = 0. Thus parameters
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u=ep*, 0<e <L, belong to DC and therefore DC # (). This gives the second
assertion of Theorem 3.2 and the relation: [(det B > 0)A(By; = B2y =0)] = DC =
DP.

Suppose that DC = DP. Consider the parameters u*, u* which are the solutions
of (3.8) corresponding to the pairs (#; = 1,#3 = 1), t7 = 1,#] = 2) respectively
and an arbitrary choice of the other parameters of (3.8). Then we have from (3.8):

appy + o+ agapg =1
azipi] + o azqpy =1

and also

0611/1?_ +"'+Oé1d,u;_ =1

a21u'1i'+...+a2d’u/-d‘r :2 .
Take an arbitrary 9,0 < €9 < L and consider the parameters pu*(go) = gou* €
DP, ut(gp) = eou™ € DP. According to the assumption DC = DP we have:

w*(e0) € DC, ut(eo) € DC. Thus the conditions of criticalness at p*(go), u*(go)
are satisfied what means:

a2 [y (0)] By + o3[ (€0)] Baz = 0
(3.14)

i g (20)]Buy + a3ug (€0)]Baz = 0 .

As af[pg(e0)] = a3lug(eo)] = Hul—*” and a%[ﬂ(-)i_(fo)] = e a%[,ua'(ao)] = ||u2+\|’
the equations (3.14) have the form:

1 1
Bt e B =0
[l Il

1

——Bi11+ ——B2»=0.

|75l TGl

But this system is satisfied only when By; = Bgs = 0. This gives the relation:
DC = DP = [(det B > 0) A (B11 = B2z = 0)]. The proof of Theorem 3.2 is over.

According to Theorem 1.1 to every p € DP \ DC there exists an invariant man-
ifold (1.21) which is homeomorphic with an invariant torus. Suppose now that
i € DC of the bifurcation equation (3.1). This means that P (u) is critical on the
beam of parameters d(uo) = {epo : 0 <& < L}. On this beam the system

(3.15) &1 = Xy (21,6, po)
which is gained from the first equation of (1.19) is two-dimensional system with
the critical matrix Pj(u) = %ﬂﬂ’?’“”). Denote its eigenvalues +i\!. The system

(3.15) is the system of the same character as the system & = X(z,¢, o) which is
gained from the system (1.1) being expressed on the beam §(ug). As it was shown
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in [1] we can do on (1.19) the analogical sequence of transformations as it was done
on the system (1.1). During this process we get the bifurcation equation

(316) Blpf +601(M0) =0, B, € R, Cl(ﬂO) eR.

If (3.16) satisfies the condition of positiveness, i.e. p? = 5[—3%01 (o)) = ea? (o),
a?(pg) > 0, the system (1.19) can be reduced to the system

iy = 2 Xo(22, €, o) + X (2, P12, P20, V12, €, o)+
+ (VE)* X (2, P12, P2, V12, €, f10)
(3.17)

P1o = Mi(e) + 28 12(22, &, o) + B9 (22, 012, o2, V12, €, o)+
+ (VE)*P®12(22, P12, P22, V12, €, o)

Poo = €Xa(€) + 2By (w2, 6, o) + By (T2, P12, Voo, Via, €, o)+
+ (VE)¥ ®oa (22, P12, P22, V12, €, o)

V12 = Juia + Vi (2, P12, 922, V12, €, o)+
+ (VE) P Vig (2, 012, P22, V12,6, o)

where dim 22 = dim sy = 1, dim s = 2, dimvis = n—4, A1 (0) = X, X2(0) = X!
and the functions XQ, @12, @22, Xg, @‘:1)2, ¢(2)2, ‘/102, Xz, (ilg, égg, ‘712 have the same
character as the analogical functions in (1.19).

Denote Py(p) = %7207“0). It was shown in [1] that Py(u) = 2a%(po)B1 =
—2C1(po)- As the bifurcation equation (3.16) satisfies the condition of positiveness
we have Py(p) # 0 what means that P»(u) is non-critical. Therefore according to
Theorem of section 3 Chapter 1 in [1] the following assertion is valid.

Theorem 3.3. Let u € DC of the bifurcation equation (3.1). If the bifurcation
equation (3.16) satisfies at pu the condition of positiveness then p in (1.2) can be
taken p = 2 and to this p there exists the invariant manifold of the system (3.17)
which is defined by the equations

z2 = ||plIn2 (P12, 22, || pl]; o)
v12 = ||pl?O2(p12, 022, 1pl], o)

where 15, ©2 are continuous functions in all variables 2w-periodic at p12, P22, P12 €
RQ,QOQQGRl, 0<e< L.
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