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AFFINE COMPLETENESS OF KLEENE ALGEBRAS II

MIROSLAV HAVIAR AND MIROSLAV PLOSCICA

ABSTRACT. A characterization of affine complete algebras in the variety of all Kleene
algebras was given in [8]. Also local polynomial functions of Kleene algebras and
locally affine complete algebras were characterized there. In this paper alternative
proofs to these three main results of [8] are presented. Also examples illustrated the
results are given.

1. INTRODUCTION

A polynomial function of an algebra A is a function that can be obtained by
composition of the basic operations of A, the projections and the constant func-
tions. A local polynomial function of A is a function which can be represented
by a polynomial function on any finite subset of its domain. A well-known fact
about polynomial and local polynomial functions of any algebra A is that they are
compatible functions in the following sense: a function f: A™ — A is compatible
if, for any congruence 6 of A, (a;,b;) € 6,7 =1,...,n, implies that

(fay,...,an), f(by,...,by)) €96.

An algebra in which (local) polynomial functions are the only compatible func-
tions is called (locally) affine complete. (The concept ‘locally affine complete’ has
sometimes also another meaning in the literature - see e.g. [11].) The problem
of characterizing algebras which are affine complete was originally formulated in
[6]. Since every algebra is a reduct of an affine complete algebra (for example, of
that which contains all its compatible functions among the basic operations) and
hence affine complete algebras are in general very diverse, in [3] the problem was
reducted into the following formulation: characterize affine complete algebras in
your favourite variety. Many varieties for which the problem has already been
solved are mentioned in [3] or [9].

In [8] we characterized (locally) affine complete algebras in the variety of all
Kleene algebras. Previously, only a finite case was entirely solved: a finite Kleene
algebra is affine complete if and only if it is a Boolean algebra (see [7]). Moreover, in
[8] we characterized locally polynomial functions of Kleene algebras as those which
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preserve the congruences and one important binary relation called ‘uncertainty
order’.

The aim of this paper is to give alternative proofs to the main three results of the
preceding paper [8] which are presented here in Theorems 3.3, 3.4 and 3.9. Close
to our considerations are some ideas of the papers [5], [7]-[10] and [12]-[13]. We use
several preliminary results of [8] which are summarized in section 2. Our alternative
approach to the main results of [8] starts in section 3 with crucial Lemmas 3.1 and
3.2. In addition to [8] we present examples at the end which illustrate the results.

2. PRELIMINARIES

First we recall a few basic facts about Kleene algebras. For more information
we refer the reader, for example, to [1] or [2].

A Kleene algebra is an algebra (K, V,A,’,0,1) where (K,V,A,0,1) is a bounded
distributive lattice, ’ is a unary operation of complementation and the identities

0=1,2"=z,(xVvy) =2'"ANy', (A2 )V (yVy)=yVy

and their duals are satisfied. Every Boolean algebra is clearly a Kleene algebra, a
smallest Kleene algebra which is not Boolean is 3 = {0,a,1} with 0 < a < 1 and
a' = a. The algebra 3 is subdirectly irreducible and generates the variety of Kleene
algebras.

Two subsets of a Kleene algebra K often play an important role: a subset
KV = {zVa'|r € K}, which is a filter of the distributive lattice K, and a dually
defined ideal K. The complementation operation clearly induces an antiisomor-
phism between KV and K”. Further, the union KV U K" is a subalgebra of the
Kleene algebra K. The variety of Kleene algebras has the congruence extension
property and we have the following lemma.

1.1 Lemma ([8; 1.1]). For every Kleene algebra K, any congruence of the lattice
KV is a restriction of some congruence of the Kleene algebra K.

In [7] it was proved that a Kleene algebra K with a finite filter KV is (locally)
affine complete if and only if it is a Boolean algebra. To characterize affine com-
plete Kleene algebras in general, we will need the following generalization of affine
completeness: if A is a subalgebra of an algebra B then A is affine complete in B if
every compatible function on A can be interpolated by a polynomial of B. (Hence
we allow elements of B to be used as constants to represent compatible functions
of A))

We can establish a canonical way of defining any n-ary polynomial function of
a Kleene algebra in the following way: to every pair of subsets ap, a; C n =

{1,...,n} we assign the n-ary Kleene term
Co(@1,...,3,) = ( \/ zi) V ( \/ z}).
i€ao i€ag

From the axioms of Kleene algebras it follows that that every n-ary Kleene poly-
nomial can be represented as a meet of so-called elementary polynomials k, V C,
where k, are constants from K.
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Let K be an affine complete Kleene algebra. Let g : (KV)™ — K" be a compat-
ible function of the lattice K. We can extend the function g to a compatible func-
tion
f K™ —= K by

flz1,...,xn) =glxy Val,...,e,Val) forallz,...,z, € K.

This function must be polynomial, hence representable as a meet of elementary
polynomials of K. One can show that its restriction to KV, which is the function g,
is therefore a lattice polynomial (obtained by omitting all z} in the representation
of f). Hence we get:

2.1 Lemma. Let K be a Kleene algebra. If K is affine complete, then KV and
K" are (as lattices) affine complete in K.

The following lemma, which is a special case of [7; Theorem 1], can be proved
similarly.

2.2 Lemma ([8; 2.2]). If K is a locally affine complete Kleene algebra then the
lattices KV and K" are locally affine complete. O

To describe situations in which the lattices KV and K” are affine complete in
the lattice K we will use the following two concepts introduced in [12] (see also
[9]): a filter F' of a distributive lattice L is almost principal if for every x € L the
filter FNtz = {y € F | y > z} is principal, i.e. has a smallest element. An almost
principal ideal of L is defined dually. Further, a filter or an ideal of L is proper if it
is not equal to L while an interval of L is proper if it contains at least two elements.

2.3 Lemma ([8; 2.3]). Let D be a sublattice of a distributive lattice L. Suppose
that D is affine complete in L. Then

(B) D does not contain a proper Boolean interval;
(F) for every proper almost principal filter F' in D there exists b € L such that

F=DnNn1b;
(Z) for every proper almost principal ideal I in D there exists ¢ € L such that
I=Dnlec O

Let us summarize the known results for distributive lattices.

2.4 Theorem.

(1) A bounded distributive lattice is affine complete if and only if it does not
contain a proper Boolean interval ([5]).
(2) A distributive lattice is locally affine complete if and only if it does not
contain a proper Boolean interval ([4; p. 102]).
(3) A distributive lattice is affine complete if and only if the following conditions
are satisfied:
(i) it does not contain a proper Boolean interval;
(ii) it does not contain a proper almost principal ideal without a largest
element;
(iii) it does not contain a proper almost principal filter without a smallest
element ([12; 2.7]). O
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Throughout the paper we assume that the Kleene algebra K is embedded in 37,
a power of the Kleene algebra 3 = {0,a,1}. Accordingly, we will write the elements
of K in the form = = (z;);cs. Clearly, s € KV iff 5; € {a, 1} for every i € I.

As the proofs of the following two lemmas from [8] are very short, we include
them here.

2.5 Lemma. Let f: K™ — K be compatible, zj,y; € K, j=1,...,nandi€ I.
Then x1; = Y14y - - -, i = Yns implies f(z1,...,20)i = f(Y1y-- -, Yn)i-

Proof. Consider the compatibility relative to the kernel congruence of the i-th pro-
jection. [

For any s € KV we define the subalgebra K¢ of K:
K°={zxeKl|zVva >s}.
2.6 Lemma. Let s € KV. If two n-ary compatible functions of K coincide on
{0,s,1}™ then they coincide on (K*)".
Proof. Let f and g coincide on {0, s,1}". We prove that

flee,...,zp)i =g(®1,...,20);

for every z1,...,2, € K° and i € I.
First we define for every z; the element y; € {0,s,1} having the same i-th
component as x;:
0 if Tj; = 0;
yj = 1 lf .Tji = ].;
s if zj,=a.

Now by Lemma 2.5,
f(mly--wmn)i = f(yla----,yn)i =g(y1,-~-,yn)i =g(961,---,$n)i- |

The uncertainty order of a Kleene algebra K is the binary relation C defined by
xCy < zAs<y<zVs forsomesec K.

Hence the uncertainty order on K = 3 is the relation

{(0,0), (a,a),(1,1),(0,a),(1,a)}.

This relation on 3 can really be found under the name ‘uncertainty order’ in the
literature.

2.7 Lemma ([8; 3.4]). The uncertainty order on K is inherited from the uncer-
tainty order on 3, i.e. x Cy iff x; C y; foreveryi € I. O

It can easily be seen that C is indeed a partial order relation on K which is a
subalgebra of K x K. Hence every local polynomial function preserves C.

2.8 Lemma ([8; 3.6]). If all compatible functions on the lattice KV are order
preserving then all compatible functions on the Kleene algebra K preserve C. O
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3. THE RESULTS - AN ALTERNATIVE APPROACH

In this section we give alternative proofs to the three main results presented in
[8]. Our approach is based on calculations presented in the following two lemmas.

3.1 Lemma. If a compatible function f : K — K preserves C then, for every
s,te KV,

(1) F)As< f(s) < fF(1) Vs

(2) fFO)As"< f(s) < f(O)Vs;

(3) F(s) As' < fs) < F(s") vV F(1);
E4§ f(s) < sV f(b);

5 ]

Proof. We prove that f(1); As; < f(s); < f(1); Vs for every i € I. If s; = 1 then
f(s)i = f(1); by 2.5. Let s; = a. Now the case f(s); = ais trivial, let f(s); € {0, 1}.
Since 1 C s, we have f(l)i C f(s):, which is only possible if f(s); = f(1);. Thus,
(1) is proved.

(2) is trivial on those components i where s; = 1 or f(s); = a. The remaining
case is s; = a and f(s); € {0,1}. Then, by 2.5, f(s); = f(s'); and from 0 C s’ we
deduce that f(0); = f(s).

To see (3), notice that s; = a implies f(s'); = f(s);, while s; = 1 implies
f(s)i = f(1)s.

It is clear that f(s); < s;V f(t); if s; =1 or s; = t; or f(s); < a. The remaining
case is s; = a, f(s;) = 1 and ¢; = 1. Then 1 C s implies that f(1); C f(s); = 1,
hence f(t); = f(1); = 1 = f(s);. This proves (4).

(5) follows from (2) and (4). O

3.2. Lemma. If a compatible function f : K — K preserves C then, for every
se KV,

fs) =

—
[y
—
N
>
~

O)AFM)V (FM) As)V((F(s) vV FO) v (1)) A s
(FM) VYA F(S)VFO) VL) A((f(s) AFO)AF(1) V s).

Proof. The equality of the last two expressions follows from the distributivity, since
s' < sand f(s) A f(0) A F(1) < f(1) < f(s) V F(0) V (D).

Obviously, f(s) > f(s) A f(0)A f(1). By 3.1 we have f(s) > f(1)As > f(1)A
f(s) 2 f(0) A's" and f(s) > f(s') A8, hence f(s) > (f(s) A F(O) A F(1) V (f(1 )
s)V((f(s) V F(0) v f(1)) As').

It remains to prove the inverse inequality. By 3.1, f(s) < f(1) Vs, f(s

)
f(s") vV f(1), f(s) < f(0) Vs and f(s) < f(1) Vs and obviously f(s) < f( )V
which completes the proof. O

<
s

3

The previous lemma will be used to characterize local polynomial functions of
Kleene algebras and consequently also locally affine complete Kleene algebras.

3.3 Theorem ([8; 4.1]). Let f be ann-ary compatible function on a Kleene algebra
K. Then the following conditions are equivalent:

(1) f is a local polynomial function of K ;
(2) f preserves the uncertainity order of K ;
(3) f can be interpolated by a polynomial on K* for every s € KV.
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Proof. Since C is a subalgebra of K x K, we have (1) = (2). Clearly, every finite
subset of K is contained in some K®, s € KV, which yields (3) = (1). Hence the
key implication is (2) = (3).

By 2.6 it suffices to interpolate f on the set {0,s,1}. We proceed by induc-
tion on arity n of f. The claim is obviously true for n = 0. Suppose now
that n > 0 and that the implication (2) = (3) is true for all functions of ar-
ity less than n. Hence, the (n — 1)-ary functions f(0,zs,...,2n), f(s,22,...,2y),
f(s' za, ... xy), f(1,2a,...,2,) (of variables xa, ..., z,) are representable by poly-
nomials pg, ps, Ps', P1, respectively. Let us set

p(x1,. . xn) = s Apo Ap1) V (pr A1)V (po Axh) V ((psr Vo V1) Axy Axh).

We claim that p represents f on {0,s,1}"™. Let z1,...,z, € {0,s,1}. It is easy to see
that

p(z1,...,zn) = f(z1,...,2,) whenever z; € {0,1}. Finally, for 2; = s we have
s' < s and therefore p(s,za,...,2,) = (s Apo Ap1)V (p1 As)V ((ps' VDo V1) AS'),
which is equal to f(s,z2,...,z,) by 3.2. (Apply 3.2 to the unary function g defined
by g(y) = f(y,22,...,2,).) O

3.4 Theorem ([8; 4.2]). Let K be a Kleene algebra. The following are equivalent:

(1) K is locally affine complete;
(2) KV is a locally affine complete lattice;
(3) KV does not contain a proper Boolean interval.

Proof. The equivalence of (2) and (3) was given by 2.4(2). We stated (1) = (2)
in 2.2. By (2), every compatible function of the lattice KV is order preserving and
by 2.8 and the previous theorem, every compatible function on the Kleene algebra
K is a local polynomial function. O

Before characterizing affine complete Kleene algebras in general we can already
state the following special result.

3.5 Proposition ([8; 4.3]). Let K be a Kleene algebra such that KV has a smallest
element. The following are equivalent:

(1) K is affine complete;
(2) KV is an affine complete lattice;
(3) KV does not contain a proper Boolean interval.

Proof. The equivalence of (2) and (3) was given by 2.4(1). The implication (1) =
(3) follows the fact that every affine complete algebra is locally affine complete
and from Theorem 3.4. If (3) holds, then the algebra K is locally affine complete
by 3.4 and hence by 2.6 every compatible function of K can be interpolated by
a polynomial function on any K*. But clearly K = K*® where s is the smallest
element of KV, which completes the proof. O

For a subset Y of an ordered set X we denote 1Y ={z € X |z > y for some y €
Ytand | Y ={z € X |z <y for somey € Y}.
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3.6 Lemma ([8; 5.1]). Let f : K — K be a local polynomial function of a
Kleene algebra K. Then KVN 1 f(KV) is an almost principal filter in KV and
K" | f(K") is an almost principal ideal in K”.

Proof. Denote F = K¥N 1 f(KY) = {zx € KV | f(z) < z for some z € K¥}. We
show that, for z € KV,

zV f(z) =min{y € F | z < y}.

Clearly, z < z V f(z) € F. Conversely, let z <y € F. Then y > f(2) for some
z € KY. By Lemma 3.1, f(z) <z V f(2), hence z V f(z) <z V f(2) < y.

It remains to show that F' is closed under meets. Let z,y € F, z = z Ay,
t=min{u € F | z<u}. Then z <t <z, t <y, thus z =t € F. We showed that
F is an almost principal filter in KV.

The other statement can be proved dually. O

Let P denote the set of all pairs a = (ag, a1) with ag,a; Cn, agNa; = 0. We
introduce an order relation on P by a < g iff ag C fp and a3 C ;.
Suppose now that a Kleene algebra K satisfies the following conditions:

(B) KV does not contain a proper Boolean interval;
(F) for every proper almost principal filter F' in KV there exists b € K such
that F = KVN 1b.

Since ' is a dual automorphism of the lattice K, (F) is equivalent to the dual
condition

(Z) for every proper almost principal ideal I in K" there exists ¢ € K such that
I=K"nle

Let f : K™ — K be a compatible function. By (B) and 3.4, f is a local

polynomial function. For every a € P we define a unary function f, : K — K by

the rule
0 if i€ ag;

foly) = f(z1,...,2,), wherez; = ¢ 1 if i€ ay;

y otherwise.

It is clear that the functions f, are compatible. Therefore by (F) and (Z) we have
constants by, ¢, such that

(*) KN 1 fa(KY) = KN 1ha;
K"} fo(K™) = K" Jcq.

From the proof of Lemma 3.6 we see that

zV folr) =min{y € K¥N 1 fo(KY) | 2 <y} = by V 7;
2A fo(z) =max{y € KN fo(K™) | 2>y} =ca Az

for every v € KV, z € K.
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3.7 Lemma. Ifa < 3 then KVN 1 fo(KY) D KVN 1 f3(KY).

Proof. Tt suffices to deal with the case when (8o U 1) \ (o U cq) is a one-element
set, say, {j}. Let z € K¥N 1 f3(K"). Then z > f3(y) for some y € K¥ and by
3.1 we have z > fg(y) Vo > fg(z). Let us define a unary compatible function g as
follows:

0 if i€ ap;
1 if € ag;
9(y) = f(z1,...,2n), where z; = T
y if i1=y7;
x otherwise.

If j € By then g(0) = fa(z). If j € B then g(1) = fz(x). Hence, either z > ¢g(0) or
x > g(1). By 3.1(5) then z > g(z) = fo(x), hence z € KVN 1 f (KY). O

3.8 Lemma. The constants b,, ¢, in (*) can be chosen in such a way that

(i) if g Uy = n then both b, and c, are equal to the value of the constant
function fo;
(ii) if o < B then by < bg < cg < cq-

Proof. If ag Ua; = n then f, is a constant function equal to some k € K. We set
bo = co = k. Clearly, (¥*) is satisfied.

Let ba, ca be arbitrary elements satisfying (*). We set by = Ags, b, co =
Vs> ¢s- Now the constants by, ¢, fulfil (i) (notice that for o U = we have
bs = ¢p) and it remains to show that (*) is valid when we replace b, o by b, ck.

For any x,y € K we have KVN 1 (zAy) = (KVN tz)V(KVN ty), ie. KY 1 (zAy)
is the least filter containing both KVN 1tz and KVN ty. By induction we obtain
that, for any a € P,

E'ntoy =\ KE'ntbs = \/ KVn1fs(KY) = K'N 1 fa(K")
a<p a<p

using Lemma 3.7. Hence, the elements b, fulfil (*). The proof for ¢! is analo-
gous. O

3.9 Theorem. Let K be a Kleene algebra. The following conditions are equiva-
lent:

1) K is affine complete;

2) KV is affine complete in K;

3) K" is affine complete in K ;

4) KV does not contain proper Boolean intervals and for every proper almost
principal filter F' in KV there exists b € K such that F = KVN 1b.

(5) K does not contain proper Boolean intervals and for every proper almost

principal ideal I in K" there exists ¢ € K such that F = KN |c.

(
(
(
(

Proof. The existence of the dual automorphism ’ for the lattice K yields that the
conditions (2) and (3) and similarly the conditions (4) and (5) are equivalent. The
implications (1) = (2) = (4) follow from Lemmas 2.1 and 2.3. So we have to
prove only the implication (4) => (1). Let K be a Kleene algebra satisfying (4)
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and f: K™ — K a compatible function. Hence, we have the constants b,, ¢, that
satisfy (*) and 3.8(i),(ii). For a € P we define polynomials C,, D, by the rule

C, = \/a:j\/\/x;; D, = \/ z; V \/ :r;

JEao jEa1 jen\a1 jE€n\ao

Let us set
P(T1,...,2n) = /\ (ca VCqa) A /\ (ba V D).
a€EP a€EP

To prove that p represents f, it suffices to show that p(z1,...,2,) = f(z1,.-.,2n)
for z1,...,o, € {0,s,1}, where s is an arbitrary element of KV. Without loss of
generality, z; =--- =2, =0, 241 =--- =2y =sand ;41 = --- =z, = 1. Let us
denote /3 = (E;ﬂ\!)? Y= (Euﬂ\k) If k = [ then p(x17 e 737”) =3 = f(xli e ;wn)
by 3.8. Suppose that k& < I. We claim that

p(T1,...,xn) =cg A (bgVs)A(byVs).

Clearly, p(z1,...,2n) < cg A (bg V s) A (by Vs'), because Cg = 0, Dg = s and
D, = s'. The other inequality follows from the facts that

c,=1 ifag Cloran €n\k;
c if a < 3

caVCa2{ 7 , , o</
ca Vs >e Vs =byVs ify>asp;
caVS8>caupVs>bagVs>bgVs otherwise

and

D,=1 if £ a;
ba VDo >< boVs' =by, Vs iff<a=m;
boVs>bgVs if B<a#n.

We wish to show that f(z1,...,2,) = f3(s) =p(z1,...,2,). Wehavecg > ¢,
f3(1) and also cg > fg(s') A ', thus, by 3.1, cg > (f(1) V fa(s")) A (fa(1) vV &’
fa(s). Further, bg Vs = fz(s) Vs > fa(s) and by, Vs’ = fg(1) Vs > fa(s) by 3.
Hence, fs(s) < p(z1,...,zn).

By the distributivity (using inequalities bg < b, = ¢, < ¢g) we can write

il AVART

p(T1,...,%n) =bgV (by As)V (cgAs').

Using the equalities bg Vs = f3(s) Vs, cg A s’ = fz(s') A s’ and the inequalities

from 3.1 we have bg < (fg(s) Vs) A f3(1) = (fa(s) A f3(1)) V (s A fz(1)) < fa(s),
by As = fz(1) As < fg(s) and cg A s’ < f3(s). Hence, p(x1,...,2,) < fa(s). O

3.10 Examples.

(1) Let K; = {(—o0c,—0)} UR x RU {(00,00)} be the Kleene algebra with the
complementation defined by (z,y)' = (—z,—y). Then K\ = {(z,y) E Rx R |z >
0,y > 0} U {(00,0)} is obviously an affine complete distributive lattice by 2.4(1).
Hence K} is affine complete in the lattice K; and by 3.9 (or straightforward by
3.5) the Kleene algebra K; is affine complete.
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Note that for the same reason, the Kleene algebra K{* & K}, where & means
the linear sum, is affine complete. In general, for every affine complete distributive
lattice D, the Kleene algebra D @ D? is affine complete where D¢ is a dual of D
and the complementation operation is the antiisomorphism between D and D?.

(2) Let K = K; \ {(0,y) | v € R} be a subalgebra of K. Then K = {(z,y) €
RxR|xz>0,y>0}U{(0,00)} is not, according to 2.4(3), an affine complete
lattice because F' = {(z,y) €e Rx R |z >0,y > 1} U {(c0,00)} is a proper almost
principal filter in K3 without a smallest element. One can verify that the unary
function g : Ky — KJ given by g(z) = min{y € F | z < y} is a compatible
function of the lattice K but cannot be represented by a polynomial function of
KY (see a similar verification in [12; 2.2]). However, note that there is an element
b in K, for example, b = (—1,1) such that F = KYN 1b. It can easily be seen
that the condition (4) of 3.9 is satisfied, hence again, K is affine complete in the
lattice Ko and the Kleene algebra K, is affine complete.

(3) Let K5 = K>\ {(z,y) € Rx R |z -y <0} be a Kleene subalgebra of K5. Then
KY ={(z,y) e RxR |z >0,y >0} U{(0,00)} = Ky is again not an affine
complete lattice. But note that for the almost principal filter without a smallest
element F' defined in (2) there is now no element b € K3 such that F = Kyn 1b.
Hence Ky is not affine complete in the lattice K3 and the Kleene algebra K3 is not
affine complete. It can be verified that the unary function f : K3 — K3 given by
f(z) =min{y € F |z V2’ <y} is a compatible function of the Kleene algebra K3
but cannot be represented by a polynomial of K.
However, by 3.4 it is clear that K3 is a locally affine complete Kleene algebra.

(4) Every finite Kleene algebra which is not a Boolean algebra is not affine com-
plete. O
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