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DUALITY OF BOUNDED DISTRIBUTIVE ¢-LATTICES

IvAN CHAJDA AND MIROSLAV PLOSCICA

ABSTRACT. By a g¢-lattice is meant an algebra with two binary operations satisfying
all normal lattice identities. We establish a duality in the sense of B. Davey and
H. Werner for the quasivarieties of constant g-lattices and bounded distributive g-
lattices.

1. INTRODUCTION

Let p, g be terms of the same similarity type. An identity p = ¢ is called normal
(see [3], [7], [8], [9]) if it is either of the form = = z (z is a variable) or none of p,
q is equal identically to a single variable. So the lattice idempotence or absorption
are not normal identities.

An algebra A = (A4;V,A) of type (2,2) is called a g-lattice if it satisfies all
normal identities of lattices. In fact, see [1], [2], [3], A is a g-lattice if it satisfies
the following identities:

(commutativity) rVy=yVz TAYy=yAzx
(associativity) zV(yVvz)=(xVy)Vz zA(yAz)=(xAy)Az
(weak idempotence) xV(yVy)=xVy cAYAy)=xzAy
(weak absorption) zV(zAy)=zVz zAN(EVy) =zAhzx
(equalization) zVr=zAx.

A ¢-lattice A is distributive if it satisfies the distributive identity:
zV(yAz)=(@xVy A(xVz)

(which is equal to its dual similarly as in the case of lattices). In every g¢-lattice
A = (4;V,A) we can introduce a binary relation @ as follows:

(a,b) € Q ifandonlyif aAb=aAa.
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It is easy to show that it is equivalent to a Vb = bV b and, moreover, ) is a
quasiorder on A (i.e. a reflexive and transitive relation). A g-lattice A is a lattice
if and only if @ is an order on A; in such a case, @ is the lattice order of A.

Fig. 1

Example. The following quasiordered set {0,z,y,z,v,w,1} is a distributive g-
lattice which is not a lattice (the fact (a,b) € @ is visualized in Fig. 1 by a
connected path of arrows from a to b):

Here e.g. (0,v) € @ and (v,0) € Q, (w,1) € @, (1,w) ¢ Q etc. The operation
tables for V and A are as follows:

A 0 v wao Yy z 1 0 vwxYy z 1

0 00O0O0O0OTF O 0 0 0wz 2z 2z 1
v 000O0O0OGO0OTPO v 0 0wz 2z 2z 1
w 0 0w 0 00 w w www 1 1 11
x 000 2z 2z 2z =z T z 2z 1 z z z 1
y 0 0 0 2z 2z z =z Yy z 2z 1 2z z z 1
z 000 2z 2z 2z =z z z z 1 z z z 1
1 0 0wz 2z 2z 1 1 1111111

An element b of a g-lattice A = (4;V, A) is called an idempotent if bV b= (or,
equivalently, b A b = b). The set of all idempotents of A is called the skeleton of A
and it is denoted by Sk .A. It is easy to see that Sk .A is the maximal sublattice of
A.

Evidently, the restriction of () onto Sk A is the lattice order of Sk.A. Moreover,
see [1], the g-lattice A is distributive if and only if Sk A is a distributive lattice.
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Further, we introduce a binary relation ¥ on A by (a,b) € ¢ iff (a,b) € Q and
(b,a) € Q. Then (see [4] or [3]), ¥ is a congruence on A and A/¢ = Sk A. The
congruence classes of 1 are called cells of A.

In the foregoing Example, the elements 0, w, z, 1 are idempotents and the skeleton
Sk A is the four element distributive lattice {0,z,w,1}. A has four cells and the
congruence v is shown in Fig. 1.

Hence, every cell of A contains exactly one idempotent (idempotents are the only
results of operations). If d is the idempotent of a cell C' of A, then xVy =d =z Ay
for any z,y € C. For more details of g-lattices, see e.g. [1], [2] and [4].

Let us recall some necessary concepts of duality theory given by B. Davey and
H. Werner [6]. Let V = ISP(P) be a quasivariety generated by a non—trivial finite
algebra P = (P; F). Let P = (P;G, H,R, ) where 7 is the discrete topology on
P and G is the set of operations, H is a set of partial operations and R is a set of
relations on P. Suppose that all those operations, partial operations and relations
are subalgebras of appropriate powers of P. In this case, P is called algebraic over
P.

Let W = IS.P(P) be the class of all topological structures of the same type
as P which are isomorphic (i.e. simultaneously isomorphic and homeomorphic)
to a closed substructure of a power of P. For every A € V the set D(A) of all
homomorphisms .4 — P is a closed substructure of EA, hence D(A) € W. Similarly,
for each X € W the set E(X) of all morphisms X — P (i.e. continuous maps that
preserve G, H and R) is a subalgebra of PX, hence E(X) € V. (See Lemmas 1.1
and 1.2 in [5].) We have thereby defined two contravariant hom-functors

D:V—W, E:W—YV,

which are adjoint to each other. Further, for every a € A, the evaluation mapping
eq : D(A) — P given by

eo(r) =x(a) foreach € D(A)

is a morphism. Similarly, the evaluation mapping ¢, : E(X) — P given by ¢,(a) =
a(z) foreach « € E(X) is a homomorphism for each z € X. The natural
maps e: A — ED(A) and ¢ : X — DE(X) given by evaluation (i.e. e(a) = e,,
e(z) = e;) are embeddings for every A € V, X € W.

Definition. If for all 4 € V the map e is an isomorphism (equivalently: if evalua-
tion mappings are the only morphisms D(A) — P), we say that P yields a duality
on V. If moreover, the map ¢ is an isomorphism for each X € W, the duality is
called full.

Our aim is to establish a duality of this type for the quasivariety of all bounded
distributive g-lattices. We shall use the well-known Priestley duality for bounded
distributive lattices (see [11], [12], [13]).

2. CONSTANT ¢-LATTICES

A g-lattice C is called a constant q-lattice if it contains exactly one cell, i.e. if A
consists of one cell which equals to A. Hence, a constant g-lattice has the unique
idempotent 0 and z Vy = 0 =z A y for all elements z,y of A.

65



We consider constant g-lattices as algebras with binary operations V, A and a
nullary operation 0. It is easy to see that constant g-lattices form a quasivariety (in
fact, a variety) V* = ISP(B), where B is a two-element constant lattice defined
on the set B = {0, c}.

Let us define B = (B,V,A,0,7), where 0 is a nullary operation, 7 is a discrete
topology and V, A are the lattice operations derived from the ordering 0 < c.

It is easy to see that the structure of B is algebraic over B. (Notice that p C B"
is a subalgebra of B™ iff (0,0, ...0) € p.) Hence, for any C = (C;V, A,0) € V*, the
dual space D(C) is the set of all homomorphisms C — B with the structure inherited
from B. This dual space is easy to describe. A map C — B is a homomorphism
iff it preserves 0. Clearly, (D(C),V,A) is isomorphic to the Boolean lattice of all
functions (C'\{0} — B). (Equivalently, the Boolean lattice of all subsets of C'\ {0}.)
The space D(C) inherits its topology from the usual product topology of EC. There
is a close connection between this topology and the lattice operations V, A. We need
the following fact taken from [10].

Lemma 2.1. Let a sublattice L of BX be topologically closed. Then \ A € L,
VAeLforevery() #ACL.

Proof. Let a = \ A. Clearly, for z € X, a(z) = 0 iff b(z) = 0 for some b € A. To
prove that a € L, it suffices to show that a belongs to the topological closure of L.
The base of open sets of the topology of @X consists of all sets of the form

S={peB* | p(x1) = =p(am) =0, py1) =+ = plyn) = c},
where x1,...,Zm,Y1,---,Yn € X. Suppose that such a set S contains a, hence
a(xy) = =a(xy,) =0,a(y) =+ = a(y,) = c. We need to show that SNL # §.
There exist by,...,b, € A such that b;(z;) = 0 and b;(y1) = -+ = bi(y,) = c. If

m = 0, then clearly z € SN L for arbitrary z € A. If m > 1, we set z = A\, b;.
Since the lattice operations in QX are pointwise, we have z € S. Since L is a
sublattice, we have z € L. Hence, S N L # .

Similarly we can prove that \/ A€ L. O

For any a € C we have h, € D(C) defined by h,(a) = ¢ and h,(z) = 0 for every
x # a. It is easy to see that this map is an atom in D(C) and every atom has this
form.

Theorem 2.2. The structure B = (B,V, A,0,7) yields a duality on V*.

Proof. Let C € V. Let 6 : D(C) — B be a morphism. We need to show that § is
the evaluation map for some a € C. If § is constant 0 then § = eg. Let § be non-
constant. Since 4 is a lattice homomorphism and D(C) is a Boolean algebra, the set
U = §71(c) must be an ultrafilter. Since § is continuous, the set U is closed. By 2.1
used for A = U = L, the ultrafilter U must have a smallest element. This smallest
element is some atom h, of D(C). Therefore, for h € D(C) we have §(h) = c iff
h € U iff hy < hiff h(a) = ¢, which shows that 6 =e,. O

This duality is not full in the sense of [5] because every dual D(C) is an atomic
Boolean algebra but 1.S.P(B) contains also non-Boolean lattices. It is worth men-
tioning that our duality is very similar to the duality for sets in [5].
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3. BOUNDED ¢-LATTICES

A g¢-lattice A is called bounded if there exist elements 0 and 1 in C such that
cAN0=0 and zxv1i=1

are identities of A and either 0 # 1 or card A = 1. Let us note that contrary to the
case of lattices, it implies neither z V 0 = x nor x A 1 = z. Further, in a bounded
g-lattice, (0,a) € @Q and (a,1) € @ for each a € A. Let us note that it can happen
also (b,0) € @ or (1,¢) € Q for some b,c € A.

We consider bounded distributive g-lattices as algebras with binary operations
A,V and nullary operations 0,1. They form the quasivariety V = ISP(P), where
P is the four element bounded g¢-lattice visualized in Fig. 2. This follows from the
fact that 2-element constant lattice and 2-element lattice are the only subdirectly
irreducible distributive g-lattices. (See [4].)

o

Ov-a

Fig. 2

Let us define the partial orderings <, <,, <p, <q» and the binary relation T' on
the set P ={0,1,a,b} by the following rules:
z<yifzr=yor (xvy) = (071) or (I,y) = (aab)7
z<,yiffz=yor(z,y) =(0,a),

z <y ifi o =y or (a,y) = (1,b),
z<pyiffc <pyorz<py,
(z,y) € T iff {w,y} C {0,1} or {z,y} C {a,b}.

Now we set P = (P, <,V, A, <q,<p,T,{0,1},7), where V, A are partial lattice
operations determined by <., {0, 1} is a unary relation and 7 is the discrete topol-
ogy.

It is easy to verify that the structure of P is algebraic over P. Now we describe
the dual space of a bounded distributive g-lattice C = (C; V, A, 0, 1). Let N¢ denote
the set of non-idempotents of C. Let C* be the constant g-lattice defined on the set
{0} U N¢ with a new idempotent 0 ¢ N¢. Every homomorphism f: ¢ — P must
map idempotents of C into {0, 1}. The restriction f|sk¢ is a lattice homomorphism.
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Let us introduce an equivalence relation ® on D(C) by (f,g) € @ iff flsrc = glskc.
Let [f]a denote the equivalence class containing f. It is easy to see that fVg and
fAg are defined iff (f,g) € ®. In fact, every ®-equivalence class with V, A is a
Boolean lattice. Every such class contains a unique skeletal homomorphism, i. e.
homomorphism that maps whole C into {0,1}. Every such skeletal homomorphism
is the least element in its equivalence class (with respect to V, A). Let Dg(C) denote
the set of all skeletal members of D(C)

Lemma 3.1. W = ([h]e;V, A, h, T|w) is the dual space of the constant g-lattice
C* for every skeletal h € D(C) {m the sense of the previous section).

Proof. To every f € [hle we assign f*: C* — B by f*(0) = 0 and (for z €
N¢) f*(z) = 0 if f(z) € {0,1} and f*(z) = ¢ if f(z) € {a,b}. This defines an
isomorphism of W and the dual space of C*. O

Similarly, the order relations <,, <, compare only elements of the same ®-
equivalence class. On the other hand, the order relation < compares only elements
of different classes.

Lemma 3.2. V = (Dg(C);<,7|v) is isomorphic to the Priestley space of the
lattice SkC.

Proof. For every f € Dg(C) we define f*: SkC — {0,1} by f* = flsgc. This
defines the required isomorphism. 0O

Hence, we have the following picture of D(C). In the Priestley space of SkC,
every point is replaced by the Boolean lattice representing the constant g-lattice C*.
Besides that, we have relations <,, <;,7" and {0, 1}, whose role will be explained
in the sequel.

Lemma 3.3. Let h,k € D(C). Then there is exactly one g € D(C) such that
(9,h) € @, (9, k) €T.

Proof. If x € SkC then we set g(z) = h(z), to ensure that (g,h) € . Let z € N¢.
We set
0 if k(z) € {0,1} and h(z) € {0,a}
_J 1 ifk(z) €{0,1} and h(z) € {1,b}
9(@) = a if k(z) € {a,b} and h(z) € {0,a}
b if k(z) € {a,b} and h(z) € {1,b}.

It is clear that g has the required properties. O

Theorem 3.4. Let V be a quasivariety of all bounded distributive g-lattices. Then
P yields a duality on V.

Proof. Let 6 € ED(C). We need to show that 4 is an evaluation map. The preser-
vation of the unary relation {0,1} means that § must map skeletal members of
D(C) into {0,1}. By the Priestley duality and 3.2, there is an idempotent z € C
such that d(h) = (h|skc)(z) = h(z) for every skeletal h.

Now, let h € Dg(C) and let C* and W be as in 3.1. The morphism é : D(C) - P
induces the morphism ¢’ : W — B by the rule ¢'(k) = 0 if 6(k) € {0,1} and
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0'(k) = ¢ otherwise. By 3.1, ¢’ must be an evaluation map, i.e. §' = e, for some
x € C*. Hence, ¢'(k) = k*(x) for every k € [h]s. (See the proof of 3.1.)

If z € N¢, we have
0if k(z) € {0,1}

¢ otherwise.

& (k) = {
In other words,
o(k) € {0,1} iff k(z) € {0,1}. (%)

Equivalently, (6(k),k(z)) € T. We claim that this is true for arbitrary k£ € D(C),
not only for k € [h]s. Indeed, by 3.3 for every k € D(C) there is g € [h]s with
(9,k) € T. Then clearly (g(x),k(x)) € T, (9(x),0(g)) € T and also, since §
preserves T', (6(g),d(k)) € T. This implies that (d(k), k(z)) € T

Similarly, if = 0, we have d(k) € {0, 1}, which also holds for every k& € D(C).

Now we claim that 6 = e, if z € N¢ and § = e, if x = 0. First we settle the
case z = 0.

Let x = 0 and k € D(C). Then there is a skeletal h € D(C) with (k,h) € ®. We
have d(h),d(k) € {0,1}. Since hVk = k, also d(h)Vd(k) = d(k) which is possible
only if both §(h), d(k) equal to 0 or both of them equal to 1. Since h and k coincide
in idempotents, we have

which was to prove.

Suppose now that z € No. Next we prove that z belongs to the cell containing z.
For contradiction, suppose that this is not the case. Then there exists k € Dg(C)
such that k(z) # k(z). Without loss of generality, k(z) = 0, k(z) = 1. Let us
define k; € D(C) by the rule that ki (z) = a and k1 (y) = k(y) for all y # z. Then
k <, ki1, therefore 6(k) <, d(k1) which is a contradiction, because (k) = k(z) =1
and d(k1) € {a,b} (since ki(z) = a and (6(ky1), k1 (x)) € T).

Now let k € D(C) be arbitrary and let h € Dg(C) be such that (k, h) € ®. Again
we have §(h)Vvdo(k) = 6(k). We distinguish four cases.

If 6(k) = 0 then 6(h) = 0 (h is skeletal), hence 0 = h(z) = h(z V ) = h(z) V
h(z) = h(z) and therefore k(z) € {0,a} (from (h,k) € ®). On the other hand,
from (*) we have k(x) € {0,1}, hence k(z) =0 = §(k).

If 6(k) = a then 6(h) = 0, which implies k(z) € {0,a}. From (*) we have
k(x) € {a,b}, hence k(z) = a = d(k).

If 6(k) = 1 then 6(h) = 1, which implies h(z) = 1 and k(z) € {1,b}. From (*)
we have k(z) € {0,1}, hence k(z) =1 = d(k).

Finally, if 6(k) = b then we get d(h) = 1, h(z) = 1 and k(z) € {1,b}. From (*)
we have k(z) € {a,b}, hence k(z) = b= 0(k).

Thus, 6(k) = k(z) holds in all cases, which means that § = e,. The proof is
complete. [

Let us show how the duality works for the g-lattice A on Figure 1.
Evidently, D(A) consists of exactly 16 homomorphisms given by the following
table:
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0Ol v|wl| z| z| vy 1
ho 00 0] 1] 1] 1] 1
ha 0j0[0 1] 1] b 1
ha 0/ 0[0 1] b 1} 1
hs 0 0[O0 1] b] b 1
hy Ojla| 0| 1] 1] 1} 1
hs Ojal| 0| 1] 1] b 1
he Ojal| 0| 1] o] 1} 1
hr Ojlal| 0| 1] b] b 1
hs 001 0] 0] 0 1
hg 001 0] O] a 1
hao 00| 1] 0] a] 0] 1
hi1 00| 1| 0| a|l a 1
hi2 O|la| 1| 0] 0] 0 1
his Ojla| 1| 0] 0] a 1
hi4 0Ojlal 1] 0] a| 0 1
his Ola| 1| 0| a| a 1

€0 | ey | ew| €| €z €y e

Clearly hg, hg are skeletal homomorphisms, i.e. Dg(A) = {ho, hg}. This corre-
sponds to the fact that Sk A is the four element Boolean lattice and its Priestley
space is the two—element antichain.

The dotted lines denote <, and the solid lines denote <,. The equivalence
relation T consists of all pairs (h;, hits), ¢ = 0,...,7. The equivalence relation
® has two equivalence classes, which are isomorphic to the dual of the constant
g-lattice A*.

The dual space D(A) looks as shown in Fig. 3.
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hl N h4 hg h12
N AN
AN
h
N : 2
N
h h
[hola ho n [hs]e
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