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HISTORY OF THE NUMBER OF FINITE POSETS

JIRf KLASKA

ABSTRACT. In this paper we introduce the survey of all main known results on the
number of finite partially ordered sets. We also present the similar and connected
problems. The historical review of related works is also included. In this context
there are introduced author’s works and results in this branch.

1. INTRODUCTION

In the first section we remind the main basic notions and some their relations.
Let us denote by N the set of all positive integers and put No := N U{0}. Further,
let A be a finite n-element set, n € Ny. By |A| we shall denote the number of all
elements of A. As usual, a binary relation p on A is a subset of A x A. We define:

Definition 1. A binary relation p on A is called

(1) reflexive if Yz € A : [z,2] € p,

(2) symmetric if Vz,y € A:[z,y] € p=[y,z] € p,

(3) antisymmetric if Vo, y € A: [z,y] € pA[y,z] €Ep =z =y,

(4) transitive if Vz,y,z € A: [z,y] € pA[y,z] € p= [z, 2] € p.
A binary relation p is called a quasi-order if it is reflexive and transitive. Fur-
thermore, p is called an equivalence if it is reflexive, symmetric and transitive and
finally p is called a partial order or an ordering if it is reflexive, antisymmetric and
transitive. A partially ordered set (A, p) or poset, for short, is a set A together
with a partial order p. We also call (A, p) a labelled poset.

Definition 2. A topology on A is a family 7 of subsets of A such that

(1) ernAer,

(2) VX, Yer:XUY €,

B) VX,)Yer:XnYer.
The elements of 7 are called open sets. A topology is said to be Ty if for all a,b in
A such that a # b there exists an open set containing one of a, b but not the other.

At the very beginning we recall an important fact that there is a connection
between binary relations on A and topologies on A. In 1937 P. S. Alexandrov
[1] and also G. Birkhoff [2] observed that there is the one-to-one correspondence
between topologies on A and quasi-orders on A, and furthermore, there is the one-
to-one correspondence between partial orders on A and Tp-topologies on A (see [2],
3.ed, p.117).
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Definition 3. A partition of a finite n-set A is a collection & = {44,..., A} of
subsets of A, where 1 £ k < n, such that

(1) Vie{l,...,k}: A; #0,

(2) Vi,je{l,....k},i£j: AinA; =0,

(3) AlU---UA, = A
We call A; blocks of & and we say that &2 has k blocks. Then we define S(n, k)
to be the number of partitions of an n-set into k blocks. S(n, k) is called a Stirling
number of the second kind. By convention, we put S(0,0) = 1. Furthermore, the

total number of partitions of an n-set A is called a Bell number and is denoted by
B(n). Thus we have the relation B(n) =Y ;_; S(n, k).

Now we remind further important and well-known result on the set-partitions
and equivalence relations on a set A. We have the following assertion: There is a
one-to-one correspondence between the set of all partitions of an n-set A and the
set of all equivalence relations on A. Consequently, the Bell number B(n) is the
number of all equivalence relations on an n-set A. This correspondence is given in
such a way that the elements which are equivalent lie in the same block.

Definition 4. Let p be an ordering on A and ¢ be an ordering on B. We say that
two posets (A, p) and (B, o) are isomorphic if there is an order-preserving bijection
f+ A — B whose inverse is order-preserving as well (i.e. Yo,y € A: [z,y] € p &
[f(x), f(y)] € o). This isomorphism decomposes the set of all posets on A into
blocks, which we call non-isomorphic posets or also unlabelled posets.

Finally, it is necessary to recall the following notions of a partition and a com-
position of an integer n.

Definition 5. A partition of an integer n € N is a sequence (zy,...,z;) € N¥,
where 1 £ k < n, such that x; +---+axx =nand 1 = -+ 2 x. A composition of
n is a sequence (x1,...,z) € N* where 1 £ k < n, such that @1 + --- + 2 = n.

If exactly k summands appear in a partition, we call it a k-partition. Analogously,
a composition of n in which exactly k£ summands occur, is called a k-composition.

It is known that there is a bijection between all k—compositions of an integer
n and (k — 1)-subsets of {1,2,...,n — 1}. Hence there are (}_}) k-compositions
and 2"~! compositions of n. On the other hand, it is not possible to count the
number of partitions so easily. All the same, there are more ways to enumerate
these numbers (see e.g. our paper [27]).

2. COUNTING THE BINARY RELATIONS

One of the basic problems from the combinatorical analysis is to find the number
of all configurations of the specific type. For example, to find the number of all
binary relations, the number of set-partitions, the number of topologies and so on.
It is well-known that the number of all binary relations on an n-set A is equal to on’,
Quite easily we can count the numbers of reflexive, symmetric and antisymmetric
relations. Let Z(A) be the set of all reflexive relations on A, .(A) the set of all
symmetric relations on A, </ (A) the set of all antisymmetric relations on A and let
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T (A) denote the set of all transitive relations on A. Thus we have:

(1) |%(A)| =47,
NG

(2) l7A))=2"*",

(3) |7 (4)] = 2" 3(2),

(4) |%(A) N 7(A)] = ) :

(5) |%(A) N (A)] = 3(2),

(6) |7 (A) N7 (A)] =2".

These formulas can be deduced by means of elementary combinatorical tech-
niques (i.e. by means of the rules of sum and product). The problem of finding
these numbers is often submitted as an exercise. But the difficulties begin when
we start to engage with counting binary relations which have the property of tran-
sitivity. For the number of equivalences and their classes we still have reasonable
formulas. It is easy to verify that S(n,k) = 0 if £ > n, S(n,0) =0, S(n,1) =1,
S(n,2)=2""1-1,8(n,n—1) = (}), S(n,n) = 1. Now we introduce a short survey
of possibilities how to count these numbers. We have the following formulas:

(7) S(n,k)=kS(n—-1,k)+ S(n—-1,k - 1),
(8) S(n, k) = i (" N 1) S(i k- 1),

(9) S(n k) = ()7 Yo (-1 (’“)

(10) S(n,k)y= Y 1mTgremhopme

Ti1t-+Te=n

where the sum extends over all k-compositions of an integer n. Moreover, for the
Bell numbers B(n) we have the recursion

n

(11) Bn+1) =Y (Z)B(k).

k=0

The Bell numbers can be also computed by means of the scheme (12), analogously
to the Pascal triangle for counting binomial coefficients.
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In the following section we shall continue in our list of enumerative combinator-
ical results on binary relations with the property of transitivity. We shall also pay
an attention to the numbers of such relations. We shall concentrate especially on
our basic subject, which is the number of finite posets.

3. COUNTING FINITE POSETS

Our main combinatorical counting problem is the following: How many posets
are there on n elements (enumeration of labelled posets) and what is the number of
their isomorphism classes (enumeration of unlabelled posets)? These problems are
unsolved up till now. No reasonable explicit or recursive formula for these numbers
is still known. By reasonable we mean that the number of involved operations is
of considerably smaller order than the numbers which we want to compute. The
enumeration of all finite posets is a long-standing open problem. G. Birkhoff with
his well-known book Lattice theory (see [2], third ed., pages 4 and 19) was in 1948
one of the first who formulated this problem. We quote: “Let G(n) denote the
number of nonisomorphic posets of n elements and G*(n) denote the number of
different partial orderings of n elements. Compute for small n, and find asymptotic
estimates and bounds for the rates of growth of the functions G(n) and G*(n).”

Now we make a short remark on the notation of the number of posets. This
notation did still not stabilise. We already know the notation from Birkhoff’s
book. Several authors used this notation too, but it did not root. There was used
the whole range of notations for the number of labelled posets up till now. For
example G*(n) in [2], H(n) in [46], d, in [13], Ao(n) in [22], To(n) in [3], v, in
[24], pn in [26] and P, in [23]. Next, in the case of numbers of unlabelled posets we
have the similar situation. In this paper we shall use the following notation: p,, will
denote the number of all partial orders of an n-element set A and P, the number
of non-isomorphic posets on A. Now we introduce the fundamental results on the
number of posets.

For p,, we have the following explicit expression (see M. Erné, [23])

2
" —1n—1 n—

2 1 n—1

(13) pn= Z H Tt H (1- leﬂ»jm:?j«ki) H(l - w%+1w%+k(1 — Tnik))s
m=0 i=0 j=0 k=0

where

(14) o =27 'm] — 2|27 'm]

is the i-th digit in the binary expansion of m (0 £ i £ n?). Each binary relation
on the set {0,...,n — 1} is represented by one summand, where m runs from 0 to
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27" — 1. The value of Tpipyisl if i and j are related, and 0 otherwise. The product
over i codes reflexivity, that over j antisymmetry, and that over k transitivity. Thus
the whole product is 1 iff the relation is a partial order, and it is 0 in all other cases.
The formula (13) is evidently not practical for computing p,,.

In 1966 L. Comtet [13] introduced the important and often used and occured

formula

n!
(].5) Pn = Z mv(ml,...,mm),
(Z1,..,Tm)
where the sum is taken over all compositions of the number n and V (2, ..., 2,) is
the number of certain posets with respect to the composition z1+- - -+, = n. This
formula was in 1979 rediscovered by Z. I. Borevich. More exactly, V(z1, ..., &) is

the number of all so called V-nets of the type (z1,...,zy). The detailed definition
and explanation of this concept can be founded in [3]. In [4] and [5] Borevich
derived a special case of V(z1,...,x,,) and determined some values of p,,. He also
proved that all values V(zy,...,z,,) are odd numbers.

The following enumerative results show that nearly all the problems on finding
the number of binary relations, where transitivity is one of the properties, can be
converted to finding the values of p,,. Above all, it is possible to show that it holds:

(16) |/ (A) N T (A)| = 2"pn,
(17) |.#(A) N 7 (A)| = B(n +1).

Now we introduce the following notation. Let ¢,, be the number of all transitive
relations on an n-set A and g, be the number of all quasiorders on A. In 1967
Evans, Harary and Lynn [24] derived a formula relating the number of all quasi-
orders on a set of n elements and the number of all partial orders or equivalently
the number of topologies on an n-set and Typ-topologies. In particular, they proved
the following formula

(18) Gn =Y S(n, k)ps.
k=1

This result contributes to the intensive interest in the number of posets. In spite
of the fact that neither the explicit nor recursive formula is still known, there was
discovered the asymptotic estimate for p,. The significant results in this area were
presented in 1970 by D. J. Kleitman and B. L. Rothschild. In [30] they deduced
the formula

1
(19) logy pn = 77" + o(n?).

Furthermore, in 1975 the same authors proved in [31] that

(20) po=(1+ O(%)) Z:L: nz (7;) <” N Z) (26— 1)7(20 — 1)n=i=i.

=1 j=1 J
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This asymptotic formula was in 1981 simplified by K. H. Kim and F. W. Roush
[26]. From further works which concern about the asymptotic behaviour of p, we
remark at least the papers of J. L. Davison [19] and D. Dhar [20].

In 1974 M. Erné, [22], showed that quasiorders are asymptotically posets, i.e.

(21) " 1 for n— oo

p’ll

In 1992 we have derived in [29] the following formula (22) for the number of tran-
sitive relations, which enables to compute numbers ¢, if the values p,, are known:

n k
(22) tn = Z ag(n)py, where ag(n)= Z (Z) S(n—s,k—2s).
k=1

5=0

In particular, using (22) we have computed the numbers ¢,, for n < 14. Number
t14 constitutes currently the greatest known value of the sequence ¢, and exceeds
10%8. In [29] we have also proved the asymptotic formula

(23) —1 for n— oc.

In 1987 H. J. Promel [40] proved that the number of unlabelled structures is
asymptotically 1/n! times the same labelled quantity. The paper [40] contains a

short proof of this fact for all classes of structures whose logarithm approaches a
quadratic in the size parameter n. In particular, for posets we have

Pn

P, —1 for n— oco.

(24)

This problem was in 1981 introduced by K. H. Kim and F. W. Roush (see [26],
Problem 3). At the end of this section we mention the solitary and very interesting
result of Z. I. Borevich on the residual periodicity of the sequence p,. In the period
1979-1982 Borevich published papers [6], [7] and [8], where he proved the following
assertions. Let m = p be an arbitrary prime number. Then the sequence {p,
mod m}>2, is periodical and the length of its period is equal to p — 1. If m = p?,
where a € N, then {p, mod m}% , is periodical from n > p2~! and the length
of its period is equal to ¢(p?) = p® — p®~!. Furthermore, if m = p; ...py, where

P1,- .., pg are the different primes, then the sequence {p, mod m}?%, is periodical
and the length of its period is equal to the least common multiple of the numbers
p1—1,...,pr—1. Finally in the general case it holds: Let m be an arbitrary positive

integer. Then there exists an index ng from which the sequence {p, mod m}S
is periodical. Specially, the periodicity of the last figures of the sequence p,, follows
from Borewich’s results. This visible fact can be seen in Table 1 (see also the
author’s work [29]).

4. THE HISTORY OF THE KNOWN VALUES OF p,

As we remarked, the original stimulation for computing the values p,, for small
n came from G. Birkhoff in 1948. First, finding the values ps,ps3 and p4 is not
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difficult. This problem was often submitted to the reader as an exercise. In 1966
L. Comtet has found in [13] the values ps and ps. In 1967 J. W. Evans, F. Harary
and M. S. Lynn have in [24] found the values p, for n £ 7. Counting and verifying
these values was left to the reader in the third edition of the Birkhoff’s book [2].

The computer enumeration of the values p,, was based on the matrix representa-
tion of binary relations. Binary relations on a set of n elements can be represented
as n X n matrices of zeros and ones. If p is a binary relation on a set of elements
Z1,...,Tn, then we associate to p the matrix M = (m; ;) such that m; ; = 1 if
[zi,2;] € p and m;; = 0 if [x;,2;] ¢ p. This gives a one-to-one correspondence
between binary relations and n x n matrices of zeros and ones (see [24], [35] and
[48]). The matrix representation of a partial order was given in 1972 by K. K. H.
Butler [9]. However, the basic idea can be already found even in the paper [48] by
H. Sharp from 1966. It holds that the n x n matrix of zeros and ones represents a
partial order on some n-set iff it is nonsingular and idempotent.

In 1974 M. Erné has published the important paper [22], where he has computed
the values p,, up to n £ 9. Further significant results were obtained in 1977 in the
paper [18] of S. K. Das, where the values p,, up to n £ 11 are computed. At that
time this work presented the full list of values p,. In this historical review it is
necessary to underline the works of the soviet mathematicians in the period 1978-
1982. In the papers [4] and [5] from 1978 and 1979 Z. I. Borevich, V. I. Rodionov
and their coauthors computed the values pg and p1o. But at that time these values
were already known. Further, Rodionov in [44] and [45] independently resumed the
common works with Borevich. In 1982 he computed the values p;; and p;2. Now
we introduce the table of the numbers p,, by [23] up to n = 14.

Table 1. The numerical values p, for n < 14.

po= (Folklore)

P2 = 3 (Folklore)

p3 = 19 (Folklore)

ps = 219 (Folklore)

Py = 4231 (1966) L. Comtet

ps = 130023 (1966) L. Comtet

pr = 6129 859 (1967) Evans, Harary and Lynn
ps = 431723379 (1967) Evans, Harary and Lynn
Py = 44511042511 (1974) M. Erné

Pio = 6611065248783 (1977) S. K. Das

P11 = 1396 281677105 899 (1977) S. K. Das

P12 = 414864951055 853499 (1982) V. I. Rodionov

P13 = 171 850 728 381 587 059 351 (1991) M. Erné and K. Stege
pra = 98484324257128207032183 (1991) M. Erné and K. Stege

As late as 1991, after a long pause, M. Erné and K. Stege presented in [23] the
values p, up to n £ 14. Currently the number p;4 constitutes the greatest known
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value of the sequence p,. At the present time we can use computers for finding
further values of p, by means of contemporary known methods. But the necessary
computing time constitutes the insuperable barrier. Interesting informations on the
time-consuming computation of the values p,, can be found in [23].

5. THE HISTORY OF THE KNOWN VALUES OF NONISOMORPHIC POSETS P,

The number of works which deal with the computation of values P,, for small n
is much less than the number of works which deal with the computation of p,,. By
G. Birkhoff, [2], the values P, for n < 6 were found by I. Rose and R. T. Sasaki. In
1981 N. P. Chaudhuri and A. A. J. Mohammed, [12], were concerned with finding a
method for verifying the results of Rose and Sasaki. In their paper the verification
for n = 4 is shown. The values P, for n £ 6 can also be found in [46] by R. A.
Rozenfeld from 1985. The value P; was discovered in 1972 by J. A. Wright in his
PhD-thesis [50]. In 1977 S. K. Das found in [18] the value Ps. Seven years later in
1984 R. H. Mdhring introduced the value Py. Further progress came in 1990, when
J. C. Culberson and G. J. E. Rawlins computed the numbers of non-isomorphic
posets up to n < 11. Further, in 1990 A. M. Kutin, [36], was also engaged in
computing P,,. C. Chaunier and N. Lygeros found in 1991 the value P, and finally
the latest progress in the computation of P, came in 1992 when the same authors
computed in [14] the value P;3. Now we introduce the known values of P, by C.
Chaunier and N. Lygerds.

Table 2. The numerical values P, for n < 13.

P = 1 (Folklore)

P, = 2 (Folklore)

P = 5 (Folklore)

P, = 16 (Folklore)

P = 63 (Folklore)

P = 318 (1967) I. Rose and R. T. Sasaki

P o= 2045  (1972) J. Wright

P = 16999  (1977) S. K. Das

Py = 183 231 (1984) R. H. Mohring

Py = 2567284 (1990) J. C. Culberson and G. J. E. Rawlins
P = 46749 427 (1990) J. C. Culberson and G. J. E. Rawlins
P, = 1104891746 (1991) C. Chaunier and N. Lygerss

Pi3 = 33823327452 (1992) C. Chaunier and N. Lygerds

In the following section we shall deal with the more special problem of finding
the number of connected posets.
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6. THE NUMBER OF CONNECTED POSETS

Let (4, p) be a partially ordered set, z,y € A. We say that two elements z and
y are comparable and we write  —~ y, if [z,y] € p or [y, z] € p. For z,y € A we put
x ~ y iff there are k € N and k elements x1, ...,z € Asuchthat x ~ zq,..., 2 —~
y. The poset (A,p) is called connected, if for all z,y € A : z ~ y. By ¢, we
shall denote the number of all connected posets on an n-set A. Furthermore, an
isomorphism decomposes the set of all connected posets on A into blocks, which we
call non-isomorphic connected posets. The number of all non-isomorphic connected
posets on an n-set A will be denoted by C),.

The first mention of the number of connected posets came probably in 1963 from
R. A. Rankin [43]. In [43] there are introduced the values ¢, for n < 4. Next, 11
years later M. Erné [22] found the values ¢, up to n £ 9. In 1991 the same author
and K. Stege [23] presented these numbers for n < 14 (see Table 3). Further, we
have almost no references on the number C,, of non-isomorphic connected posets.
Let us remark that G. Birkhoff [2] did not refer to the numbers ¢,, and C),. In 1985
R. A. Rozenfeld [46] presented the numbers C), for n < 6. After this solitary paper
we have computed in 1994 the values C), up to n < 13 (see Table 3), [28]. In [2§]
we have also derived the following formulas (25) and (26) (cf. also our paper [27]):

n—1
1

(25) P, = - Z a(n—k)P, and a(m)= Zka,

k=0 klm

n—1
C C

2 P,=-— kP p= Y (=1)frttka (L)
(26) > Quar and Qu=3nhe s (1) (G,
where the sum extends over the set S of all solutions [k1,...,k,] € {0,1,...,n}"

of the linear Diophantine equation 1k; + 2ks + - -- + nk, = n.

Table 3. Initial values of the connected posets ¢, and C,,.

c = 1 C: = 1
cy = 2 Cy = 1
c3 = 12 C; = 3
¢y = 146 Cy, = 10
s = 3060 Cs = 44
g = 101 642 Ce = 238
cr = 5106 612 Cr; = 1650
cg = 377403 266 Cs = 14512
cy = 40299722 580 Cy = 163 341
cl0 = 6138497261 882 Cio = 2360719
11 = 1320327172853 172 Cy = 43944974
C19 = 397571105288 091 506 Ci2 = 1055019099
c13 = 166 330 355795 371 103 700 Ci3 = 32664484238

cia = 96036130723 851671469482
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7. THE SPECIAL CLASSES OF ORDER STRUCTURES

In the last section we make a short remark on enumeration in the special classes
of order structures. In the scientific literature it was studied the whole range of
ordered structures such as graded posets, interval orders, lattices, semiorders, series-
parallel posets, tiered posets, two-dimensional posets and weak orders. We mention
here only one particular. A lattice is a partially ordered set in which every pair of
elements has the least upper bound (join) and the greatest lower bound (meet). G.
Birkhoff already formulated in [2] the problem to find the number of all n-element
lattices. For the number of lattices we have a similar situation as for the number of
posets. No explicit or recursive formula is known. In 1979 S. Kyuno [37] described
the algorithm for constructing Hasse diagrams of all n-element lattices and also
found the number of lattices for n < 8. As late as 1994 Y. Koda [34] computed
these numbers up to n < 13. In 1971 W. Klotz and L. Lucht [33] found the lower
bound and in 1980 D. J. Kleitman and K. J. Winston [32] the upper bound for the
number of lattices. The aim of this short section was to show that the enumeration
problem of posets is not solitary and that there exists a whole family of similar
problems. The survey of the enumeration problems in further classes of ordered
structures together with the main results can be found e.g. in the paper [21] by M.
El-Zahar.

At the end of this paper we present the survey of the main works related to our
topic. Of course, this bibliography collection is not complete. The comprehensive
resource of references can be found in the papers [6], [23] and [26].
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