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GREATEST COMMON SUBGROUP AND SMALLEST
COMMON SUPERGROUP OF TWO FINITE GROUPS AND
RELATED METRICS ON A SYSTEM OF FINITE GROUPS

PETER MALICKY

ABSTRACT. The paper deals with metrics on a system of finite groups which are
defined by the greatest common subgroup and the smallest common supergroup of
two finite groups. An interesting result is obtained for groups S4 and Djs.

INTRODUCTION

Metrics on systems of graphs and posets were investigated in papers [1], [7]
and [4], [6] respectively. Paper [3] of A. Haviar investigated four metrics on a
system of finite universal algebras. The present paper studies metrics on a sys-
tem of finite groups which correspond to the substructure and superstructure met-
ric of A. Haviar.

Two groups are considered to be near if they contain a large isomorphic subgroup.
Alternatively, two groups are considered to be near if they are embedable into a
small group.

1. GREATEST COMMON SUBGROUP AND SMALLEST COMMON
SUPERGROUP OF TWO FINITE GROUPS

Definition 1.1: Let G and G5 be finite groups. The symbol m (G4, G2) denotes
the maximal order of a group G such that G; and G2 contain subgroups K and Ko
isomorphic to G. The symbol M (G;,G2) denotes the minimal order of a group H
containing subgroups H; and Hs isomorphic to G; and G5 respectively.

The product of two elements a and b of a group G will be denoted simply ab. If A
and B are subset of a group, then the symbol AB donotes the set of all products ab,
where a € A and b € B. The unity of any group will be denoted by e. The symbol
|A| denotes the cardinality of a set A.

In the whole paper we shall use the following obvious lemma.
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Lemma 1.1: Let G be a group, G; and G be finite subgroups of G.

— [Gi1]|Gs]
Then |G1G2| = m.

Proposition 1.2 For any two finite groups G; and G the following inequalities
hold.

(i) 1< m(G1,G2) < g.c.d.(|G1],]|G2|) and m(G1,G2) is a common divisor of
|G1| and |G2|

(i) s.cm. (|G1],|G2|) < M(G1,G>) < |G1|-|G2| and M (G, G2) is a common

multiple of |G| and |G>|.
G1l|G

(i) M(G1,G2) > %

Proof: Parts (i) and (ii) are obvious. We shall prove (iii). Let H be a group
of the minimal order containing subgroups H; and H, isomorphic to G; and G2
respectively. Without loss of generality we may assume that Gy = Hy and Gy = H>.
Then Gy N G4 is a subgroup of Gy and G2 which means m(G1,G2) > |G1 N Ga.
Since G1 G5 is a subset of H, we obtain

G1]-|G G1l|G
M(GlaGQ) = |H| 2 ‘GIGZ = “Glllm‘gj“ > ,ln(gllﬁgz‘)-

It completes the proof.

The symbol D,,(n > 2) denotes the dihedral group, i.e. the symmetry group of
a regular polygon with n edges. This group is generated by the elements r and ¢
satisfying relations r™ = ¢t = e and trt = r—!. The element 7 is a rotation through
angle 27” and t is an axial symmetry.

The symbol S,, denotes the group of all permutations of the set {1,...,n}. It is
easy to see that the cycle p = (12...n) and the permutation

/12 3 ... n-1n
\1n on-1 ... 3 2

generate a subgroup of .S,, isomorphic to D,,. For n = 3 the groups S,, and D,, are
isomorphic.

Lemma 1.3: Let j and n be coprime integers, 1 <j<n—1land 0 <k <n-—1.
There is a unique automorphism v : D,, = D,, such that () = r7 and 9 (t) = r*t.
Conversely, any automorphism v : D, — D,, has such a form.

Proof: Under the above conditions about j and k the elements p = 7/ and
7 = r¥¢ satisfy the same relations as r and t. Therefore, formulas 4(r) = ¥ and
¥(t) = r*¢ define an automorphism. Let 1 : D,, — D,, be an automorphism. The
order of the element ¥(r) is n, so 1 (r) = r/, where j and n are coprime integers
and 1 < j < n—1. The order of the element v (t) is 2 and this element does not
commute with 1 (r) = r7. So, ¥(t) = r¥t, where 0 < k <n — 1.

If a natural k is a divisor of n, i.e. n = jk for some natural j, then the elements
s = 17 and t satisfy relations s* = 2 = e and tst = s~! and they generate
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a subgroup which may be identified with Dj. In this situation we shall assume
Dy C D,. The following lemma may be generalised, but we shall use only this
special case.

Lemma 1.4: For any automorphism ¢ : Dy — D, there is an automorphic
extension ¢ : Di2 — Djo.

Proof: In this situation n = 12,k = 4,5 = 3 and s = r°. By Lemma 1.3.,
we have ¢(s) = s or 9(s) = s° and ¢(t) = s*t, where 0 < k < 3. For the
definition of an automorphism ¢ : Dijs — Dio it is sufficient to define (t) and
p(r). Put o) = ¥(t). If ¢(s) = s, then put ¢(r) = r. In this case p(s) =
o(r?) = (p(r))? =13 = s = 1(s). If (s) = s°, then put (r) = r''. In this case
o(s) = p(r®) = (p(r)® = (r)3 =13 = r9 = s = (s). So, ¢ is an extension of

.

Lemma 1.5: There is a group H of order 96 which contains subgroups H; and
H, isomorphic to Sy and D1s.

Proof: Let C; be a subgroup of Dj5 generated by the element s = r® and Ds
be a subgroup generated by the elements p = 7% and ¢. Then |C4 N D3| = 1 and

|C4Ds| = “g‘iugs“ = 24 which means C4D3; = D1»>. Note that zsz~! = s, when z
1

is a rotation and xsz~! = s~!, when z is an axial symmetry. So, C, is a normal
subgroup of D;» which is an internal semidirect product of Cy and Dy, [5,p.27].
Using this fact and isomorphism of D3 and Ss, it may be easily shown that D, is
isomorphic to the Cartesian product C4 x Ss with the group operation defined by
the formula [z, o]y, 7] = [xy*9"?, 07|, where z,y € C4,0,7 € S3 and sgn o denotes
the sign of a permutation ¢ € S3. Replacing S3 by S; in the above construction,
we obtain the required group H.
The following theorem is the main result of this paper.

3

Theorem 1.6: Let Gy = S; and Gy = Diy. Then m(G1,G2) = 8 and
M(G1,G2) = 96. It means that the inequality M(G1,Ga) > LG8 can not

m(G1,G2)
be replaced by the equality M (G4, G>) = %

Proof: We shall show the equality m(Gy,G2) = 8. Clearly, both groups G,
and G2 contain a subgroup isomorphic to Dy of order 8. It means m(Gy,G2) > 8.
The group Dis is generated by the elements r and t satisfying relations rl? =
e = t? and trt = r~!. The group S, contains only permutations of the form
(ijkl), (ijk), (i7), (kl) and (ij) the orders of which are 4,3,2 and 2 respecively.
On the other hand the group Di, contains the element r, the order of which is
12. The groups G; and G5 are not isomorphic which means m(Gy,Gs) # 24. We
shall show m(G1,G2) # 12. Let G be a subgroup of Dq5 with |G| = 12. Then
the index of G is 2. So, G is a normal subgroup of D5 and the order of the
factor group Di»/G is 2 which particulary means r> € G. The order of r? is 6
and Sy does not contain such elements. So, Sy does not contain a subgroup iso-
morphic to G. It means m(G1,G2) # 12. It proves m(G1,G2) = 8. Proposition
1.2 implies M(G1,G2) > 72. We shall show M(G1,G2) # 72. Let H be a hypo-
thetical group of order 72 which contains subgroups H; and H» isomorphic to Sy
and Dq2. So, there are monomorphisms 1 : S4 — H and ¢y : Dy» — H with
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©1(S4) = Hy and ¢y (D12) = Hy. Assume that Sy is group of all permutation of the
set {A, B,C,D}. The elements s = r3 and ¢ generate a subgroup of Djs which is
identified with D4. Let v : D4y — S; be a monomorphism defined by the formulas
¥(s) = (ABCD) and 9(t) = (BD). Denote by a = ¢1(ABC),z = ¢1(ABCD)
and y = ¢ (BD). Since (ABC)? = e and (ABC)(ABCD)(ABC) = (BD), we
have a® = e and ara = y which means ax = ya®. There is an element b € H
such that b # e,ab = ba,xzb = bx,by = yb> and b?y = yb. This is a contradiction,
because ya?b = axb = abx = bax = bya® = yb*a? which means a?b = b%a® = a?b?
and e = b. We shall show the existence of such an element b € H. The images
p1(1(Dy)) and p2(D4) are Sylow subgroups of order 8 in H. By Sylow theorem,
they are conjugated by an inner automorphism in H,[5,p.39]. So, without loss of
generality we may assume ¢, (1)(D4)) = @a(D4). Denote by f = 5" 0 ¢y 04p. The
mapping f is an automorphism of D4 and by Lemma 1.4., there is an automorphic
extension ¢ : Dijy — Di2 of f. Now, the monomorphism ¢y o f : Do — H is
an extension of ¢; ot : Dy — H. Replacing 2 by 3 o f, we may assume that
p2(2) = p1(¢(z)) for any z € Dy. The element a = ¢;(ABC), generates a sub-
group K; of H with |K;| = 3. Since |H| = 72, the subgroup K, is contained in
some Sylow group K of order 9,[5,p.39]. Denote by G = ¢1(1(D4)) = 2(D4).
Since |G| = 8, we have |G N K| = 1 and |GK| = 72 which means GK = H.
Therefore, HyK = H and |H, N K| = HEE = 3. Put K, = Hon K. Tt is a
subgroup of Hs of order 3. The group Dj, contains a unique group of order 3, it
is a subgroup C3 generated by the element p = r4. It means Ko = 2(C3). The
element b = ps(p) # e has the required properties. The group K is commutative,
because any group of the order p? is commutative, [5, p.39]. It proves ab = ba. Since
ps = sp and @2(s) = ¢1(¥(s)) = p1(ABCD)) = z, we have zb = bz. Finally,
relations by = yb? and b?y = yb follow from relations p® = t> = e, tpt = p~! and
wa(t) = e1(¥(t)) = ¢1(BD) = y. The proof of M(G1,G2) # 72 is complete. The
following multiple of 24 is 96. Now, M (G1,G2) = 96 by Lemma 1.5.

2.SUBGROUP METRICS
For two finite groups G; and G put d(Gy,Gs) = |G1| + |Ga| — 2m(G1, G2).

Proposition 2.1: The function d is a metric, i.e. for any finite groups G1, G2
and G3

(i) d(G1,G2) >0 and d(G1,G2) =0 if and only if G; and G4 are isomorphic

(il) d(G1,G2) = d(G2,G1)

(i) d(G1,Gs) < d(G1,G2) + d(G2,G3) and the equality appears only in the
case when G5 is isomorphic to a subgroup of G or Gj.

Proof: Parts (i) and (ii) are obvious. Let H; and Hy be isomorphic subgroups
of G; and G5 respectively for which |Hy| = |Hz| = m(G1,G2) and ¢ : Hy — Hj be
the corresponding isomorphism. Similarly, let K5 and K3 be isomorphic subgroups
of G2 and G35 respectively for which |K»| = |K3| = m(G2,G3) and ¢ : Ko — K3 be
the corresponding isomorphism. Obviously, the groups p(H>NK>) and ¢(Ha N K>)
are isomorphic which implies m(G1,G3) > |Ha N Ka| = |Ha| + |Ka| — |[H2 U Ko| >
m(Gl, Gg) + m(Gg, G3) — |G2|

Therefore, d(Gl,Gg) = |G1| + |G3| — 2m(G1,G3) < |G1| + |G3| + 2‘G2| —
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2m(G1,G2) —2m(G2,G3) = d(G1,G2)+d (G2, G3). The equality appears if and only
if |[Hy U K| = |G2| which is possible only in the case Ho = G2 or K3 = G». In the
opposite case we should have | HyUK>| = |Ha|+|Ka|—|H2NKs | < 3|Ga|+3|Ga|-1 <
|Gal.

Proposition 2.2: For any two finite groups G; and G2

(i) d(G1,G2) = |G1| + |Ga| — 2 if the orders are coprime

(ii) d(G1,G2) < |Gi| + |G2| — 2p if the orders are not coprime and p is the
greatest prime number dividing the orders |G| and |G>]|.

Clearly, the metric d is unbouded. So, for any two finite groups G1,G> put:

_ (G1,G2)
(G, G2) =1 = G iean:

Proposition 2.3: The function J is a metric which attends values in the interval
< 0, ].) If |G1| = |G2| =n, then d(Gl,Gg) = 2”(5(G1,G2).

Proof: The triangle inequality is obvious if G5 is isomorphic to Gy or G3. In the
opposite case m(G1,G2) < tmaz(|G1],|Gz2|) and m(G2,G3) < tmaz(|Gal,|Gs)).
Therefore §(G1,G3) < 1 = % + % < 0(G1,G2) + 6(G2,G3). The other properties
are obvious.

3.SUPERGROUP METRIC
Copying the superstructurre metric of [3], we define

p(G1,G2) = 2M(G1,G2) — |G| — |G|

Example 3.1: Let |G1] = 5,|G2| = 2 and |G3| = 3. Then M(G:1,G3) =
]-57M(G11G2) = 107M(G27G3) = Gap(Gl’G?)) = 227P(G17G2) = 13,[)(G2,G3) =
7 and p(G1,G3) > p(G1,G2) + p(G2, G3). So, the function p is not a metric.

Example 3.2: Let G; = C5,G> = Cy x Cy and G3 = Cy x Cy x (5, where
C), denotes the cyclic group of order n. Then m(G1,G3) = 2,m(G1,G2) = 4 =
m(G2,G3). By Proposition 1.2., we have M(G1,G3) > 32, M(G1,G2) > 16 and
M(Gy,G3) > 16. Using the direct products Cy x Cy X Cs,Cy x Cs and Co x
02 X 04, we obtain M(Gl,G3) = 32,M(G1,G2) = (Gz,Gg) = 16,p(G1,G3) =
48,p(G1,G2) = p(GQ,Gg) = 16 and p(Gl,Gg) > p(Gl,Gg) + p(G2,G3). Thus, the
function p is not a metric on the system of all groups of order 8.

Part (iii) of Proposition 1.2. may be rewrite as m(Gy1,Ga) > %

the right side may be considered as an alternative of the left side and we define
supergroup alternatives of subgroups metrics d and §

Now,

B |G1] - |Ga]
d1(G1,Ga) = [G1| +|Gal = 2T
min(|G1), |G2))
= 1 = T A N
81(G1,G2) M(G1,Ga)
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The proof of the next proposition is similar to the proof of 2.3.

Proposition 3.3: The function 0; is a metric which attends values in the in-
terval < 0, 1) If |G1| = |G2| =n, then d1 (Gl,Gg) = 2n61(G1,G2).

Collolary 3.4: The function d; is a metric on a system of all groups of order n.

Example 3.1: Let Gy = S4,G2 = Dy and G3 = Dq2. Then by Theorem 1.6.,
M(G1,G3) = 96, M (G1,G2) = 24 = M(G2,G3),d1(G1,G3) = 36,d,(G1,G3) =
16 = d; (GQ,G3) and d; (Gl,Gg) > dy (G1,G2) + dy (GQ,Gg). SO, the function d; is
not a netric on the system of all groups.

Proposition 1.2. and Theorem 1.6. imply

Theorem3.5: For any finite groups G; and G2
di(G1,G3) < d(Gy,G2)

01(G1,G2) <6(Gy,Go)
If G; =S4 and Gs = D15 then the inequalities are strict.

All metrics considered in the present paper are not interesting from the topolog-
ical point of view because they induce the discrete topology on any set of groups
which does not contain isomorphic groups. These metrics are only number charac-
teristics which express the degree of relationship of two groups. The same may be
said about cited papers [1],[3],[4],[6] and[7].
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