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LAGRANGEANS ON A MANIFOLD
WITH A (1,1)-TENSOR FIELD

ANTON DEKRET

ABSTRACT. The main object of this paper is the Lagrange calculus of first order on
a manifold with a given (1,1)-tensor field.

INTRODUCTION

In this paper we deal with Lagrangians of first order that are functions L :
TM — R on the tangent bundle TM of a manifold M, when on M is given a
(1,1)-tensor field A: M — T*M @ TM. Recall two canonical objects on TM: the
Liouville field V' the flow of which is determined by the homotheties on the fibres of
pym : TM — M and the endomorphism v : TM — T* M & VI'M which is induced
by the identity on T'M and by the canonical identification VI'M = T MxyTM of
the subbundle VT'M of vertical vectors on T'M .

We use well known notions of the Lagrange formalism and the theory of lifting:

1. The Lagrange equation ixdd, L = dL — V' L, see for example [1].

2. The Lagrange fields Sy, that are the semisprays (vector fields S on T'M with

the property v(S) = V) satisfying the Lagrange equation.

The Lagrange forms dy L,wy, = dd,L,dFE = d(L — VL).

4. The connection I'g canonically determined by a semispray S on T M, see
[2].

5. The natural lifts of a (1,1)-tensor field A on M in the tangent bundle TM
first of all the vertical lift Av and the complete lift Ae, see [5].

In the first section we deal with the affine space of the connections on TM with
the property Ac(HT) C HT, where HT is the horizontal subbundle of a connection
T'. In general, a (1,1)tensor field & on T'M is called T-parallel if o( HT) C HT. We
find conditions for A such that Ac is I'g-parallel and conditions under which there
exists a unique connection I' such that LgAv is I'-parallel where Lg denotes the
Lie derivative of Av with respect to a given semispray S.

The second section is devoted to the mutual relations between wy and A. Here
some equalities of the first order Lagrangian calculus on a manifold M with a (1,1)-
tensor field are introduced. Proposition 8 states the conditions under which there
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is a unique connection T such that wy (hr, Ac-hr) = 0. In Proposition 9 it is proved
that the Lagrange field St satisfies the equality

ideAUL = iAcdl - d(VAL), VA = AU(S)
Tt is proved (Proposition 11) that the equality
tacxddy L = ixdda, L

1s satisfied if the 2-form dis.d 1s semibasic. Proposition 12 states the conditions
under which the equation

isiacwr = d(VaLl) —iac(d(E — L))

has a unique solution.
In this paper we suppose that all manifolds and maps are smooth.

1. SEMISPRAYS AND CONNECTIONS ON A MANIFOLD WITH
(1,1)-TENSOR FIELDS

Let M be a manifold, (z') be a local chart on M and (z', z}) be the induced chart
on TM. Denote by V = 219/0z" the Liouville field on TM, by v = dz'©®d/dx} the
canonical (1,1)-tensor field determined by the identity on TM and by the canonical
identification VI'M = TMayT M, where VI'M 1s the vector bundle of all vertical
vectors on T'M .

Recall that a vector field X : TM — TTM on TM is called a differential
equation of second order (shortly a semispray) if v(X) = V| i.e. if its coordinate
form is

X =210/0x" + 0 (x,21)0/0x" .

Let a = (aédxj + b;dx‘z) ® 0/0x" + (c‘?dxj + h;dxj) ® 0/0x% be a (1,1)-tensor field
on TM. We say that a is vertical if «(VTM) C VT M, ie. ifv-a-v=0.

A connection I' on the fibre manifold p,, : TM — M can be introduced as a
(1,1)-tensor field hr (the horizontal form of the connection) satisfying the conditions
hr(VTM) =0, Tpmhr = Tpar where throughout this paper we use the denotation
TF for the tangential prolongation of a map F. In coordinates hr = dz' ® 9/dc' +
F}(x, z1)dx? ©0/02" , where F} are the local components of T'. Then HT := I'mhp C
TTM is the horizontal subbundle of the connection T (satisfying the equation
dxli = F;da:j and the decomposition TTM = VTM & HT) and vr = Idpray — hr
is the vertical form of the connection I'. Recall that the set of all connections on
TM is an afinne space associated with the vector space C®(T*M @ VTM) of all
semibasic 1-vector forms with values in VT M. '

There is a unique semispray Sr : z}d/dz" + F;x{ d/0x" which is T-horizontal.

Every semispray S determines the connection I's the horizontal form of which
1s hr = %(IdTTM — Lgv), where Lgv is the Lie derivative of v with respect to S.
Tts compone'nts are F; = %77}1, where the denotation f;, : 8f/0x} together with
fi := 0f/0x* will be used throughout our paper.
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Definition 1. Let a be a (1,1)-tensor field and T' be a connection on TM. The
field « is called T-parallel if «(HT) C HT.

We will introduce the coordinate condition for a to be I'-parallel. If we use the
above expression of o and if I'; are the components of I' then

(1) a-hr = (a§ + biF;)dxj @ d/0x" + (c; + hiF;)dl‘j @ /0x} .
Then « i1s T-parallel iff
(2) T (a¥ 4+ byTE) = ¢ + hiTh .

Let A= a‘?dxj ® d/0z" be a (1,1)-tensor field on a manifold M. We will prefer
two natural lifts of A on TM, see [5]:

a) the vertical lift Av = aédxj ® 0/0x" that is a semi-basic vector 1-form on
TM induced by the identification VI'M = TMaxpyTM,
b) the complete lift Ac = a‘?dxj ®d/dx + (a?kx’fdxj —|—a§»dx{) ®d/dx} which is
determined by the map iy-T A-ia, where iy : (2", 2%, da’, d2}) — (2, d2’, 2}, da})
is the canonical involution on T'M .
Recall that the vector field Ac is vertical and

v-Ac= Ac-v=Av .

Definition 2. A (1,1)-tensor field A on M is called T-parallel if Ac is T-parallel.
We will need the coordinate form of the Lie derivatives Lg Av, Lg Ac with respect

to a semispray S. We get

LgAv = —aé»dxj @ d/0x" + [(a;kx’f - nzla";)dl‘j + aé»dx{] @ 8/0x!

LsAc = [(ajy, 22} + alyn® + ainff — 0, a2} — njaf)da’+

+ (2a%p2f + ajnf, — i, af)dal) @ 0/0x)

So the field LgAc is a vector 1-form with values in VT M. Therefore v - LgAe = 0.
The field LgAv 1s vertical and v - LgAv = —LgAv - v = Aw.

Proposition 1. Let S be a semispray and I's be the canonical connection deter-

mined by S. Then Ac — LgAv = 2hr, - Ac.

Proof. The equality Av = v - Ac gives LgAv = Lgv - Ac+ v -LgAc = Lgv - Ac.
Then the equality Lsv = Idprar — 2hr, completes our proof.

Corollary. The tensor field Ac — LgAv is a vector 1-form with values in HI'g.

Remark. Tf A is a regular field then also LgAv is regular. Tt is easy to show that
(LSAU)_lrg is just the connection on T'M the horizontal subbundle of which 1s
given by vectors Y such that Lg(LsAv)(Y) is vertical and that the connection T

does not depend on the choice of the semispray S



Let T be a connection on T'M. If A is regular then also Ac is regular and then
the subbundle I'm Ac - hr states the connection AT the local components of which
T = (aj2f + aiT})aj,  ajaj = o},
immediately follow from the equality (1).

In the case of the tensor field o = Ae the equality (2) reads

B iU 1 k s
(2°) [yai = ajpxy +agly .

If T, T are two connections with respect to which is the tensor field A parallel then
from (27) we get '

(T} —T,)a¥ —a (T —T;) =0
This equality together with the fact that Av and T' — T are sections TM —

T*M @7y TM immediately give

Proposition 2. Let T be a given connection on T M. The set of all (1,1)-tensor
fields A on M which are T-parallel is a real vector space. Let A be a given (1,1)-
tensor field on M. Then the set of all connections I' on T'M with respect to which
A is T'-parallel is an afinne space associated with the kern of the linear map

Dy :COO(T*M QT M TM) — COO(T*M RrMm TM), & — AvE — EAv .

Proposition 3. Let S be a semispray on TM, T's be the canonical connection
determined by S and A be a (1,1)-tensor field on M. Then the following conditions
are equivalent

a) A is T'g-parallel,

b) LgAc is a semibasic vector 1-form with values in VT M,

c) LgAwv is T'g-parallel.

Proof. By the equality (2) the tensor field Lg Av is T'g-parallel iff

Lok E _k R
—57721%’ = ajry — Ny, + 5%%’1 :
This condition coincides with the equality (2) for the connection T'g, F; = %77;»1,

and with the coordinate condition Qa%x’f + aZn?l — a?nzl = 0 for LgAc to be
semibasic. Proof is finished.

Proposition 4. Let S be a semispray on TM and A be a (1,1)-tensor field on M.
If the (2,2)-tensor field AT := A ® Idrayr + Idpayr @ A is regular then there is a
unique connection I' on T'M such that the tensor field L s Av is T'-parallel.

Proof. Let F; be the components of a connection T'. Then the condition (2) for the
tensor field LgAv to be I'-parallel reads

7 ¢S 7 s u o 1 k 7 k
(au6] +6ua])rs = nkla]’ — ajk$1 .
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It completes our proof.

Remark. Tt is easy to prove that the tensor field LgLgs Av is not vertical and that it
holds v - LgLgAv - v = —2Av. Therefore if A is regular then there are connections
Ty, Ty such that ATy = LgLgAv(VTM) and LgLsAv(HTy) = VT M.

2. GEOMETRY OF LAGRANGIANS ON MANIFOLDS WITH
A (1,1)-TENSOR. FIELD

First, recall some notions and properties.
Let o be a (1,1)-tensor field on TM, X be a vector field, € be a k-form on T'M.
Then the symbols i, and ix denote derivatives

ine(Y1,.. Vi) =Y (i, ... a(V),..., Vi),
ix6(Y1,...,Yk_1) = E(X,Yl,...,Yk_l), da = [ia,d] = iad—dia

where d denotes the exterior derivative.
It holds
dad:—dda, LXZixd—l—dix, dLXZLxd,

where Lx denotes the Lie derivative of exterior forms with respect to a vector field
X.
When ¢ is a (0, 2)-tensor field on TM we will use the following denotations

e, e*(X,)Y) = ¢(aX,Y),
€a, €a(X,Y) = (X, aY),
ca, ca(X,Y) =e(aX,aY) =a"e(X,Y) .

It is clair that if ¢ is a 2-form then 1,6 = &% + ¢,.
Let L be a Lagrangian of first order on M, i.e. a function on T'M. Then the
forms

dyL = Li d2', d,L =1i,dL ,

wr, =dd,L = Liljdxj Adz' + Liljldx{ A dz!
are called the Lagrange 1- and 2-form of Lagrangian L. When the map I :
Co(TM - TTM) — C®(TM — T*TM),X — ixwy, is regular then the La-
grangian L is called regular. In this case, the Lagrange 2-form wy, is symplectic.
Locally L is regular iff det L;,;, # 0. The equation
(3) ixwrp =dF, E=L-VIL,

is a basic equation of the Lagrange formalism of first order. It is called the Lagrange
equation. Every semispray, which is a solution of (3) is called the Lagrange field
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and denoted by Syp. Recall that when L is regular then there is a unique solution
of the equation (3) and moreover it is a semispray, i.e. it is the Lagrange field.
We introduce some coordinate expressions we will need.

(4) Liltlnt =1L;— L“kl‘lf )
that is the equation (3) for semisprays

w% = (lesaf + leslcf - lejaf)dxldy] + (lesbf + leslhf - lejbf)dxlldy]_
— Ly jyaidaidyl — Ly i bidatdyl
wra = (leuafaf; + leulafc?)dxj Adzt + (leuafbf; + L aih¥ — leubj =

S1U1 ™ 0y

—Lyyublet)day Ada’ + (L, ubib¥ + Ly, u, b ct)dad Adz)

i s1u1 % €
Wit = (Lj,sai + Ly, alpeh — Lyjal)de’ @ de? + Lj g aldet @ dad — Ly ;,aide’'®
®dx{ ,
Wi = L g aldeidy’,  wY = L de'dy’ .

The tensor fields wf”, wj can be interpreted as the sections (.Df”, wy TM —
V*ITM @ V*TM.
These expressions immediately give

Lemma 1. Ifwfc 1s symmetric or skew-symmetric then wf” 1s skew-symmetric or

symmetric.

Lemma 2. The tensor field w§ is symmetric or skew-symmetric iff iowy, = 0 or
lawy, = 2wy, respectively.

Proof. Since wy, is a 2-form therefore wro(X,Y) = wp(X,aY) = —wp(aV,Y) =
—w (Y, X) = —(w§)(X,Y). Then the equality ipwr = w$+wr, finishes our proof.

Definition 3. Wesay that vector fields X, Y on TM are wr-orthogonal ifwr, (X,Y) =
0. Tensor (1,1)-fields a1, 2 on TM are called wr-orthogonal if wy (a1 X, eaY) =0
for any vector fields X, Y. A tensor (1,1)-field & on T'M is said to be wg-isotropic
if wpae = 0. A tensor (1,1)-field A on M is called wg-isotropic if its complete lift
Ac is wy-isotropic.

Definition 4. Let 7 C TTM be a subbundle of the tangent bundle ppas :
T(TM) — TM. The symbol Orthy 7 will denote the set of tangent vectors YV
on TM such that wr,(X,Y) = 0 for any X € 7 satisfying prp X = pryY. We will
say that 7 is wr-Lagrange if Orth 7 = 7.

Definition 5. A connection T' on T'M is called wy-isotropic or wr-Lagrange if its
horizontal form hr is wy-1sotropic or wy-Lagrange respectively. We will say that
two connections I'y, T'y are wr-orthogonal if hr,, hr, are wp-orthogonal. When a
connection I' is wy-isotropic we will say that wy, is '-parallel as well.

Remark. Let (M, ¢) be pseudo-Riemannian manifold and T' be the Levi-Civita con-
nection of (M,¢). Then Vre = 0. Let £ be Sasaki metrics on TM which is the
natural lift of e. Then €hr = 0, 1.e. € is [-parallel.



Lemma 3. The tensor field wfc 1s skew-symmetric if and only if the vector fields

AcX and X are wy-orthogonal for every vector field X on TM.
Proof. w(AcX, X) =0 ¢ w*(X, X) = 0. Tt finishes our proof.

Let F} be the components of a connection I' on 7M. Then wrhr = (L, +
Lj s, T3)dz? A dxi. Therefore the equality

(5) Ljvi = Liyg + Ljys, T = Liys, T =0

is the coordinate condition for wy, to be T-parallel. _
If ' and T' are two connections on T'M such that wy, is I'- and T'-parallel then it
holds from (5)

(6) lesl(rf _F:) - Lilsl(rj - fj) =0.

We have proved

Proposition 5. Let T' be a given connection on T'M. Then the set of all La-
grangians L such that Lagrange forms wy, are I'-parallel is a vector subspace of the
vector space off all functions on T M. Let L be a given Lagrangian on T M. Then
the set of all connections I' on T'M such that wy, is I'-parallel is an affine space as-
sociated to the kernel of the antisymmetrization of the map ¢ : VT M @ VI'M —
V*TM @ V*TM determined by the rule 3 — (&Y)P, ﬁ; — Liltlﬁ‘;.

It is known, see for example [3], that wy, is T'y, parallel, i.e. we have

Proposition 6. Let S; be a Lagrange field. Then the connection T'y, determined
by the semispray Si, is wy-isotropic, i.e. wy, is 'y~ parallel.

We will say that the tensor (2,2)-field A ® Idpyr + Idryr @ A = Ay is regular if
the vector bundle morphism Ay : T* M @T*M — T*M @T* M over Idyr, (Trm) —
(aﬁé}* + 5?a§)xut, is regular.

Proposition 7. Let the tensor field Ay and the Lagrangian . be regular. Let the
tensor (0,2)-field wf” be skew-symmetric. Then there is a unique connection I' such
that hp and Ac - h are wg-orthogonal, i.e. wr (hrX,e-hrY) = 0.

Proof. Recall that if wi¢ is symmetric then wi? is skew-symmetric, i.e. Lje,al =

—Liyt,af. Let X = €9/0x' +1'0/0x', Y =€ 0/0x' +7'0/0x" be two vector fields
on T'M. Let I'; be the components of a connection I' on T'M. Then wr(hrX, Ac-
hFY) = (Ltlel? - letag + Ltlulr}la? - leulagkxllC - LJlula?Ff)g‘yg_Z USiIlg the
condition for wf” to be skew-symmetric the equality wr (hr X, Ac- hrY) = 0 holds
if and only if

t su u .t s _ 1. t ot . u ok
(aléj + 62 aj)letIFu = L“taj — Ltllaj + L“ulajkl‘l .

It finishes our proof.

Remark. The equality wfc(Ac ~hr,hr) = 0 in the case when A? = 4Idpys is
equivalent to the wr-isotropy of T or of Ac - hr in the case when wi¢ is symmetric
or skew-symmetric.

Inspiring by [4] we formulate



Lemma 4. Let X, Y be vector fields, I. be a Lagrangian, a be a (1,1)-tensor field
and ¢ be a 1-form on TM. Then the conditions

a,ixddaLZE—dYL, b, (Ly —ixda)dLZE

are equivalent.

Proof. LydL = (iyd + diy)dL = diydl = d(YL),dd,I. = —d,dL. Tt completes

our proof.

Let g = ﬁ; dzd ®/dx} be a vector semibasic form on T'M with values in VT M.
Denote V3 := 3(S), where S is an arbitrary semispray. In the case of 8 = Av we
will denote Av(S) := VA.

Lemma 5. Let S be a semispray, L be a Lagrangian and 3 be a semibasic vector
(1,1)-form with values in VT M. Then

(Lvg —isds)L =0 .

Proof. We get dgl. = igdl = L, fidx". Then isdgl = dgL(S). From the other
side Ly L = VB(L) = Ly, Bt} = dgL(S). Our proof is completed.

Corollary. Under the conditions of Lemma & it holds
(8) d(VAL) = disdgL .
We return to the case when o« = Ac, 8 = Av. We have dy, L = Ltlaﬁdl‘i
dd s, L = (Ltljaﬁ + Ltlafj)dxj Adz' + Ltljlaﬁdx{ Adz' .

It immediately gives

Proposition 8. Let both the Lagrangian I and the (1,1)-tensor field A on M be
regular. Then ddy, L is a symplectic form.

Lemma 6. Let S be a semispray. Then

taclsdyl = Loday L .

Proof. Lgd,L = (Lilkx’f + Lilklnk)dxi + Lildxli ,
LSdAUL = [(Lt1k1a§ + Ltlagk)ljlc + Ltlklaﬁk]dl’i + Ltlagdxi .

Now the equality of Lemma 6 follows from the expression of Ae.
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Proposition 9. Every Lagrange field Sy, is also a solution of the equation

(*) isdday L = iacdl — d(VA(L)) .

Proof. Being a Lagrange field Sy, satisfies the equation igdd, . = d. — dV L. Then
(9) iac(d(VL)+isddy L) =iacdl .
Using the equality (8) we get

d(VL)+igdd, L = digd, L+ igdd, L = (dis + igd)d, L. = Lsdy L .

Then by (9)
tacdl = ZAc[d(VL) + idevL] =igc.Lgd, L .

Analogously using (8) and Lemma 6 we get
d(VAL) +isdday L = digday L + isdday L = Lsday L = I4.Lsd, L .

Therefore Sp, satisfies the equation (*). Proof is finished.
Let X = ¢'9/0z' + 1°0/0z" be a vector field on TM. We calculate

txddys, L = [(Ltljaf — Ltlia§» — Lt1a§i + Ltlaﬁj)gj + Ltljlafnj]dxi — Lt1i1a§€jdxi
AcX = aé&’j@/@xi + (aékxlfé’j + aé»nj)ﬁ/@xi
taexdd, L = [(—Ltlia§» + Li1t6l§ + Li1t1a§kx’f)€j + Liltla§nj]dxi - Lt1i1a§€jdxi )
These expressions immediately give

Lemma 7. For any vertical vector field X on T'M the I-formsixdda, L, i4cxddy L
are semibasic. For every vector field X the 1-formis.xddy, L—ixdd,, L is semibasic.

Corollary. Let Y be a vertical vector field on T M. Then it holds
iaexddy L(Y) = ixdday L(Y)

for any vector field X on T M.
Definition 6. A (1,1)-tensor field A on M is called L-commutative if

tacxddy L = ixdda, L

for any vector field X on T'M.

Proposition 10. If a (1,1)-tensor field A on M is L-commutative then wf is
skew-symmetric.

Proof. The (0,2)-form w? is skew-symmetric iff dd, L(AcY, X) = —dd, L(AcX,Y).
Let A be L-commutative. Then for any vector fields X,V we get dd, L(AcX,Y) =
iaexddy L(Y) = ixdday L(Y) = dday L(X,Y). Analogously dd, L(AcY, X) =

dday L(Y, X) = —=dd 4 L(X,Y). Tt completes our proof.
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Proposition 11. A (1,1)-tensor field A on M is L-commutative if and only if the
2-form dd 4.L is semibasic.

Proof. By the direct computation we get
digedl = (Lyjal + Ltafj + Ly, jal,eh + Ltlafijlf)dxj Adz'+
+ (Ltjlcﬁ + Ltljlakalf + Ltlaﬁj — Ltlia§» — Lt1a§i)dx{ Adz'+
+ Ltljlafdx{ Adxi .
Comparing it with the expression for ¢4.xdd, L — ix dd s, L we finish our proof.

Remark. Recall the map Iy, : X — ixdd, L. If we denote by I 4 the map X —
ixdda, L we can say that A is L-commutative if and only if I, 4 = I, - Aec.

Lemma 8. wf 1s symmetric iff igox ddy L = —igcixddy L. wf 1s skew-symmetric

iff taexddy L = iacixddy, L.

Proof. (iaexdd, L)(X) = ddy L(AcX,Y) = wi(X,Y), (iacixdd,L)(Y) =
(ixdd,L)(AcY) = dd, L(X, AcY) = wpa(X,Y) = —(w$)(X,Y). Tt completes our
proof.

In the rest part of this paper we will deal with the 2-form ¢4.wy. In general it is
not closed. We introduce its expression i4.wy = (Ltljcﬁ —|—Li1ta§» —|—Li1t1a§kx’f)drj A
det 4+ (Lt j,al + Li1t1a§)dx{ A dzt.

Let s(wa?) = (Liys,aj + Lj,s,ai)dz'dy’ denote the symmetrisation of wi?. Tt is

clair that i4.wy 1s regular iff s(wf”) is regular.

Proposition 12. If the (0,2)-tensor field s(w#V) is regular then there is a unique
vector field X such that

ixiaewr = iac(dE +dL) —dVAL, E=1L-VL.

This vector field is a semispray.

Proof. By direct computation we obtain that the form ix(iacwr) + d(VAL) —
iac(dFE + dL) is semibasic iff X is a semispray. Then the assertion of Proposition

(12) follows from the term (Ly,;, at + Li1t1a§)dx{ Adz' in the expression of i4cwr .

Remarks.

1. Tf S is the Lagrange field then igiscwr (V) = tacwrn(S,Y) = wr(AeS,Y) +
wr (S, AcY) = dacswr (V) +iacdE. Therefore if A is L-commutative then
iacswr = tsddayl = iacdl — d(VAL), (see Proposition (9)), and then
15T 4cWr, = tacdl — d(VAL) +iq.dE.

2. In the case when wf 1s skew-symmetric then i4.wy = wa. Then 74.wy,
is regular iff Lagrangian L is regular and A is regular. Then the Lagrange
field satisfies the equation

iS(iAch) = QiAch .
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KERNEL AND SOLUTION NUMBERS OF DIGRAPHS

MATUS HARMINC

ABSTRACT. In this paper we show that for given nonnegative integers k, s there exist
infinitely many strongly connected digraphs with exactly & kernels and s solutions.

Kernels and solutions are certain vertex subsets of digraphs that are studied in
many books and papers e.g., [2, 3, 4, 5]. The number of kernels (or solutions) was
investigated in the papers [1, 6, 7]. The following provide a recapitulation of basic
observations:

(i) A directed cycle of an odd length has no kernel and no solution.
(ii) A digraph with no directed cycles has exactly one kernel and one solution.
(iii) A cycle of an even length possesses exactly two kernels and two solutions.

In connection with this two natural questions arise:

1. How many kernels and solutions a digraph can have 7
2. Are these numbers mutually dependent or not 7

The answer to the first question is trivial when & = s and the pairs of opposite
arcs are allowed. In this case it is sufficient to take the complete digraph with &
vertices (its kernels are vertex singletons). In this paper we show that for given
nonnegative integers k, s there are infinitely many pairwise nonisomorphic strongly
connected digraphs with no couple of opposite arcs that have exactly k kernels and
s solutions.

1. PRELIMINARIES

An ordered pair D = (V| A) is said to be a digraph whenever V' is a nonempty
set (vertices of D) and A (arcs of D) is a subset of the set of the ordered pairs of
V such that for each v € V it holds 7% ¢ A, and if u,v € V then ut € A implies
vl ¢ A. A set of vertices W C V is called independent if for every pair of vertices
u,v € W neither of arcs &0, 0 is present in the digraph. W C V is absorbent if
for each u € V — W there exists ut € A with v € W and dominant if for each
v € V — W there exists a0 € A with u € W. A set W C V is a kernel of D if W
is independent and absorbent and it is a solution of D if W is independent and
dominant. A conversion of D is a digraph ¢(D) = (V, B) with the same vertex set
as D and with the arc set B = {uf : v € A}. Tt is easy to see that the following
lemma is valid.

1991 Mathematics Subject Classification. 05C20.
Key words and phrases. kernel of digraph, solution of digraph.
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1.1. Lemma. Let D = (V| A) be a digraph and let W C V. Then W is a kernel of
D if and only if W is a solution of ¢(D).

As usual, a digraph is strongly connected, if for every u,v € V there exists a
sequence m, ajas, asaj, . . ., m in A. Let § denote the class of all finite strongly
connected digraphs. For a digraph D we immediately have:

1.2. Lemma. D € § if and only if ¢(D) € G.

Let us denote by C), the directed cycle with n vertices (n > 3). Evidently,
Cp € 6.

1.3. Remark. By (i) above, each of digraphs C5,C5, ..., Cay41,... has no kernel
and no solution. By (iii), each of digraphs C4,Cs,...,Cay, ... has two kernels
which are simultaneously the all solutions of the even cycle.

2. REsuLTS

The following lemma (c.f. [1]) provides a method for constructions of digraphs
belonging to § with the same number of kernels.

2.1. Lemma. Let D = (V| A), @t € A and let D(W) = (V', A") be a digraph such
that V! = V U {vi,va}, v1,v2 € V and A’ = (A — W) U {m,m,@}. Then the
number of kernels of D(W) equals to the number of kernels of D.

Proof. Let X and L denote the systems of the all kernels of D and of D(W),
respectively. Define a mapping f from X to £ in the following way: for K € X put
i KU{v} ifceK,

s ={ ot e

K U{ve} ifc¢ K.

It is easy to verify that the mapping f is a bijection between X and L. Thus,
cardX =card L. O

Let Gk, sy denote the set of all strongly connected digraphs with k kernels and s
solutions.

2.2. Corollary. If G s) is not empty then it is infinite.

Proof. Let D be a digraph from G and let k& be the number of its kernels. Let Tyl
be an arbitrary arc of D. Create D' = D(lTyl)) as above (see 2.1). Then choose
an arbitrary arc Zoys of I’ and create D’ = D’(lTyz)), etc.. Every member of the
sequence D, D’ D" ... belongs to G and by Lemma 2.1 each of them has exactly k
kernels. Since the number of vertices in these digraphs increases, they are pairwise
nonisomorphic.

Let s be the number of solutions of D. Then ¢(D) belongs to G and it possesses s
kernels as well as e(D’), e(D"),. ... In such way, D, D', D" ... have s solutions. O

According to Corollary 2.2 it suffices to find one digraph of § with k kernels and s
solutions for each pair of integers k, s. First, we shall present a digraph belonging to
G with exactly one kernel. The smallest digraph with such property is Dy = (V1, 44)

with Vi = {a1,b1,c1,d1} and with A, = {a1by, bicy, erdy, diay, bid, ).
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2.3. Corollary. § contains infinitely many digraphs with exactly one kernel.

. . —
2.4. Example. Let Dq be defined as in the previous. Take the arc bid; of Dy
and create D] = Dy (b1dy). Then choose the arc vady of D} and construct DY =

D} (vady), and continue in this way. Each member of the sequence Dy, Dj, DY, ...
belongs to § and by Lemma 2.1 they have exactly one kernel (and one solution).

D, b, Dy: D, b,
a1/bc1 a, ¢, a, ¢,
dy

Fig.1: The first three members of a sequence of digraphs Dy, Dy, DY, ...

. . . —_— —
Let Dg be the cycle with the vertices aq, bg, co and with the arcs agbg, boco, m.
— — SRAN
Let D2 = (VQ,AQ) where V2 = {az,bz,CQ,dz} and A2 = {azbz,bQCQ,Czdz,dzaz}.
Now we can construct digraphs with k kernels belonging to § for & > 3 in the
following way: Let k be an integer, k > 2. Denote by Dii11 = (Vig1, Agy1) the
digraph with

Vi4r = Vie U{ak41, b1, euyr, digr } and

Agy1 = Ar U{agy1bps1, begrcngr, coprdiyr, diprapqr f U

U {Chy1Ch, Qotpyi, A3k 1, - - Apllt1 )

The following figure shows the digraph D3 € § with three kernels, namely
{Clz, C2, b3a d3}’ {bz, d2a as, 63}’ {bz, d2a b3a d3}

Fig.2: The digraph Ds is strongly connected and has three kernels.

For every k > 0 let Dy be defined as above.
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2.5. Proposition. The digraph Dy has exactly k kernels for each nonnegative
integer k.

Proof. We have already stated that if k¥ € {0,1,2,3} then Dj has k kernels.
Now, we shall proceed by induction. Let k be an integer, k& > 3. For every
kernel K of Diyq holds that either b1y ¢ K or bpy1 € K. In the first case
ck41 € K, dpp1 ¢ K and apqy1 € K. Hence a; ¢ K for i € {2,3,...,k} and
K = {by,ds,b3,ds, ..., bi,dg,br11,dks1}. In the second case cx11 ¢ K,dii1 € K
and there exists a bijective mapping ¢ from the set {K : K is a kernel of Dy} to the
set {L : L is a kernel of D41} given by ¢(K) = K U {bgy1,dr1}. In this way we
have shown that the digraph Dy41 has one kernel more than the digraph D,. O

Cc

0
DO: D1: D2:
¢y ¢,
a, a,
a, by b b

Fig.3: D; fori€ {0,1,2,6} with 0,1,2 and 6 kernels, respectively.

2.6. Theorem. Let k,s be nonnegative integers. Then Gy ;) is infinite.

Proof. By Corollary 2.2 it suffices to show that G o) # 0.

We take Dy and ¢(D;,) with the disjoint vertex sets {a;,b;,...} and {@;, b;,...},
respectively. First we add all the possible arcs beginning at a vertex of ¢(Dy) and
ending at a vertex of Dj. Then we add one new vertex v together with arcs from
v to every a;, and to every existing d; of Dy and from v to every b; and every &
of ¢(Dy). Also we add all the arcs from every b; and every ¢; of Dy to v and from
every @; and every existing d; of e(Dy) to v.

We shall show that the resulting digraph D is an element of G ). It is easy
to see that the digraphs Dy and ¢(D;) are strongly connected and therefore the
digraph D which we have constructed is strongly connected as well. Any kernel K
of D must not contain vertex v because if v would be in some kernel K then the
independence of K implies that there is no more vertices in K; it means K = {v}
what contradicts to the absorbency of K.

18



Fig.4: The construction of a digraph belonging to G ).

The independence of K implies that K cannot have nonempty intersections with
Dy and with ¢(D;) simultaneously. Tt means that K is a subset of Dy or a subset
of ¢(D;). But subsets of ¢(D;) are not absorbent in D. Therefore K is a kernel of
Dy,.. Conversely, every kernel of Dy, is a kernel of D because we did not add any new
arc among the vertices of Dy (the independence) and each kernel of Dy contains
either ap or dg, so 1t is absorbent not only in Dy but in D as well. Now we have
verified that D has k kernels.

Analogously, the set of the all solutions of D is the same set as the set of the all
solutions of ¢(Dy), therefore D has s solutions, and the proof is complete. O

A digraph belonging to Gz s) with the minimal number of vertices is called a
minimal digraph of Gy, 5). The number of the vertices of a minimal digraph of G, o
will be denoted by k % s.

2.7. Proposition. Let kxs =min{cardV : (V, A) € G 5)}. Then
(i) 0x0=3, O0xl=1%0=5 0x2=2%0=6,

(i) 1x1=2%2=4, 1%2=2%1=5,

(i) if k> 1 then k%0 <4k and kx1 <4k + 1 and

(iv) kxs <4(k+s)— 7 whenever k> 1 and s > 1.

Proof. By Lemmas 1.1 and 1.2 the operation % is commutative. The only minimal
digraph of G 0y is Do thus 0% 0 = 3. The Figure 5 shows minimal digraphs of the
classes G(0,1), G(0,2) and Gy 2). D1 is the minimal digraph of G(; 1) and Ds is the
minimal digraph of Gs ). In order to obtain the inequalities for k > 1 it suffices to
enumerate the number of vertices of the digraphs constructed above. O
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X

Fig.b: Minimal digraphs of G(0,1y, 9(0,2) and G1 2y.
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ON V-IRREDUCIBLE ELEMENTS IN
THE POSITIVE CONE OF AN /-GROUP

JAN JAKUBIK AND (GABRIELA PRINGEROVA

ABSTRACT. Let GG be an f-group. The relations between the structure of G and the
conditions concerning V-irreducible elements in the lattice Gt are investigated in
this paper.

1. INTRODUCTION

The classical theorem of Birkhoff ([1], pp. 142-143) deals with the representation
of elements of a distributive lattice as irredundant joins of V-irreducible elements.

For related results and for further references cf. the expository paper of Dilworth
[3]

Let Gt be the positive cone of an f-group (7. Then Gt is a distributive lattice.
In this note we are concerned with the following conditions for the lattice G*:

(a) For each x € G* there exists an irredundant representation
r=x1VaxaV- -V,

such that each z; (i = 1,2, ...,n) belongs to Gt and is V-irreducible in G,
(b) For each € G there exists an irredundant representation z = \/
such that each x; belongs to GT and is V-irreducible in G¥.

The notion of completely subdirect product of linearly ordered groups was in-
troduced by Sik [6].

In the present note we prove

(A) The condition (a) holds if and only if GG is a direct sum of linearly ordered
groups.

(B) The condition (b) is valid if and only if G is a completely subdirect product
of linearly ordered groups.

ier i

The main result of the recent paper [7] is the following theorem:

(¥) Let L be a lattice such that

(i) L satisfies the descending chain condition;
(ii) each element of I has one and only one representation as an irredundant
join of a finite number of V-irreducible elements.

1991 Mathematics Subject Classification. 06F15.

Key words and phrases. {-group, V-irreducible element, irredundant representation, completely
subdirect product
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Then the lattice L is distributive.

Unfortunately, in the proof of () there was applied a lemma (given on p. 95 of
[7]) which is false, and the assertion (x) is false as well (cf. the remark at the end
of Section 3 below).

2. PRELIMINARIES

Let L be a lattice. An element a € L is called V-irreducible if, whenever b,c € L
and a = bV ¢, then either a = b or a = c.

Let € L and let (2;);e1 be an indexed system of elements of L such that the
relation

(1) x:\/xi

is valid in L. The representation (1) is said to be irredundant if either
(i) card I =1,

or
(it) card I > 1 and whenever j € I, then the relation

r = \/ X;
ieI\{5}
fails to be valid.

For lattice ordered groups (shortly £-groups ) we apply the notation as in Conrad
[2]. In particular, the group operation is denoted by +, though we do not suppose
this operation to be commutative.

The positive cone G of an (-group G is the set {z € G : 2 > 0}.

Let (G;)ier be an indexed system of £-groups . The direct product

e
i€l
is defined in the usual way.
Assume that G is an f-group and that we have an isomorphism

(2) p:G— H G
i€l
of G into [[;.; Gi. For g € G and i € I we denote by g; the component of ¢(g) in

Gi.

If for each i € I and each element ¢ € G; there exists ¢ € G with g; = ¢, then
(2) is said to be a subdirect product representation of G.

If, moreover, for each i € I and each t' € G; there exists ¢ € G such that g; =
and g; = 0 whenever j € I'\ {{}, then (2) is called a completely subdirect product
decomposition of G

Let (2) be a completely subdirect product decomposition of GG. For each g € G
put

Ig)={i €T g#0}
Assume that 7(g) is finite for each ¢ € G. Then (2) is called a direct sum represen-
tation of (.
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3. CONVEX CHAINS IN G

Again, let G be an f-group . For a,b € G with a < b, the interval [a, b] is the
set {x € G:a <o <b}. A nonempty subset H of G is conver in G if, whenever
hi,he € H and hy g_hz, then [hy, ho] C H. A subset of G which is linearly ordered
under the induced partial order is called a chain in G.

3.1. Lemma. Let a € Gt. Then the following conditions are equivalent:

(i) The element a is V-irreducible in G,
(i1) The interval [0,a] of G is a chain.

Proof. The validity of the implication (ii)=(i) is obvious. Suppose that (i) holds.
By way of contradiction, assume that the condition (ii) is not valid. Then there
are z1,xy € [0, a] such that #1 and z, are incomparable. Put v = 21 V 23; hence
v € [0,a]. There ist € Gt with v +¢ = a. Denote

Yy =x; +1 (i:l,?).

Then y; and ys are incomparable. Moreover, y1 Vy» = a and y; < a, y» < a.
Therefore the element a fails to be V-irreducible , which is a contradiction. a

We denote by C(G) the system of all convex chains in G containing the element
0. This system is partially ordered by the set-theoretical inclusion. Further, let
Crn (G) be the system of all maximal elements of C(G1).

3.2. Lemma. (i) Let 0 < z € G, [0,2] € C(G*). Then [0,2z] € C(GT).
(i) Let X, Y € C(GT), X NY # {0}. Then either X CY or Y C X.
(iii) Let X € C(G1). Then there exists X € Cp,(G1) such that X C X.

Proof. (i) First we show that whenever z € [0,2z], then either € [0,z] or 2 €
[z,2z].
In fact, let « € [0,2z]. By way of contradiction, suppose that z and z are
incomparable. Put
u=xNz, v=2xVz,

p=z—u, qgq=r—u.

Then p and ¢ are incomparable as well. Moreover,
pAg=(z—u)A(z—u)=(zA2)—u=0.

Since p, g € [0, 2], the interval [0, z] fails to be a chain, which is a contradiction.
Now let 2; (i = 1,2) belong to the interval [0,2z]. Let ¢ € {1,2,}. Then either
z; € [0,2] or #; € [2,2z]. The interval [z,2z] is isomorphic to [0, z] hence it is a
chain. Therefore z; and x5 are comparable. Hence [0, 2z] is a chain.
(i) Let X and Y satisfy the assumptions of (ii). By way of contradiction, assume
that neither X CY nor Y C X is valid. Hence there exist z,y with

reX\Y, yeV\X.
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Then x and y must be incomparable. Put
rNy=z, r—z=21, Y—2=1yY.

Hence we have
xlaZEXa ylaZEY'

Therefore z is comparable with both 1 and y;. We distinguish the following cases:
a) 1 < z and y; < z. Then

0<z=ux1+2<2z

and similarly 0 < y < 2z. Thus according to (i), # and y must be comparable,
which is a contradction.
b) 21 2 z and y; 2 z. Then 1 Ay; 2 z. Since

Ay = (2 —2)A(y—2) =0,

we get z = 0.

Let ' € X; put #' Ay = 21. Hence z1 € X NY. If 21 > x, then x € Y, which
is impossible. If z; < z, then z; < 2 Ay, whence z; = 0. Therefore #’ Ay = 0 for
each ' € X.

Then by a similar argument we conclude that for each ' € X and each yy € Y
we have 2/ Ay = 0, whence X NY = {0}, which is impossible.

c) If neither a) nor b) is valid, then without loss of generality we can suppose
that

Y1 § z < xy.
Hence we have
y=y1+z23ir1+z=ux,
yielding that y € X, which is a contradiction.
(iii) By applying (ii), we can use the same method as in [5], Proof of 1.4. O

If G = {0}, then both the assertions (A) and (B) obviously hold. In what follows
we suppose that G # {0}; hence G+ # {0}.
In 3.3 - 3.10 we assume that the lattice G satisfies the condition (b).

3.3. Lemma. LetY € C,(GT). Then Y # {0}.

Proof. Tn view of the assumption, there exists 0 < € G*. Hence in view of (b),
there is an irredundant representation

l‘:\/l‘i

such that all z; are V-irreducible . In view of the irredundancy, z; > 0 for each
i € I. Choose an arbitrary i € I. Thus according to 3.1, [0,z;] € C(GT). Then
3.2 yields that there is V; € C,, (GF) with [0, z;] CY;, hence Y; # {0}. If Y = {0},
then Y C V;, thus Y fails to be maximal in C(G*), which is a contradiction. a

Let 0 < & € Gt and suppose that z is V-irreducible in G*. Then in view of 3.1
and 3.2 there exists a uniquely determined element T of C,,(G7) such that z € 7.
Further, 3.2 immediately implies
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3.4. Lemma. Let 0 < z € (G, 0 < y € (G. Suppose that both © and y are
V-irreducible . Then either T =y or x Ay = 0.

3.5. Lemma. LetY € Cp(G™T). Then the set Y has no upper bound in G*.

Proof. a) In view of 3.3 there exists 0 < y € Y.

First we prove that 2y € Y. In fact, in view of 3.2 (i), [0, 2y] € C(GT). According
to 3.2 (iii) there is Y1 € Cp,(GT) with [0,2y] C V1. Hence Y NY; # {0}. Then
3.2 (ii) yields that either Y C Y7 or ¥ C Y. Since both Y and Y} are maximal
elements of C(GT) we get Y = V7.

Thus for each 0 < ¢ € Y we have t < 2t € Y. Therefore Y has no greatest
element.

b) By way of contradiction, suppose that there is z € G such that = is an upper
bound of the set Y in G*t. Clearly = > 0. Let (z;);cr be as in the proof of 3.3.

It is well-known that the lattice G7 is infinitely distributive, hence for each
0 <y€Y we have

y:y/\x:y/\(\/ z;) = \/(y/\xi).
i€l i€l
According to 3.1, y is V-irreducible | hence there is ¢ € I with y = y A ;. Thus
y < x;. Hence in view of 3.4,y = T;.

Tet iy €1, 4y # . Since the representation of # under consideration is irredun-
dant, the elements z; and ;, are incomparable. Thus 3.4 yields that 43 A 2;;, =0
for each y; € Y.

On the other hand, there exists i5 € I such that y; < 2;,. Thus we must have

ip = i. Then =; is the greatest element of Y. TIn view of a), we arrived at a
contradiction. O
For each Y € C, (GT) we put
Y =Y UuU{-Y},

Y*={9€G:|g/Ay=0 foreachyeV}.
3.6. Lemma. LetY € C,(G™). Then
(i) Y’ is a convex chain in G;
(i1) Y is an f-subgroup of G;
(iii) Y’ fails to be bounded in G.

Proof. (iii) is a consequence of 3.5. Then by applying [4] (Lemmas 3 and 5) we get
that (i) and (ii) are valid. O

3.7. Lemma. There exists a mapping @y of G onto Y’ x Y* such that

(i) ¢y is a direct product decomposition of G
(ii) if g € Gt and ¢y (9) = (y,y*), then

y=max{y1 €Y :y1 < g}.
In particular, if g €Y, then y = g¢.

Proof. (i) is a consequence of 3.6 and of [4], Theorem 1. The assertion (ii) is well-
known (moreover, for validity of (ii) the corresponding direct factor need not be
linearly ordered). O
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3.8. Lemma. Let x and (#;)icr be as in 3.3. Let iyp € I; put 7, = Y. If
QDY(I) = (ya y*); then Y =1T;,.

Proof. We have x;, € Y and #;, < 2. Let y3 € Y, y; < 2. Then in view of 3.4,
y1 Ax; =0 for each i € T\ {ip}. Hence

ni=nAr=u /\(\/l‘z) = \/(y1/\l‘i) = T, A Y1
i€l i€l
Thus y; < #;,. According to 3.7 (i), y = 2;,. O

Let {Y;};es be the set C,,(GT). For ¢ € G and j € J we denote by g; the
element of Yj’ such that, under the direct product decomposition

ey 1 G =Y x Y],

the component of ¢ in Yj’ is g;.
Consider the mapping
v:G— H Yi
jET
defined by ©(g) = (g;)je7-
From the definition of ¢ we immediately obtain

3.9. Lemma. ¢ is a homomorphism of the {-group G into the f-group HjeJ Yj’.

Let ¢ € G and assume that ¢(g) = 0. Hence ¢(]g|]) = 0 and |¢g| = 0. If |g| > 0,
then there exists an irredundant representation

lg| = \/ 2k

keK
such that each zy is V-irreducible . In particular, zp > 0 for each z; € Yy Then
in view of 3.8,
whence ¢(|g|) # 0, which is a contradiction.

From this and from 3.9 we infer

3.10. Lemma. ¢ is an isomorphism of G into [[;¢; Y.

3.11. Lemma. Let j € J and t/ € Y;. Then

(i) (1), = 4
(11) Ifjl eJ and jl ;é j} then (t])]l =0.

Proof. The case t/ = 0 is trivial. Let #/ > 0. Then in view of 3.7 (ii) we have
(t1); =t. If j1 € J, j1 # j, then 3.4 and 3.7 yield that (#/);, = 0.

If t7 < 0, then it suffices to consider the element —¢7. a
3.12. Proposition. Let GG be an (-group such that the lattice Gt satisfies the
condition (b). Let ¢ be as above. Then ¢ is a completely subdirect product
decomposition of (5.

Proof. This is a consequence of 3.10 and 3.11. a
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3.13. Lemma. Let G be an (-group which can be represented as a completely
subdirect product of linearly ordered groups. Then the lattice Gt satisfies the
condition (b).
Proof. Let
p:G— H Gy
teT
be a completely subdirect product decomposition of G. Without loss of generality

we can suppose that Gy # {0} for each t € T. Let 0 < ¢ € G and ¢(9) = (g¢)teT-
Then for each ¢t € T there exists g, € GG such that

(E)tET =gt ,

(), =0 if € T\ {t}.

Then g, is V-irreducible for each ¢ € T'.
Put Ty ={t € T: g: # 0}. We have Ty # (). Moreover,

g:\/ﬁt

teTy

and this representation of ¢ is irredundant. Therefore the condition (b) holds for
the lattice Gt. a

From 3.12 and 3.13 we conclude that (B) is valid.
Now suppose that (G is an f-group such that the lattice G satisfies the condition
(a). Since (a) is stronger than (b), we can apply 3.12. For ¢ € G and j € J we put

(p(9)); = 9;-
3.14. Lemma. Let g € G. There exists a finite subset J, of J such that g; = 0
whenever j € J\ J;.

Proof. First suppose that g > 0. In view of (a) there exists an irredundant repre-
sentation

(1) g=x1VraV---Va,

such that each 2; (i = 1,2,...,n) is V-irreducible . Further, for each z; there exists
J(?) € J such that
Ti = Yj).-
Put J1 = {j(1),4(2),...,4(n)}. If j € J\ Jy, then (1) and 3.11 yield that g; = 0.
Thus the assertion of the lemma is valid in the case ¢ > 0. Next, since each

element g of GG can be written in the form ¢ = v — v with u,v € G, we conclude
that the assertion is valid for an arbitrary element of G. a

3.15. Proposition. Let GG be an (-group such that the lattice Gt satisfies the
condition (a). Let ¢ be as in 3.12. Then ¢ is a direct sum decomposition of G.

Proof. This is a consequence of 3.12 and 3.14. a
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3.16. Lemma. Let G be an (-group which can be represented as a direct sum of
linearly ordered groups. Then the lattice GT satisfies to condition (a).

Proof. We apply an analogous notation as in the proof of 3.13; the distinction is
that ¢ is now a direct sum representation of (. Then the set 77 is finite, whence

(a) is valid. a

In view of 3.15 and 3.16 we infer that (A) holds.
We conclude with the following remark concerning the paper [7].
Let I be a lattice. For each a € L we put

L(a)={z € L:x < a}.

Further, let (%) be as in Section 1. The following lemma was presented in [7]:

(x+) Tf L is a lattice which satisfies the conditions (i) and (ii) from (*), then for
each a € I, the set L(a) is finite.

Let N be the set of all positive integers with the natural linear order and let w
be an infinite ordinal. We put I = NU {w} and for each n € N we set n < w.
Then L is a linearly ordered set, hence the condition (ii) is satisfied. Moreover, the
descending chain condition is valid in L. But the set L(w) fails to be finite. Hence
() does not hold.

Next let L be the lattice on Fig. 1. Then {u,a,b,c} is the set of V-irreducible
elements of L. The lattice L satisfies the conditions (i) and (ii) from (x), but it
fails to be distributive. Hence the assertion (x) is not valid.

v
C1
C
u
Fig. 1
REFERENCES

[1] G. Birkhoff, Lattice Theory, Revised edition, Amer. Math. Soc. Coll. Publ. Vol. 25, Provi-
dence, 1951.

[2] P. Conrad, Lattice Ordered Groups, Tulane University, 1970.

[3] R. P. Dilworth, Structure and decomposition theory in lattices, in: Lattice Theory, Proc.
Symp. Pure Math. 2 (Providence 1961), 3—-16.

[4] J. Jakubik, Konveze Ketten in £-Gruppen, Casopis pést. mat. 84 (1959), 53-63.

28



[5] J. Jakubik, S. Cernak, Convex linearly ordered subgroups of a hl-group, (submitted).

[6] F.Sik, Uber subdirekte Summen geordneter Gruppen, Czechoslovak Math. J. 10 (1960), 400—
424.

[7] Wenchang Chu, Distributivity and decomposability on the lattice satisfying the chain condi-
tion, Discrete Math. 174 (1997), 95-97.

(Received May 18, 1998)
Mathematical Institute
Slovak Academy of Sciences
Gresakova 6
040 01 Kosice
SLOVAKIA

Dept. of Mathematics

Presov University

17. novembra 1

080 00 Presov
SLOVAKIA

FE-mail address: pringer@unipo.sk

29



30



Acta Univ. M. Belii
Math. no. 6(1998), pp. 31-47

FUZZY MAPPINGS AND FUZZY
METHODS FOR CRISP MAPPINGS

VILADIMIR JANIS

ABSTRACT. We deal with the notion of fuzziness from two different aspects. First
we study the properties of fuzzy functions, mostly their derivatives, integrals and
fixed point properties. The second aspect is the study of a classical real function,
fuzzyfying the notions themselves. The last part of the paper is devoted to this
aim, showing that introducing the methods of fuzzy mathematics can provide some
interesting results for the real functions theory.

The work is a review of results already published or submitted.

1. INTRODUCTION

In a natural language we often use words describing the grade of some quality
(very, somewhat, a little, ... ) or the quality itself (young, heavy, dark, loud, etc.),
quite often combined together. Usually a given object corresponds to the above
mentioned linguistic construction only with some degree of membership. Therefore
such constructions do not define sets, as we use the notion of a set in classical
mathematics. We can define the set of all real numbers that are greater than
ten, but the expression “numbers much greater than ten” does not define a set.
On the other hand, in various situations we need to build e.g. a decision model
based on “linguistic variables”. The theory of fuzzy sets (or, more generally, fuzzy
mathematics) provides us a tool to handle it.

The notion of a fuzzy set was introduced by Zadeh in [Za 1] in 1965. Since
then the fuzzy mathematics has developed in a variety of directions. The most
fruitful, also from the applications point of view, seems to be the fuzzy control.
Moreover, the fuzzy theory appears to be a convenient tool for those applications,
where the exact quantitative description of a particular model is either impossi-
ble or inappropriate. Hence we often find fuzzy methods used in various decision
models designed for the real-time performance. Fuzzy objects and methods can
be found also in other applications, like regulation, production control, household
appliances, and many others, including music (see [Ha 1], [Ha 2]). The theoretical
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and methodological background of fuzzy mathematics is fuzzy logic and approxi-
mate reasoning closely connected to fuzzy logic. A review of the current state of
fuzzy logic can be found in the work by Novak [No 1].

In this work we deal with two aspects of mappings analysis. The first one is
the study of fuzzy mappings. These mappings are mainly understood as functions
that assign a fuzzy set (or a fuzzy element) to a (crisp) element of a given domain.
We study the derivatives of such mapping. In this area this work is a direct con-
tinuation of the study by Kalina [Ka 1]. The results concerning fixed points of
fuzzy mappings, their derivatives and integrals have been published in Janis [Ja 1],
[Ja 2] and Jani§ and Nedié [JN 1]. The second aspect of our study corresponds
to the attitude proposed by Burgin and Sostak in [BS 1]. Here the authors deal
with classical functions, but use methods of fuzzy mathematics. This way they
obtain more compact and more general results for such functions. Namely, they
study fuzzy continuity of classical functions. We continue in this direction and use
fuzzy methods for the study of uniform continuity and properties of derivatives.
It is shown that also here it is possible to achieve results that generalize results
of classical mathematical analysis. This part of the work summarizes the results

published in [Ja 3] and [Ja 4].

2. BASIC NOTIONS AND DEFINITIONS

Let X be a nonempty set. Any of its subsets A C X can be identified with its
characteristic function x4(z). This function can be considered as a membership
degree with which the element x belongs to the set A. Obviously in case of an
ordinary (crisp) subset this value can be either one (the element z belongs to A)
or zero (the element z does not belong to A). But if we deal with collections of
object defined only vaguely, it is sometimes not possible to cope with only these
two possibilities. Hence we generalize the concept of the characteristic function,
allowing 1t to attain also values between zero and one. This attitude serves as
a motivation for the definition of a fuzzy subset of X.

Definition 1. A fuzzy subset A of the set X is a function A : X — [0;1]. The set
of all fuzzy subsets of X is denoted by F(X).

Tf the set X (the universe) is given, we speak briefly of fuzzy sets instead of fuzzy
subsets of X.

A fuzzy set A is called modal, if there exists at least one element x € X for which
A(xz) = 1. The set of all those z € X for which A(z) > 0 is called the support of A
and denoted by supp(A).

Although fuzzy sets can be studied in more general frameworks, e.g. with values
in a lattice (see Goguen in [Go 1]), for our purposes it will be sufficient to work
only with fuzzy sets with values in the interval [0;1]. To distinguish between fuzzy
sets and classical ones we sometimes use the word crisp to denote usual non-fuzzy
sets (or other objects).

A useful tool for the study of fuzzy sets are their a-cuts.
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Definition 2. Let X be a metric space, A € F(X),a € [0;1]. The a-cut of A
is the set A, = {# € X;A(z) > a} for a > 0. For @« = 0 we put Ag = el{z €
X; A(x) > 0}, where ¢l is the closure operator.

In other words, if A € F(X),a € (0;1], then
Ay = A7 ([o;1]), Ag = cl{UA,, a > 0}.

If we consider the strict inequality in the definition of A,, then we speak of a strict
a-cut.

Throughout this paper the symbol R will denote the set of all real numbers.

If A € F(R) and there exists at least one x € R for which A(x) = 1, then A is
called a fuzzy number. Sometimes this set is called just a fuzzy quantity and usually
there are additional conditions on fuzzy numbers, very frequently we require that all
the a-cuts should be convex sets (in that case we speak of conver fuzzy numbers).
In some circumstances we assume that the value 2 for which A(z) = 1 is unique.
If this is not the case, the term fuzzy interval 1s preferred. Very often, mainly in
applications, we work with linear fuzzy numbers (we assume that the function A is
partwise linear). For more information on the operations with linear fuzzy numbers
see e.g. [Ko 1].

In some cases it is more convenient to define a fuzzy number as a non-decreasing
left-continuous function A : R — [0; 1], with the properties limg,_, _ oo A(z) = 0 and
limyco A(2) = 1. This representation corresponds to the linguistic construction
“the number is much greater than A”, while the representation with the unique
modal value corresponds to the statement “the number is about equal to A”. Be-
cause of the resemblance to the distribution function we sometimes address this
representation as statistical one.

The complement of a fuzzy set is defined in the following way:

Definition 3. If A is a fuzzy set, then the function 1 — A is the complement of the
fuzzy set A.

For the definition of the intersection of fuzzy sets the notion of a {-norm (a tri-
angular norm, see Schweizer and Sklar in [SS 1]) is used. For more detailed study
of t-norms see the monograph [KMP].

Definition 4. Let T : [0;1]? — [0; 1] be a commutative, associative, non-decreasing
function in both variables, fulfilling the boundary conditions T'(#,1) = z. Then T
is called a t-norm (a triangular norm).

Example 1. It is easy to show that the function
T:[0;1)% = [0;1], T(x,y) = min{z, y}

is a t-norm. We denote this #-norm by the symbol T},;,. Note that if T is an
arbitrary ¢-norm, then T' < T
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Example 2. Let 7 :[0;1]% — [0;1],

0 if max{z,y} <1
min{z,y} if max{z,y} =1

T(z,y) = {
Then T is a t-norm. Tt is called the weakest ¢-norm (or the drastic product) and
denoted by Ty . Note that for an arbitrary ¢-norm 7' the inequality Tw < T holds,

which justifies the adjective “weakest”.

In a lot of papers the minimum function is used to define the intersection of
fuzzy sets, but it appears that this is not always the most convenient way to think
of the intersection from practical applications point of view.

Definition 5. If A, B are fuzzy sets and a t-norm T is given, then the fuzzy set
C' for which C(x) = T(A(x), B(x)) for each # € X is the intersection of A and B

based on the t-norm T'.

Although we will not use the notion of a conorm, for the sake of completeness
we mention that the union of fuzzy sets based on a given ¢-norm is given by the de
Morgan rule, i.e.

Sr(A(x), B(z)) = 1 = T(1 — A(z),1— B(z)).

The function St is a t-conorm dual to T. The t-conorm 1s sometimes called also an
S-norm, although this notation may lead to misunderstanding as the dependence
on T' cannot be seen here.

A t-norm is used also in addition of fuzzy numbers in the following way, which
is the special case of the Zadeh extension principle (for more information on the
extension principle see [Ng 1] and [BBT]):

Definition 6. If A, B are fuzzy numbers, then their sum based on the t-norm T'
is the fuzzy number A +p B such that

(A7 B)(z) =sup{T(A(z), B(y)),z = =+ y}.

In the first part of this work we will focus on fuzzy mappings. There are several
different definitions of this notion. We will present a review of the most frequent
ones.

Perhaps the most general concept of a fuzzy function is the following, used in
Negoita and Ralescu [NR 1]:

Definition 7. A fuzzy function from X to Y is a mapping p: X x Y — [0;1].

The generality of the later definition (which is in fact a fuzzy relation) may not
be convenient — we often require the values of a fuzzy mapping (i.e. the mappings
p(z,.) 1Y = [0;1] to be nonzero for at least one y € Y. Such cases were studied
e.g. in Dubois and Prade [DP 1]:

Definition 8. A mapping p : X x Y — [0;1] is a fuzzy function if for all z € X
there exists y € Y such that p(z,y) > 0.

TIf moreover modality of the values is required, then the following definition (see
Ovchinnikov [Ov 1]) is convenient:
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Definition 9. A mapping p : X x Y — [0;1] is a fuzzy function if for all z € X
there exists the unique y € Y such that p(z,y) = 1.

By omitting the uniqueness of the modal value in the later definition we obtain
a fuzzy multifunction from X to Y. For more detailed study of this subject see e.g.
Tsiporkova [Ts 1].

In the study of probabilistic and fuzzy metric spaces we sometimes represent
fuzzy numbers as nondecreasing left-continuous functions from the real line into
the unit interval. Another reason for using this representation is also the fact that
it enables to introduce a topology on the fuzzy real line. In such situations the
following attitude to fuzzy mappings used in Sedelja [Se 1] can be useful:

Definition 10. A mapping p: X x Y — [0;1] is a fuzzy function if for all z € X
there exists the unique y € Y such that p(z,y) = 1 and if each a € (0;1) appears
at most once as a membership value of p.

There are also other definitions of fuzzy functions used by various authors.
A brief review of the most frequent concepts of this notion can be found in the
work by Filep [Fi 1].

For our purposes the following convention will be most convenient: Speaking
about a fuzzy function f from X to Y we mean a mapping that assigns a fuzzy
number f(z) € F(Y) to an element 2 € X. Hence we deal with the case of crisp
argument and fuzzy image, on the contrary to the paper [Ka 1], where the author
studies also the cases of fuzzy argument and crisp image and both fuzzy argument
and image. This does not apply for the section 6, where we study usual crisp
functions but use fuzzy methods.

The particular representation of a fuzzy number (either “statistical” or “modal”)
and if necessary also other supplementary conditions required will be mentioned
explicitly when necessary.

3. DERIVATIVES OF FUZZY FUNCTIONS

By a fuzzy real number we will understand a fuzzy set p : [—oo;00] — [0; 1] for

which

(1) p(=o0) =0,

(2) p(oc) =1,

(3) p(r) =sup{p(s),s < r} for each r € R.
Hence we define a fuzzy real number in the sense of the comment following the
Definition 2 (the statistical representation). The set of all fuzzy real numbers will
be denoted by H(R).

The set of all (crisp) real numbers is embedded into H(R) in the following way:
a crisp real number ¢ is represented by the function §; € H(R) for which §:(r) =0
if r<tandé(r)=1ifr> 1.

The partial ordering in H(R) is given by the following way:

p < o if and only if p(r) > o(r) for each r € R.
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The addition of fuzzy numbers in H (R) is based on the minimum#-norm Ty, (see
Definition 6), i.e.

(p+0)(r) = sup{min{p(s),o(t)};r = s +1}.

The multiplication by a nonnegative real number is given by the formula

(c.p)(r) = p(r/e) ife>0,
=do(r) ife=0.

A fuzzy mapping from R to R will be understood as a mapping that assigns
a fuzzy real number in H(R) to a real number. We will assume that a fuzzy
mapping we are working with is defined for each z € R.

Klement in [KI 1] defines an extension of the Lebesgue integral for this type of
fuzzy functions. Our aim will be to define a derivative of these functions that will
be connected to the mentioned integral. A drawback of this attitude will be its
validity only for the case of using the minimum ¢-norm.

First we introduce the notion of the pseudoinverse of a fuzzy real number. For
more details see the work by Hoéhle [Ho 1].

Definition 11. Let p € H(R). Tts pseudoinverse is the function p(=) : [0;1] —
[—00; 00] for which p(=Y(a) = sup{r; p(r) < a}.

In the last definition we use the convention sup § = —co, hence the value of each
pseudoinverse at zero is —oo.

We will also need the pseudoinverse of a fuzzy function, which will be defined in
the following way:

Definition 12. The pseudoinverse of a fuzzy function f is the mapping (=) for
which f(=D(2) = (f(2))=1.

We will denote by H(_l)(R) the set of all pseudoinverses of fuzzy real numbers.
The author in [KI 1] works only with the set of all positive fuzzy real number, but
the following result holds also for our case: The mapping

p: H(R) = HD(R), p(p) = p=Y)

is an involutive order-preserving isomorphism, where the addition in H(_l)(R) is
the usual addition of functions and the multiplication is the usual multiplication of
a function by a nonnegative number.

We will use this isomorphism to define differentiability and the derivative of
a fuzzy function in the following way:

Definition 13. Let f: R — R be a fuzzy function, let g € R. The fuzzy function
f 1s differentiable at zq, if there exists the mapping

N df =1 (wo)

he, - e
: 0 (a)

as an element of H(_l)(R).
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Definition 14. If f is differentiable at zo, then the function f/(zo) = [hxu](_l) is
the derivative of f at the point xq.

Obviously if the derivative of a fuzzy function at a point exists, then it is a fuzzy
number. Therefore it is possible to define the derivative of f, which will be a fuzzy
function. Moreover, it is easy to verify that this notion is an extension of the
classical derivative of a real function in the following way:

If f is a (crisp) function differentiable at the point a and if we identify f(x) with
d¢(z) for each z in a neighborhood of a, then the derivative of f at a as indicated
in the Definition 14 will be the fuzzy number d,, where z in the index is the usual
(crisp) derivative of f at the point a.

The connection with the fuzzy integration from the Klement’s work [KI 1] is
given by the theorem literally analogical to the classical theorem on the derivative
of a function with the variable in the upper integral limit (the mean theorem of
integral calculus).

4. DERIVATIVES AND FIXED POINTS OF FUZZY FUNCTIONS

A great deal of this section is based on the paper by Kalina [Ka 1], where the
derivative of a fuzzy valued mapping has been defined. We will briefly present basic
notions and definitions.

Although a generalization into ordered Banach spaces would be possible, for the
sake of simplicity the author demonstrates his apparatus on real fuzzy functions,
that means on mappings that assign an LR-fuzzy number to a crisp real number.
For more information on L-R-fuzzy numbers see e.g the paper by Mesiar [Me 1],
and on their addition see papers by Markova [Ma 1] and [Ma 2].

Let f be a real fuzzy function. We introduce its level functions f, and f_, in
the following way: Let a € (0;1]. Then

fa(#) = sup{z € R; f(z)(2) > a}
and
Joalz) = inf{z € R; f(x)(2) > a}.
The level functions are used in [Ka 1] to define the derivative of f in the following
way:

Definition 15. Let f, and f_, be level functions of a fuzzy function f. Suppose
all the level functions are differentiable at a point 2z and f,'(z) and f_,’(z) be their
derivatives at . Denote

S =sup{z € R; (3 € (0;1))(z
I'= inf{z € R;(3a € (0;1))(=

max{f.' (z), f-a'(z)})}
min{ fo'(z), f=a'()})}.

<
>

By the derivative of the fuzzy function f at the point £ we mean the fuzzy number
f/(x) defined in the following way:
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1 ify = fi'(x)
0 ity ¢ (1:9)
sup{a € (0;1);max{f.'(z), f-/(x)} >y} f fi'(z) <y< S
supfa € (0 1);min{ £a’(2), f-a’(@)} <y} if fi/(2) > y> 1.

A derivative of a fuzzy function as a function with fuzzy values has been studied
alsoin [FF 1], [PR 1] and some other works. The definition introduced in [Ka 1] is on
one hand less general, but on the other hand provides a wider class of differentiable

functions. Properties of this derivative are further studied in [Ka 2], [Ka 3], [Ja 1],
[JN 1] and [Ja 2].

f(@)(y) =

The basic question that arises with any type of differentiation is its linearity. In
[Ja 2] we prove the following:

Proposition 1. If the fuzzy functions f and g have fuzzy derivatives f' and g’ at
the point a, their sum f +r ¢ has the fuzzy derivative (f +r1 ¢)' at a, where T is a
t-norm, then (f 47 g)'(a) < f'(a) +7 ¢'(a).

The next example shows that the opposite inequality in general does not hold
for any triangular norm 7', not even if we use different ¢-norms for the additions on
each of its sides:

Example 3. Let the fuzzy functions f,g : [0;2] — R be given by the following
formulas: For z € [0; 2] put

_ . l£]
F(x)(®) _max{O,l— x—I—l}’ t € R,

l¢]
t) = 0;1— —— t € R.
o)) =max{o1- L e
All the level functions of f and ¢ are linear and hence differentiable on the interval
[0;2]. For an arbitrary = € [0;2] the derivatives of f and g are equal (we take the
one-side derivatives at the endpoints of the interval) and

Fi(@)(t) = g'(z)(t) = max {0;1 = [}, t€R.

We see that both f’ and ¢’ are constant fuzzy functions on [0;2]. Note that their
sum with respect to an arbitrary ¢-norm is again a constant fuzzy function and its
common value is not a crisp number.

On the other hand take an arbitrary ¢-norm 7" for which all the level functions
of the fuzzy function f +7 ¢ are differentiable. Then using the fact that for any
z € [0;1] there is

f—2z)4rg(1 —x) = f(1 +2) +7 g(1 + z)

as a consequence of the Rolle theorem we obtain that the derivative of all the level
functions for the sum f +7 g at the point & = 1 is zero. Therefore (f +7 ¢)'(1) is
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the crisp number zero and so (f +7 ¢) (1) < f/(1) +7 ¢'(1) for an arbitrary ¢-norm
T.

Moreover, this inequality holds for even an arbitrary pair of t-norms, as we have
the crisp zero on the left-hand side for any t-norm and the fuzzy (not crisp) zero
on the right-hand side again for any ¢-norm.

In the work [Ja 1] we deal with the existence of fuzzy fixed points for fuzzy
functions and with their properties. Here the fuzzy function f is understood in the
following way:

We take (X, d) a complete metric space. The corresponding Hausdorff metric in
the space of all nonempty compact subsets of X will be denoted by h. Let for each
z € X there exist an upper semicontinuous function f(z) : X — [0;1]. Moreover,
we require that the inverse images f;!((a;1]) are nonempty compact sets for any
a € (0;1].

Let oo € (0;1]. A point z € X will be called an a-fized point of f iff 2 € (f(2))a-
(This is a generalization of the classical case, when the crisp fixed point can be
understood as 1-fixed point.)

The condition of contractivity is reformulated in the following way: Let o € (0; 1].
We will say that a fuzzy function f that maps X into itself is a-contractive iff there
exists a real number ¢, 0 < ¢ < 1 such that for each z1, x5 € X there is

h((f(21)a, (f(z2))a) < gd(21,22),

where h 1s the Hausdorff metric on X.

The main result of [Ja 1] is the following statement:

Proposition 2. Let (X, d) be a complete metric space, o € (0;1] and let f : X —
X be an a-contractive fuzzy function. Then there is an a-fixed point of f in X.

Obviously, in contrary to the classical case, there can be more than one fuzzy
fixed point of a fuzzy function. The set of all fuzzy fixed points can be characterized
by the following propositions:

Proposition 3. The set of all a-fixed points of an a-contractive function is closed

in (X,d).

Proposition 4. The set of all a-fixed points of an a-contractive function f is
bounded in (X,d). The upper bound for the diameter of this set is the number

diam(f(x0))a, where xy is an arbitrary a-fixed point of f and q is the con-
)
traction coefficient.

These propositions generalize results on fixed point of fuzzy mappings achieved
in [He 1], [ST 1] and [Rh 1].

There is a relationship between the derivative of a differentiable fuzzy function
and the existence of its fixed points similar to the crisp case. More details can be
found in [Ka 1].
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5. INTEGRALS OF FUZZY FUNCTIONS

For the purpose of finding a fuzzy analogy to the Lebesgue (or Riemann) integral
it is convenient to think of a fuzzy function in the sense of [Se 1] (see Definition
10). From practical reasons we restrict ourselves on nonnegative fuzzy functions.
Therefore in this section we will use the concept of a nonnegative fuzzy number
introduced by Hohle in [Ho 1]:

Definition 16. A nonnegative fuzzy number is a function A : [0;00] — [0;1] for
which A(0) = 0, A(oco) = 1 and A(z) = sup{A(t);t € [0;2)}.

Suppose f is a mapping that assigns a fuzzy number (in the sense of the previous
definition) to each point of X, X C R. Evidently we can use the notions from
the previous section to define level functions of the fuzzy function f. The only
difference is that this time we will have only the functions f_,, not the functions
fo- Analogically we can define the derivative at a point for f.

As we have already mentioned in section 3, Klement in [KI 1] defines the Lebesgue
integral for f and states some properties of this integral. The core of this work lies
in the isomorphism between the set of all nonnegative fuzzy numbers and the set
of their pseudoinverses. Unfortunately the theory of integral based on this attitude
works only under the assumption of minimum #-norm used in F(R). For other
t-norm than 7T,,;, the integral even fails to be additive.

Using the concept of level functions (similar to that of Kalina in [Ka 1]) we can
obtain the Lebesgue integral of a fuzzy function with properties resembling those
of real functions.

This integral i1s defined in the following way: Let f be a fuzzy function defined
on an interval J. Suppose the level functions f_, are integrable on J for each

a € (0,1]. Let
I= inf{/jf_a(x)dx;a € (0,1]},

S = sup {/If_a(x)dx;a € (0, 1]} = /Ifl(x)dx.

The integral of a fuzzy function f on the interval J can be defined as a fuzzy
real number i;(f) in the following way:

0 ife<lI,
@ =1 0 ez {ye 0.1, (Bt < o} .
1 ife>5

The integral defined as above has a close connection to the derivative from
the previous section — this connection is given by the analogy of the mean integral
calculus theorem, which holds for the derivative in the sense of Kalina’s work [Ka 1]
and above defined integral.
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Proposition 5. Let f be a fuzzy function with integrable level functions on the
interval J = [a,b]. Let for x € J F(x) = ifq»(f). If f has all its level functions
continuous at xg € J, then F'(xo) = f(zo).

6. Fuzzy METHODS IN CRISP FUNCTIONS CALCULUS

In [BS 1] the authors show how some classical results can obtain more compact
form using terms of fuzzy set theory. We introduce the main notions and results of
this work:

Let f: X — Y be a mapping, X,Y are sets of real numbers and let zg € X.
The continuity defect of f at the point xq is the value

3(f, z0) = sup{ly — f(zo)l;y = Jim g, yn = flan), xo = Jim. Tn}.

If the continuity defect is finite at x € X then we say that f is fuzzy continuous at
the point z.

Next the authors in [BS 1] define the local continuity measure at xq denoted by
A(f, zo) by the equality

Mfxo) = (14 6(f,20)) "

(Tn case when §(f, zg) = oo we put A(f,z9) = 0.)
The continuity measure A(f) on a set X is defined as

A(f) = inf{\(f,2);2 € X}

Finally, a function f is called fuzzy continuous on X if A(f) > 0. Note that a func-
tion, that is fuzzy continuous at each point of a set need not be fuzzy continuous
on that set.

The authors in [BS 1] claim that

There are classical results in mathematics which are incomplete. An
example 1s given by the well-known result of the classical mathematical
analysis stating that a continuous function defined on a closed interval
18 bounded. ... But if we ask whether the converse is true we reveal that
the answer is negative. The criterion of boundedness may be found only
mn terms of fuzzy set theory.

The above mentioned criterion is the proposition stating that a function f defined
on a compact space X is bounded if and only if f is fuzzy continuous (see [BS 1],
Theorem 2).

On the other hand, applying this approach, some other classical results are no
more valid. Maybe the most obvious one is the intermediate value principle (known
also as Bolzano lemma) which says that if f is continuous on a closed interval [a; b]
and y is an arbitrary number between f(a) and f(b), then there is ¢ € [a;b] such
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that f(c) = y. (Shortly - a continuous function on a compact set has the Darboux
property.) Clearly this is not true for fuzzy continuous functions, as they may have
discontinuities.

But if we realise that the intermediate value principle is a tool that enables
us e.g. to find approximate solutions of algebraic equations, then we see that in
practical calculations we are often satisfied with the value ¢ € [a; b] for which f(¢)
is in some sense “not too far” from zero. This leads us again to terms from fuzzy
set theory.

In [Ja 3] we define the fuzzy version of uniform continuity and show that for
fuzzy uniformly continuous functions some version of intermediate value principle
is fulfilled.

First we have to introduce the notion of nearness that was defined in [Ka 1].
Let us assume a fuzzy relation N : R x R — [0;1] is given satisfying the following
properties:

(1) for each # € R, aNx =1,

(2) for each z,y € R, aNy = yNu,

(3) for each z,y,z € Rif x < y < z then tNy > zNz,
(4) for each x € R, limy_,oc 2Ny =0,

(5) for each z,y,z € R there is aNy = (z + z)N(y + z).

The last condition of nearness is not necessary for most results in [Ka 1] and
here, but it simplifies the considerations a lot.

Here are some examples of nearness relations:

Example 4. If xtNy = , then N is an example of nearness which has

L+ |z -yl

never the zero value.

Example 5. Let k > 0. The relation x Ny = max{1 — k |z — y|; 0} is an example
of a nearness that assigns nonzero values only to those pairs (z;y) for which their
distance does not exceed %

Example 6. The relation Ny = 1 if z = y,a Ny = 0 if # # y is an example of
a “crisp”’nearness.

The nearness relation enables us to define the derivative also for various types
of fuzzy mappings (see [Ka 1]). Here it will serve as a tool to introduce the a-fuzzy
uniform continuity. In the rest of this work we assume a nearness N is given (hence
the terms defined are dependent on that particular nearness).

Definition 17. A function f: R — R is an a-fuzzy uniformly continuous function
on a set M C R for the given o € (0;1) if there exists > 0 such that for all
z,y € M;|e—y| <dimplies f(z)N f(y) > a.

Speaking about the a-fuzzy uniformly continuous function we assume the ex-
istence of such a € (0;1), for which the function fulfills the requirement of the
previous definition.
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Proposition 6. If f is an a-fuzzy uniformly continuous function on the set M C R,
then f is fuzzy continuous on M.

A fuzzy continuous function need not be a-fuzzy uniformly continuous for any
a € (0;1). An easy example of such function is f(z) = z=! on the interval (0;1).

An a-fuzzy uniformly continuous function satisfies the intermediate value prin-
ciple in the following sense:

Proposition 7. Let [ be an a-fuzzy uniformly continuous function on the interval
[a;b], let ¢ be any value between f(a) and f(b). Then there is a number x € [a; b]
for which f(z)Ne¢ > a.

In order to find the connection between the notion of an a-fuzzy uniformly
continuous function and the uniformly continuous function in the classical sense we
will assume to work with a “reasonable” nearness, 1.e. we have to add the following
conditions to the definition of nearness:

(6) for each z,y € R there is Ny = 1 if and only if 2 = y,
(7) the function n(y) = x Ny is continuous for any fixed z € R.
Adding these conditions we can easily see that if f is an a-fuzzy uniformly

continuous function for any a € (0; 1), then it is also uniformly continuous and vice
versa.

The following proposition shows the connection between the fuzzy and classical
uniform continuity.

Proposition 8. If F,, denotes the set of all a-fuzzy uniformly continuous functions
on a set M C R, then )
on M.

e (051) F,, is the set of all uniformly continuous functions

In the classical mathematical analysis there is a well-known statement that a con-
tinuous function defined on a compact set is uniformly continuous on that set.
A similar result holds for fuzzy continuity.

Proposition 9. If f is fuzzy continuous on a compact set C, if N is a nearness
with nonzero values, then there is o € (0;1) such that f is an a-fuzzy uniformly
continuous function (with respect to N ).

In [Ja 4] and [Ja 5] we study how introducing fuzzy methods into crisp functions
analysis changes the basic theorems from classical mathematics. We show that a lot
of them obtains more general and compact form. Here is a short summary of the
results from the mentioned papers:

Definition 18. Let f : R — R be a function, a € R, let N be a nearness on R
and let o € (0;1). Denote

f(x) = f(a)

o) = {1500 s 4o vz o).

The function f is fuzzy differentiable at the point a on level a if the numbers
I =inf Dy(a),S = sup Dy(a) are both finite.

Note that Dy(a) # @ for any « € (0; 1) because of the continuity of N.
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Example 7. The function f(z) = 1/|#| is not fuzzy differentiable at 0 at any level,
as at this point D, (0) = R for all & € (0;1).

Example 8. The function f(z) = 0 for # < 0 and f(z) = 1 for 2 > 0 (Dirac
function) is not fuzzy differentiable at the point 0 on any level, as for any o € (0; 1)
we have sup D, (0) = 0.

Definition 19. The interval [I;S], where the numbers I and S are defined in
Definition 18 is called an a-nearness derivative of f at a on the level o and denoted

by fl,(a).

In case when at some point I = —oo and S = oo we also call the interval
[7; 5] an a-nearness derivative, although the function is not differentiable at that
point. (This is a similar situation as with the integrability - a function that is not
integrable may have the integral.)

We consider the arithmetical operations in the extended real line in the usual
way: ¢ + 00 = 00,a — 00 = —00, .00 = 00, a(—o0) = —oo (the last two statements
hold for positive a) and 0.0c0 = 0.

Example 9. The a-nearness derivative of the Dirac function (see Example 8) at
the point 0 is the interval [0; oo]. The a-nearness derivative of this function at some

a > 0, for which a NO = « is the interval [0; |1—|] .
a

Here are some properties of fuzzy differentiable functions and their a-nearness
derivatives:

Proposition 10. Ifa,3 € (0;1), o < S, then fé(a) C fl(a).

The next propositions shows the connection between fuzzy and classical differ-
entiability.

Proposition 11. If f is differentiable at a (in classical sense), then there is an
ag € (0;1) such that f is fuzzy differentiable at a on level g and

(N fila) = {f'(a)}.

a€(0;1)

Instead of the linearity which holds for the classical derivative, we have only the
following inclusion:

Proposition 12. If f, g are real functions, a € R, a € (0;1), then

(f +9)ola) C fila) + g5 (a),

where the sum of the sets f!(a), g, (a) is the set of all sums x + y, x € fl(a),y €
/
gola).
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Proposition 13. If ¢ € R, then (cf)!, (a) = cfl(a), where the product cfl (a) is
the set of all products cx, x € f/,(a).

From Proposition 10 we see that the a-nearness derivatives can be understood as
level cuts for some fuzzy set. This fuzzy set seems to be a generalization of the crisp
derivative (see Proposition 11). We are also able to formulate some classical state-
ments of real variable calculus without assumptions of continuity or differentiability.

In all the remaining propositions in this work we restrict ourselves to functions
defined only on a given interval. The reason is that we do not want the points
outside this interval to influence the nearness derivative. Other possibility would be
to consider the a-derivative of a function f at a point € [m;n] as an a-derivative
of f restricted on [m;n] at z.

Proposition 14. A function f is increasing on the interval [m;n] if and only if
at each a € [m;n] there is fl,(a) N (0;00) # 0 and f.,(a) N (—o0;0) = @ for every
a € (0;1).

A dual necessary and sufficient condition can be formulated in similar way for
decreasing functions. For non-decreasing functions we have:
Proposition 15. A function f is non-decreasing on the interval [m;n] if and only

if at each a € [m;n] there is f!(a) N (—o0;0) = @ for every a € (0;1).

Again the dual condition can be stated for non-increasing functions. All the
proofs of these statements are just modifications of the one in Proposition 14.

Finally we state generalized versions of Rolle, Lagrange and Darboux theorems.

Proposition 16 (Rolle Theorem). If f is defined on the interval [m;n], if
f(m) = f(n), then there exists a € (m;n) and a € (0;1) such that 0 € f!(a).

Proposition 17 (Lagrange Mean Value Theorem). If f is defined on [m;n],
Jm) = J0) ¢ gy,
m

f(n)

n
Proposition 18 (Darboux Theorem). If f is defined on [m;n], if there is z € R
such that for each x € supp(f'(m)) and for each y € supp(f'(n)) thereisz < z < y,
then there exists ¢ € (m;n) such that z € supp(f'(c)).

then there is a number a € (m;n), a € (0;1) such that

7. CONCLUDING REMARKS

This work shows two possible directions of fuzzy infinitesimal calculus. The first
one deals with fuzzy object - fuzzy number and fuzzy functions. We show that
using “reasonable” definitions we obtain similar results as in the classical case.
On the other hand, the methods used to obtain these results sometimes differ a lot
from the classical ones.

Another direction, less frequent, is applying fuzzy methods into classical math-
ematical analysis. In this work the section 6 1s devoted to present results of this
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kind. It appears that using fuzzy methods enables us both to extend validity of
some statements from the classical analysis and to formulate them in more general
way.

The results of this work are just the basic principles of fuzzy differential calculus;
there is a wide field for future research, both in theory and applications.

Finally it is worth to mention new ideas by Vojtas and Kalina which show close
links between fuzzy mathematics and non-standard analysis. This seems to be
a fruitful topic both for the theory of fuzzy mathematics and for its applications,
such as fuzzy measures or quantum computing.
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INVARIANT MEASURES ON LOCALLY COMPACT SPACES

PETER MALICKY

ABSTRACT. The paper considers measures on a locally compact space which are
invariant with respect to a given system of continuous maps.

Introduction

The present paper considers the following problem. There 1s given a locally
compact space X and a system F of continuous maps of the space X into itself.
We are interested in conditions under which there is a Borel F-invariant measure
on the space X. For example, let (G be a locally compact topological group. A
map T on the group G of the form T(z) = ax (T'(x) = xb, T(x) = axb) is said to
be left (right, left-right) translation of G. If a system F consists of all left (right)
translations, then a Borel F-invariant measure exists and is called left (right) Haar
measure of the group G, [2,p.246]. The group G is called unimodular if left Haar
measure is also right invariant, [1,p.119]. Tt is well known that left (right) Haar
measure need not be right (left) invariant, [2,p.248]. Tt means that the system of all
left-right translations need not have an invariant Borel measure. For compact spaces
the existence problem of an F-invariant measure was fully solved in Roberts’ paper
[4]. The paper [3] of the author contains partial results about the locally compact
case. The presented results are very similar to Roberts’ results for the compact case.
Without loss of generality we may assume that the system F contains the identity
map and is closed with respect to the composition of maps, i.e. F is a monoid with
respect to the composition. Moreover, we assume that F is a minimal monoid,
which contains sufficiently many homeomorphisms, and we obtain a necessary and
sufficient condition for the existence of an F-invariant measure. Using this result
we give a topological characterization of nonunimodular locally compact topological
groups.

1. Preliminaries

For a locally compact space X the symbol B(X) denotes the minimal o-ring
containing all compact subsets of X. The members of B(X) are called Borel sets
in X. A set A is called bounded if its closure A is a compact set in X. A Borel
measure on the space X is a set function p : B(X) — (0, 00) such that
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Key words and phrases. Locally compact space, invariant measure.
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u(@ =0, p U A; = Zﬂ(Ai) for any sequence {A;}:2, of pairwise disjoint Borel
i=1 i=1

sets and p(K) < oo for any compact set K inX. A map T : X — X is called
measurable if T71(A4) € B(X) for any A € B(X). Amap T : X — X is called
proper if it is continuous and T~!(K) is compact for any compact set K of X. A
measure p is said to be invariant with respect to a measurable map 7' if

w(T=H(A)) = pu(A) for any A € B(X). If F is a system of measurable maps and a
measure p is T-invariant for any T € F, then p is called F-invariant. A system F
of proper maps is called minimalif for any @ € X the set {T'(z) : T € F} is dense in
X. Clearly, the system F of proper maps is minimal if and if only for any nonempty
open subset U of the space X the system {T~1(U) : T € F} is a covering of X. We
say that a system F of proper maps contains sufficiently many homeomorphisms
if there is a bounded open subset Uy C X such that for any # € X there is a
homeomorphism T' € F for which @ € T~Y(Uy), i.e. T(x) € Uy. Equivalently,
a system F of proper maps contains sufficiently many homeomorphisms if there
is a bounded open subset Uy C X such that for any compact set K in X there

n

are homeomorphisms 71, ...,7, € F such that K C U Ti_l(Uo). For example, if
i=1

X is compact and F contains at least one homeomorphism (e. g. the identity
map), then F contains sufficiently many homeomorphisms. So, the assumption of
sufficiently many homeomorphisms in a system F is useless in the compact case,
but not in the locally compact case. If f is a real function defined on a locally
compact space X, then the symbol supp f denotes the support of the function f,
i. e. the closure of the set {z : f(x) # 0}. The set of all continuous functions on
X with a compact support is denoted by the symbol Co(X). The subset of Cy(X)
consisting of all nonnegative functions is denoted by C(‘JI' (X). The inequality f < g
means f(z) < g(z) for all z € X and f(x) < g(x) for some = € X.

2. Construction of an Invariant measure

To prove the main result we need two technical lemmas.

Lemma 2.1. Let F be a minimal system of proper maps of a locally compact
space X.
(i) Let g, € C (X) and ¢ # 0. Then there are Ty, ..., T, € F,

©1, .., on € CF (X) and a real number a > 0 such that g < angi oT; and

i=1
n
Y= Z P
i=1
(ii) Moreover, if F contains sufficiently many homeomorphisms, then there is
a function ¢ € CF (X) such that any g € CF (X) may be represented in
n

aformg:ﬁZfioTi, where f; € CT(X), 0< fi < o, Ty € F and B is
i=1
a nonnegative real number.

Proof. Denote K = supp ¢ and U = {z : ¢(x) # 0}. The set K is compact, U is
nonempty open and F is a minimal system. Hence, there are T1,...,T,, € F such
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that K C U T H(U7), which implies Z e(T;(2)) > 0 for all z € K. Put

i=1 i=1

n n - sup g(x) n
_ ] — reK - — " o0 T
f_ngoTZ,oz_ mIf(f() andgpl_..._gon_n.ThenggaZ;gponl.
TrE =

(ii) There is a bounded open set Uy C X such that for any compact set K in X

there are homeomorphisms 71, ...,T,, € F for which K C U T~ Uo) There is
i=1
another bounded open set W for which Uy C W. Take a function wo € CS'(X)
such that pg(z) = 1 for £ € Ug and pg(x) = 0 for = ¢ W, see [2,p.211]. Denote
= {x : po(x) # 0}. Obviously, Uy C U. Take an arbitrary function g € CF (X).
Denote K = supp g. There are homeomorphlsms T1,..., T, € F such that

xC VVlC 1mplies olTi(x)) > orall x € K. Put
K T T hich impli @ 0forallz e K. P

i=1

f= Zgoo o T;. Define a function h by h(z) =
i=1
z ¢ supp g. The function h is defined correctly, h(z)f(z) = g(x) and h € CF (X).
Put 3 = sup h(z) and fi(z) = %h(Tl_l(l‘)) ~po(x). Then f; € CF(X),0 < f; < o
z€X

and 530 1)) = 53 $HO T ))o(Ti0) = 3 bl T3 (a)) =
) ngo(Ti(x)) = h(z)f(x) = g(x). Tt proves (ii).

Lif f(z) # 0 and h(z) = 0 if

fz)

Lemma 2.2. Let F be a minimal system of proper maps of a locally compact space
X. If p is a nonzero F-invariant Borel measure, then u(U) > 0 for any nonempty
open Borel subset U of X.

Proof. Let u be a nonzero F-invariant Borel measure and pu(U) = 0 for some
nonempty open Borel subset U of X. Let K be a compact subset of X. Since
the system {T~1(U) : T € F} is a covering of X, there are Tt,...,T, € F such

that K C U Ti_l(U). F-invariance of the measure g implies p(K) = 0. Any Borel
i=1

set in X may be covered by a sequence of compact sets, [2,p.214]. Therefore, the

measure p 18 zero.

The following theorem is the main result of the paper.

Theorem 2.3. Let F be a minimal monoid of proper maps of a locally compact
space X which contains sufficiently many homeomorphisms. The following proper-
ties are equivalent.
(i) There exists a nonzero F-invariant Borel measure on X .
(ii) For any open subsets Uy, ..., Uy, any compact subsets Ky, ..., Ky, and any
maps Ty, .. Tn,Sl, vy Sm € F

ZXU >ZXK implies 3z € X : ZXU ZX j(x),
j=1
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where U; = Ti_l(Ui) and f(j = S;l([(j).

(i) If Ty, ..., Ty Sty ooy S € Fy f1, ooy fn and g1, ..., gm are linear combinations
of characteristic functions of open and compact sets respectively with
positive rational coefficients, then

n m

Zﬁ > Zgj implies 3z € X : Zn:fZ(TZ(J:)) > igj(sj(x))

(iv) For any functions @1, ..., ¢n, %1, ..., ¥m € CF (X) and any maps
Tl,.. Tn,Sl,.. Sm € F

ngl > 21/)] implies 9z € X : ngZ i ( 21/)](5](1‘))
j=1
Proof. (i)=(ii) Let u be a nonzero F-invariant Borel measure on X. Take open
subsets Uy, ..., U, and compact subsets K1, ...K,, such that ZXUl > ZXKJ"
i=1 j=1
Without loss of generality we may assume that the sets Uy, ..., U, are bounded
to be Borel. (An open set is Borel if and only if it is o- bounded) We have

ZXUl ZXK ) for all z € X and ZXU ZXK ) for some

i=1
x E X. The last inequality holds on a nonempty open subset because the sets

U; are open and K; are closed. Lemma 2.2. implies Zu ) > Zu (K;). Take

i=1 j=1
maps 11, ..., Ty, S1, ..., S;m € F. Suppose ZXU, < ZXI?]" where U; = T H1;)
i=1 3
and K; = S;l([(j). Then Zu(f(j) > Zu(UZ) = Zu(Ui) > Zu(Kj), which
j=1 i=1 i=1 j=1

is a contradiction.

(if) = (iii) This is obvious.

(iii) = (iv) Take maps T4, ..., T, S1, ..., Sm € F and functions
D1y eey Py W1y oy b € CF (X)) such that ngi > 21/)] Put

i=1 j=1

(1) h= 5 ei= 3w

Obviously, h € CF (X) and h # 0. Denote U = {z : h(z) # 0} and

(2) U supp(p; o T;)
Since F is minimal and K is compact, there are Ry, ..., R, € F such that
P
- -1
(3) Kc|JR;
j=1
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Then 0 < lnf Zh z)). Put

P
(4) o= inf ) h(R;(z)),
j=1
1
(5) ’l/)m+] = ;h and
(6) Smtj; = Rj for j=1,..,p
Then we have
m+p

(7) ZSDZ > Z 1/)3

Take a natural number

p(p+m+n)

I —

Denote U; = {2 : ¢;(x) > £} for integers i and k such that 1 <i < n, 0 <k and
Kijp={z:j(z) > k} for integers j and k such that 1 < j < m, 1 < k. Obviously,
the sets U; » are open and the stets A] k are compact for the correspondmg integers.

(8) r >

Put f; = ZXU,k and ¢; = %ZXKM' In fact, both sums are finite. The
k=1
functions f; and g; have properties:
1
(9) 0 < pi(2) < file) <ei(z) +
1
(10) 0 <gj(z) < ¥j(z) <gj(z) + ~ and
(11) 0< fi(z) © 0< ;(x) forall z € X.
Now

m-+p

(12) Zfi > Z 9;
i=1 j=1

and by (iii)

m-+p

(13) W EX Y SilTil@) > Y gi(8(x)

i=1

This element & must belong to the compact K by (10), (11) and (2). Therefore,
Z h(R ) >« and

m+p

(14) > wilSi(x) >

j=m+1

=R
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by (5) and (6). Using (9), (13), (10), (14), and (8) we obtain

n n m-+p

Y i) > Y AEE) - 1) > Y () >

=1 - i=1 Jj=1 . .

>3 W) - by = TEEED S+ Y ()
=1 ji=1 j=m+1

—(n4m “ a & .
> w + Z%(SJ(JL‘)) + » > Z%(Sj(l‘)) Tt proves (iv).
j=1 j=1
(iv)= (i) Take o € CF (X) from (ii) of Lemma 2.1. Let A be the set of all functions
@ of the form ¢ = ngi o Ty, where ¢; € CH(X), T; € F and g = ngi. Since
j i=1

=1
F is a monoid, we have

(15) $o € Aa
(16) A is a convex subset of Co(X) and
(17) Voe AVIT € F:poT € A.

By (i) of Lemma 2.1., we obtain

(18) VEeC(X)Jpe ATa>0: |f] <alyl.
Property (iv) implies

(19) Vo, € AVa>0: p<ay=>a> 1.

Let p : Co(X) — (0,00) be defined as follows p(f) = inf{a : Jp € A |f] < ap}.
Then

(20) p is a seminorm on Co(X),

(21) 0<g < f=plg) <p(f) forall f,g € Co(X),
(22) ple) = Lfor all p € A,

(23) p(foT) <p(f) forall feCy(X)and T € F,
(24) P11 = p(f) for all J € Co(X) and

(25) p is a norm.

Homogenity of p is obvious, subadditivity of p follows from (16). Relations (22) and
(23) follow from (19) and (17) respectively. Relations (21) and (24) are obvious.
We shall prove (25). Let f # 0. We may assume f € Cf (X).

From (i) of Lemma 2.1. it follows that ¢y < a - Zf o T; for some a > 0 and
i=1
Ty,...,T, € F. Then we have 1 = p(yqg) < p(a~Z foTi) < aZp(foTi) <anp(f).

i=1 i=1
Therefore, p(f) > ﬁ
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Put B = {f : p(f) < 1}. Then we have two disjoint convex sets A and B such
that B is open (with respect to the topology induced by the norm p). By Hahn-
Banach theorem, there is a nontrivial linear functional ® : C'(X) — R such that
B(f) < B(yp) for all f € B and ¢ € A. We may assume that

(26) sup o(f)=1.

Then ®(p) > 1 for all ¢ € A. On the other hand p((1—¢)p) =1—¢ for ¢ € A and
£ € (0,1) by (22). Therefore, (1 —¢)p € B and (1 —&)®(¢) = B((1 —e)p) < 1. Tt
means
(27) O(yp) =1 for all ¢ € A.
Let 0 < f < ¢g. Then 0 < ¢g — f < ¢p. Relations (15), (21) and (22) imply
p(po — f) < 1. Then (26) implies ®(pg — f) < 1. By (15) and (27), we have
1=®(po) = (f) + P(wo — f). Therefore, ®(f) =1 —-P(po—f) >1—-1=0, i.e.
o(f) > 0.

Moreover, foT + (pg— f) € Afor all T € F. By (27) we have 1 = ®(fo T+ (pg —
N)=®(foT)+P(po) —®(f) =P (foT)+ 1 —d(f). Hence,

O(foT)=d(f).
Let g € CF (X) be arbitrary. Lemma 2.1. implies

o ~—

gzﬁzfloﬂa
i=1
where 8> 0, 0 < f; <o and T; € F. Therefore,

d(g) =6Z<I><fioTi> ZBZ@(J%) >0

and

DgoT)=p> ®(fioTioT) =8> ®(fi) = d(g)
i=1 i=1

whenever T' € F. Let g € Co(X) be arbitrary and T € F. Then

BgoT)=((97 —g7)oT) =g oT) = (g~ o T) = B(g") — B(g97) = P(g).

So, ® is a positive F-invariant linear functional on Cy(X). There is a unique regular

Borel measure p on the space X such that

b(g) = / gdp for any g € Co(X),
X
see [2,p.240]. Obviously, the measure p must be F-invariant.

Now, we can give a topological characterization of nonunimodular locally com-
pact topological groups.

Corollary 2.4. A locally compact group GG is nonunimodular if and only if there
are open subset U, ..., U,, compact subsets K1, ..., K., of G such that

n m n m
D_xo > D g and 3 oxg, <) X,
i=1 j=1 i=1 j=1
where UZ = a;U;b; and f(j = ¢;K;d; for some a;,b;,¢;,d; € G.
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DOMINATION IN PRODUCTS OF CIRCUITS

BOHDAN ZELINKA

ABSTRACT. Three numerical invariants of graphs concerning the domination are con-
sidered, namely the domatic number, the doubly domatic number and the total do-
matic number of a graph. These invariants are investigated for Cartesian products
of circuits. Such graphs are treated algebraically as Cayley graphs of direct products
of finite cyclic groups.

In this paper we shall study the domatic number, the doubly domatic number
and the total domatic numbers of graphs which are Cartesian products of circuits.

We shall consider finite undirected graphs without loops and multiple edges. By
V(@) we denote the vertex set of a graph G, by N¢[v] the set consisting of v and of
all vertices which are adjacent to v in GG. By (), we denote the circuit of length n.
If G1,Go, ..., Gy, are graphs, then their Cartesian product Gy x Gy x ... X G, is the
graph whose vertex set is the Cartesian product V(G1) x V(G2) x ... x V(G,) and
in which two vertices (21,22, ..., ), (Y1, Y2, ..., Yn) are adjacent if and only if there
exists an integer ¢ such that 1 < i < n,2; and y; are adjacent in G; and x; = y; for
all j € {1,...,n}—{i}.

A subset D of the vertex set V(@) of a graph G is called dominating in G
(or total dominating in G), if for each z € V(G) — D (or for each z € V(G)
respectively) there exists a vertex y € D adjacent to 2. The set S is called doubly
dominating in G, if for each € V(G) — D there exist two vertices y1, y2 in D which
are adjacent to z.A domatic (or total domatic, or doubly domatic) partition of G
is a partition of V(G), all of whose classes are dominating (or total dominating,
or doubly dominating respectively) sets of G. The minimum number of vertices
of a dominating set in G is its domination number 4(G), the maximum number
of classes of a domatic partition of G is its domatic number d(G). Analogously
the total domination number 4 (G), the total domatic number d;(G), the doubly
domination number 4%((7) and the doubly domatic number d?((7) are defined.

The domatic number was introduced by E. J. Cockayne and S. T. Hedetniemi
in [1], the total domatic number by the same authors and R. M. Dawes in [2]. The
doubly domatic number is a particular case of the k-ply domatic number introduced
in [3].

We shall study Cartesian products of circuits. Let G = Hy x Hg x ... X Hp,
where Hy, Ho, ..., H, are circuits. The lengths of Hy, Hs, ..., H, will be hq, ho, ..., hy

1991 Mathematics Subject Classification. 05C35, 05C38, 20K01.
Key words and phrases. Domatic number, doubly domatic number, total domatic number,
circuit, Cartesian product of graphs, Abelian group, Cayley graph.

57



respectively. The graph G may be considered as the Cayley graph of a direct
product of finite cyclic groups of orders hy, ko, ..., hy. (Among such direct products
of groups there are all finite Abelian groups.)

We shall treat finite Abelian groups and thus we shall use the additive notation
as it is usual in this case. The group operation is denoted by + as an addition, the
neutral element is denoted by 0 and called the zero element, the inverse element to
x 1s denoted by —x.

Let A be a subset of a group G such that 0 ¢ A and ¢ € A implies —x € A for
each € G. The Cayley graph G(G, A) is the graph whose vertex set is G and in
which two vertices x,y are adjacent if and only if x — y € A.

By H we shall denote the Abelian group which is a direct product of finite cyclic
subgroups H1,...,H,. For i = 1, ...,nlet a; be a generator of H; and let h; be

its order. Each element of H can be expressed as E aqa;, where aq, ..., ap, are
i=1

n n

integers. The expressions Zaiai, Zﬁiai denote the same element of H if and
i=1 i=1

only if a; = 3; (mod h;) for i =1,...,n.

n
For each element of H there exists a unique expression Z aj;a; with 0 g a; < h;
i=1
fori=1,...,n.

Let p be a positive integer. By Ho(p) we denote the subset of H consisting of
n n
the elements Z «;a; such that Z ia; = 0 (mod p). We shall prove a lemma.

i=1 i=1

Lemma 1. The set Ho(p) is a subgroup of H. If h; =0 (mod p) fori =1,...,n,
then the index of Ho(p) in H is p. In the case when p is a prime number and n < p,
also the inverse implication holds.

Proof. Evidently Ho(p) contains the zero element o of H, for any two elements of
Ho(p) their sum is in Ho(p) and for any element of Hq(p) its inverse is in Ho(p);
therefore Ho(p) is a subgroup of H. Suppose h; = 0 (mod p) for i = 1,...,n. If

Zaiai = Zﬁiai then Ziozi = Zz@ (mod p). For each integer j such that
i=1 i=1 i=1

i=1
n n
0 < j < p—1 the set of all elements Z a;a; with Z iz; = j (mod p) is evidently

i=1 i=1
a class of H by Ho(p) and the index of Ho(p) in H is p. Now let there exist
k € {1,...,n} such that hy is not divisible by p. Suppose that p is a prime number
and n < p. Then there exists a solution z of the congruence pxr =1 (mod hy). We

have pay € Ho(p) by the definition and also xpay = ax € Ho(p). Let b = Z B;a; be

i=1
n

an arbitrary element of # and let o = Z = 1253;. As pis prime, there exists T such

7
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that k7 = ¢ (mod p). Let ¢ = b — Tag. Then ¢ = Z'yiai, where v, = B — 7 and

i=1
n n

~i = i for i = k. We have Zi'yi = Zz@ — kT =0 (mod p) and ¢ € Ho(p). As
i=1 i=1

ag € Ho(p), also Tay € Ho(p) and b = c+rap € Ho(p). As b was chosen arbitrarily,

we have Ho(p) = H.

Now we prove a theorem.

Theorem 1.. Let G = Hy x ... x Hy,, where Hy, ..., Hy are circuits, let h; be the
length of H; for i =1,..,n. If h; =0 (mod (2n+ 1)) fori =1, ....n, then

d(G)=2n+1,
G) = (Mizyhi) /(20 + 7).

Proof. The graph G is a regular graph of degree 2n, therefore by a result from [1]
we have d(G) < 2n + 1. Therefore it suffices to show a domatic partition of G
having 2n+ 1 classes. We may consider GG as the Cayley graph G(H, A), where H is
the above mentioned group and A = {ay, ..., a,, —a1, ..., —a,} and its vertices may

be considered as elements of #. For k = 0,...,2n put Dy = {Z aja; | Ziozi =k
i=1 i=1

(mod (2n + 1))}.
Denote D = {D ..., Doy, }. The classes of D are classes of # by Ho(2n + 1). We

shall prove that Dj is a dominating set in G. For each vertex z = Z a;a; let k(x)
i=1
be the integer such that 0 < k(x) < 2n and Ziozi = k(x) (mod (2n + 1)): this
i=1
number k(z) is determined uniquely. If k(x) = 0, then 2 € Dy. If 1 < k(z) < n,

then let y = Zﬁiai, where By = ap@) — 1 and 3 = a; for i # k(x). If

i=1
n+1 < k(z) < 2n, then let y = Z'yiai, where Yo, _k(2)41 = Qon_k(e)+1+ 1,7 = a;

i=1
for j # 2n — k(x) + 1. In both the cases y € Dy and is adjacent to x. Analogously
as for Dy the proof can be done for any other class of D. Therefore D is a domatic
partition of G and d(G) = 2n + 1.

As (G is regular of degree 2n, each vertex of GG is adjacent only to vertices of
other classes of D than its own one and is not adjacent to two vertices of the same
class. Therefore the system of sets {N[z] | # € Dg} is a partition of V(G). As the
number of vertices of G is TI7_, h;, we have |Dg| = (TI7_;)/(2n + 1) and evidently
this is v(G). O

In the following theorem we shall consider only n = 2.

Theorem 2. Let G = Hy x Ho, where Hy, Hy are circuits of lengths hy, hy respec-
tively. Then the following two assertions are equivalent:

(i) h1 =0 (mod 5) and ha = 0 (mod 5);
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(i) d(G) = 5 and v(G) = h1hy/5.

Proof. The implication (i)= (ii) follows from Theorem 1. Consider the groups
H,Ho(5) in this case. Let D be a domatic partition of G with 5 classes, let Dg
be the class of D which contains the vertex o (the zero of H). As d(G) = 5, the
closed neighbourhoods of any two distinct vertices of Dy are disjoint and therefore
any two distinct vertices of Dy have distance at least 3 in (. Therefore the vertex
a1+ as 1s not in Dy and must be adjacent to a vertex of Dy. Such a vertex is neither
ay, or as and therefore 1t is a1 + 2as or 2a; + as. Suppos that aq + 2as € Dy. Also
—aj + ay ¢ Do and must be adjacent to a vertex of Dg. The vertices —ay, +as are
adjacent to o and the vertex 2a, —as has the distance 2 from a; + 2as. Therefore
—2a1 + as € Dy. Silmilarly we prove that —a; — 2as € Do and 2a; — as € Dy.
Denote b = ay + 2as,¢ = —2ay + as. Therefore the assumption o € Dy and
b € Dy implies ¢ € Dy, —b € Dy, —c € Dy. Analogously b € D and o € D implies
¢ € Dy,—b € Dy, —c € Dy. Now we may proceed further in such a way and prove
that all elements of the subgroup H of generated by the elements b, ¢ are in Dy. Here
we use the symmetry of the graph G. We have b € Ho(5), ¢ € Ho(5). Any element
of Ho(5) has the expression aya; +@sas, where ag 4+ 2a2 = 0 (mod 5) and therefore
it may be expressed as b+ ve, where 8 = (a1 + 202) /5,y = a2 — 2(evy + 20a2) /5
and 3, are integers, Therefore the subgroup of H generated by b, ¢ is Ho(5). As
D has to be a domatic partition, the index of Hq(5) in G must be 5 and (i) holds
by Lemma 1. If 2a1 + as € Dg instead of a1 + 2as € Dy, then the proof is the same,
only with interchanging a; and ay. O

Theorem 3. Let G be the same graph as in Theorem 1. If h; =0 (mod (n+ 1))
fori=1,...,n, then d*(G) =n+1.

Proof. A result from [3] implies that d?(G) < n + 1. Therefore it suffices to show
a doubly domatic partition D of G with n 4+ 1 classes. For k = 0,...,n put Dy =

{Z a;al Zza =k (mod (n+1))}

Denote D = { Dy, ..., Dy}. The classes of D are classes of H by Ho(n +1). We

shall prove that Dy is a doubly dominating set in G. For each vertex x = Z o;a;
i=1

let k(x) be the integer such that 0 < k(z) < n and sz = k(z) (mod (n + 1)):

this number k(z) is determined uniquely. Tf k(z) = 0 then € Dg. Otherwise

let y = Zﬁzaz,z = Z%az, where fi(o) — 1,85 = a; for j # k(2), Yn_g(z)+1 =

i=n

On—k(e)+1+ 1,7 = oz], for Jj#n-— ( )+ 1. Evidently y € Dg,z € Dy and both
y, z are adjacent to x. Therefore Dy is a doubly dominating set. Analogously as
for Dy, the proof can be done for any other class of D. Therefore D is a doubly
domatic partition and d?(G) =n + 1.0

Lemma 2. If h; =0 (mod 2 (n+ 1)) for i = 1,...,n, then there exists a doubly
domatic partition D = {Dy, ..., D,} in G such that for each k = 0, ..., n the set Dy
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is the union of two disjoint non-empty sets Dj,, D}/ with the property that for each
x € V(G) — Dy, there exist vertices y € Dy, z € D} adjacent to x.

Proof. In this case we may take
D = {Ziozi = k (mod 2(n + 1))} D) = {Za al|Zzal =n+ 14k (mod

i=1
2n+ 1))} for k = 0,...,n. If we put Dy = D’ DZ, then {Dy,...,Dp} is the
doubly domatic partition from Theorem 3. O

With help of this lemma we prove the following theorem.

Theorem 4. Let GG be the same graph as in Theorem 1. If h, =0 (mod 4) and
hi =0 (mod 2n) for i < n, then di(G) = 2n.

Poof. As G is regular of degree 2n, by a result from [2] we have d;(G) < 2n.
Therefore it suffices to show a total domatic partition of G having 2n classes. If
n =1, then this is D = {Dy, D1}, where Dy = {aai|a =0 (mod 4)} U {aai|a =1
(mod 4)}, Dy = {aaj|a = 2 (mod 4)} U {aaj|a = 3 (mod 4)}. If n > 2, then
let G, = Hy x..x Hy_1. By Lemma 2 there exists a doubly domatic partition
= {Do, Nn 1} of G with n classes such that for each k = 0,...,n — 1 the set
Dk is the union of two subsets Dk, Dg such that for each vertex = € V(Go) Dg
there ewist vertices y € Dy, z € D” adjacent to . Now for k = 0,...,n— 1 put

mod4
mod4
mod4
mod4

Dy ={b+aa,be D, & a=0
Uf{b+aaslbe DY & a=2
Dpyr={b+aa,lbe D, & a=2
Uf{b+aaslbe DY & a=0

YU{b+ aaulb € D, & a=1(modd)}uU
YU {b+aa,lb € DY & a = 3(modd)},
YU{b+aaylb e Dy & o= 3(mod4)}U
YU {b+aaslb € DY & a = 1(mod4)}.

We prove that Dy is a total dominating set. Let = b + «aa, be a vertex
of G. If b € [)6 and @ = 0 (mod 4) or & = 3 (mod 4), then z is adjacent to
b+ (a+1)a, € Dy. Ifb € D’ and o = 1 (mod 4), or & = 2 (mod 4), then z is
adjacent to b + (a — 1)an € Dy. Analogously for b € Dfj. If b ¢ Dy, then there
exist y € D’ and z € D” adjacent to z. If « = 0 (mod 4) or & = 1 (mod 4) then z
is adjacent to y + aa, € Dy. For other classes of D = {Dy, ..., Da,_1} other than
Dy the proof is analogous. Therefore D is a total domatic partition of (.

At the end we prove again a theorem concerning only n = 2.

Theorem 5. Let G = Hy x Ho, where Hy, Hy are circuits of lengths hy, hy respec-
tively. If at least one of the numbers hy, hy is divisible by 4, then d(G) 2 4.

Remark. In such a case, if G satisfies the conditions of Theorem 1, then d(G) = 5,
otherwise d(G) = 4.

Proof. Without loss of generality let hy be divisible by 4. We shall consider again

the vertices of G as elements of a group and express them in the form aja; +

asa;, where 0 < oy < hy — 1,0 < ay < hy — 1. For each k € {0,1,2,3} let

Dk = {ara; + a2a2|a1 + 2a3 = k (mod 4)} The reader may verify himself that
= {Dy, D1, D3, D3} is a domatic partition of G and this d(G) > 4.0
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EXISTENCE OF INVARIANT TORI OF CRITICAL
DIFFERENTIAL-EQUATION SYSTEMS DEPENDING
ON MORE-DIMENSIONAL PARAMETER. PART II

RubpoLF ZIMKA

ABSTRACT. Inthe papera system of differential equations depending on more-dimen-
sional parameter is studied. Tt is supposed that the matrix of the first linear approxi-
mation P has m pairs of pure imaginary eigenvalues while the others do not lie on the
imaginary axis. Conditions under which such a system in the cases when m = 3,4
has invariant tori are presented (in Part I the cases when m = 1,2 were analysed).

Introduction

Consider the system of differential equations

(1) o= X(w, 1)+ X" (z, ),

where 2 € R”,u € R% & = Ccll—f,X(x,u) - a vector polynomial with respect to
z, 1, X(0,0) = 0, X*(x, ) - a continuous function in M = {(z, p) : ||2|| < K, ||u|| <

< L} with the property:

(2) X (\/e;:x,gl,to) = (\/g)3p+2)2(xa6aﬂ0)’
)N((x, €, jto) - a continuous function with respect to z, ¢, yo of the class CL(M), o =
= ﬁ, 0 <e < L,p- anatural number.
It is supposed that:
1. the matrix P = 2X00 pa6 pairs of pure imaginary eigenvalues 21, ..., £iA;,
and the others Aapmy1, ..., Ay have non-zero real parts
.det P#£0
3. g M At gmAdm 20,0 < |g] <3p+2,lq| = |q1| + .- + |gm], ¢; - integer numbers,
1=1,...,m.
The bifurcation equation of the system (1) is (see [6]):

[\
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(3) Bp® + Cu =0,

p2 = COl(p%’ aprzn)a/'t = COI(/'Lla "'a/’td)a
Bi1 ... Bim Ci1 ... Ciyg

Suppose that det B # 0. From (3) we have on the beams d(po) = {epo : p =
= HEMO<e<L}:

Q11 Q14 1

(o) = Apro, A= | ... L fo = mcol(ul, vy o)

(the notions and the notations in this article have the same meaning as in [6]).
Tt was shown in [6] that on the beams §(po), t € DP, the system (1) can be
reduced to the system

i1 = eX1(x1,8, o) + XD (21, 01,01, 6, o) + (VE)PH X (21, 1,1, 8, o)
(4) o1 = M (e)+e®i (21, ¢, o)+ DY (x1, 01,11, 8, o)+ (VE)FH Dy (21, 01,11, €, o)

Il/l - JVl + Vlo(l‘l,gpl,l/l,g,/io) + (\/E)Sp-l—lvl(xl’@1’1/1’6’”0)’

where X1, ®y - vector polynomials with respect to 21,2, X1(0,0, p1g) = 0,
®1(0,¢,p0) = 0,A1(0) = XA = col( A1, ..., Am), X7, B9, Vlo,j(l, ®,,V; - continuous 27
- periodic with respect to ¢; functions in the domain My {(21, 1,11, ¢, o) : 21 €
€ R™ ||z1|| < Ki,v1 € RP2 ||| < Ki,01 € R™,0 < e < Ly € DP} of
the class C;IyWIyVI’X?’ ®9, V0 - vanishing at vy = 0,J - a Jordan canonical lower
matrix.

Tt holds (see [1]):

(5) Pr(uo) = L) 91ding (o)) Bldiag (o)l

Suppose that the domain of criticalness DC' of the bifurcation equation (3) is
non-empty set. Take y € DC. On the beam J(pg) the system (4) is the system
with one dimensional positive parameter ¢ which was investigated in [1]. We can
perform on the system (4) on the beam d(ug) the transformation procedure that
was described in [1]. This procedure consists of p steps if the following conditions
are satisfied:

Logiah+ +qu/\ﬁu #0,0 < |q| < 3(p—k)+2, where A5 .. :I:i/\ﬁlk are the

pure imaginary eigenvalues of Py(uo), k=1,...,p— 1.
2. det By # 0,82 (po) = —Bk_le (o) > 0, where By, C(uo) are the matrices
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of the bifurcation equation By p} + ¢Cy(po) = 0 arising at the (k + 1)*
step, k=1,...,p— 2.
3. Pit1(po) = 2[diag Br(po)] Brldiag Bk (p0)] is critical, k =1, ...,p— 2.
Performing this transformation procedure consisting of p steps on the beam ¢ (o)
(the transformation of the system (1) to the system (4) is the 1** step) the system
(4) is reduced to the system

&y =P X, (2, €, o) + Xg(xp, Plyeeey Ppy V1, oey Up, €, o)+
FeP X, (T, P1y oy Ppy V1, ey Up, £, J0)

(6)  ¢r= Ek_lx\k(E) + PPy (g, e, o) + <I>2(xp, G1y ooy Ppy V1, ey Up, €, o)+

.
+eP T Dy (2, @1, ey Ppy Vi ooey Up, £, fl0)

U, = 6’“_1Jk_11/k~—|— Vo (@py @1y ey Ppy V1 ooy Upy €, o)+
+(\/E)3p+2_k‘/k(l‘p,g01,...,gop,ljl,...,ljp,[;"/,to)’k’: 1a"'apa

where X, @) - polynomials with respect to z,,¢, X, (0,0, to) = 0, x(0,¢, o) =
= 0,X(0) = A1 = col(/\’f_l, o AEd ),:I:i/\’f_l, ., £iME=1 _the eigenvalues of

ME—1 ME—1

the matrix P,_1, A\ = X\, mg =m, Py = P, XZ(,J, ) VP, )N(p, ék, Vi - continuous func-
tions 2 - periodic with respect to 1, ..., ¢, in the domain M, = {(z,, ¢1, ..., ¢p,

Vi, oV, €) 0 2] < K, |lvsll < Kp o € R™=1k=1,..,p,0<e < L} of the
class C'' with respect to all variables with the exception of ¢, Xg, @) V- vanishing

at vy = ... =1, =0,P, = w - regular matrice, Ji_1 - non-critical Jordan
p
matrices, Jo = J.
In this article the existence of invariant tori of the system (1) is studied in the

cases when the matrix P has three and four pairs of pure imaginary eigenvalues.

1. Three pairs of pure imaginary eigenvalues

Suppose that the matrix P of the system (1) has three pairs of pure imaginary
eigenvalues £¢A1, £i)y, 2iA3 and the others A7, ..., A, have non-zero real parts.
The bifurcation equation (3) is:

(1.1) Bp® + Cp =0,

where p? = col(p7, p3, p3), = col(pa, ., pta),

Bll Blz Blg 011 Cld
B = le Bzz 323 ,C = 021 ng
B31 B32 B33 031 ng

Suppose that det B # 0. Take u € M and consider the beam d(pg) = {epo : 0 <
< e < L}. The solution of (1.1) with respect to p? on the beam §(po) is:

(1.2) p* = e(=B~ ' Cpo) = ea*(no),
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0‘%(#0) aq a1 14
az(ﬁ‘O) = O‘%(NO) =Apo, A= | az | =| an a4
Oé%(/,to) s (03] ... Qg

The matrix Py(po) which is defined by (5) has the form:

af (po) B a1 (po)aa(po)Bia o (po)as(po) Bis
Pi(po) =2 | a1(po)az(po) Bar a3 (o) Baa as(po)as(po)Bas |,
a1 (po)as(po)Bsr - aa(po)as(po) Bsz a3 (f0) Bas

where o; (o) = \/ﬁ(a“ul + ot oiapa), i=1,2,3.

Denote the rank of the matrix A in (1.2) by the symbol A(A) and the domain of
positiveness and the domain of criticalness of the bifurcation equation (1.1) by the
symbols DP and DC.

Lemma 1.1. Let be h(A) = 1. Then DP # {§ if and only if ay # 0, a; = kjevq, by >
>0,i=2,3

Proof. DP of (1.1) is determined by the inequalities:

1

ad(po) = m(allﬂl + ot agapg) >0
9 1

(1.3) a3 (po) = m(azlﬂl + ...+ azapa) > 0
9 1

az(po) = (agipr + ... + asapa) > 0.

4]

The first inequality in (1.3) is satisfied at all parameters 4 € M which belong
to that half-sphere of the sphere O = {p = (p1,...,pta) : 0 < ||p|| < L} that is
determined by the hyperplane aqip1 + ... + a1gpqg = 0 and by a point pu* € O at
which af(p*) > 0. As h(A) =1 and a; # 0 so there exist ko € R, k3 € R such that
ay = koo, az = ksay. Using this we can express the second and the third inequality
in (1.3) in the form: ||I€T2||(0411N1 + ..+ agapg) > 0, ||k73||(0411ﬁ‘1 + ...+ agapg) > 0.
From these inequalities it follows that DP # § only if ks > 0,k3 > 0. If oy = 0
then DP = (J. The proof is over.

Lemma 1.2. Let be h(A) = 2. Let «;,, o, be the linear independent pair from
the triad {oy, as, ag}. If for the third member «;, from this triad it holds: a;, =
= k’lail + k’zOziQ, kq > 0, ko > 0, ki + ko > 0, then DP ;é 0.

The proof of Lemma 1.2. is similar to the proof of Lemma 1.1.
Lemma 1.3. Let be h(A) = 3. Then DP # 0.

Proof. The set D P consists of those parameters y € M which satisfy the inequalities
(1.3). Solving them we get:
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a1y F o aggptg — =0
(14) Qo1 + ...+ Qogilg — 19 =0

aziphl + ...+ Q3444 —13=0,%t>0,i=1,2,3.

As h(A) = 3 the system (1.4) has solutions with d parameters, d > 3. Among
these parameters the variables ¢1,%5,%3 can always be. Those parameters yu € M
corresponding to positive numbers 1,159,135 create DP. The proof is over.

Denote
ar(pto) = a3 (pto) Bi1 + a3(po) Bas + a3(g10) Bas
(15)  as(po) = of (uo)as(po) | Mss| + aF (o) ai (po)| Maz| + a3 (o) a3 (mo) | M|

as(po) = o (po)a3(mo)ai(mo) det B,
where |M;;] is the minor of the element B;; of det B, i =1,2,3, u € DP.

Lemma 1.4. The matrix Py(uo) is critical at u € DP if and only if the following
two conditions are satisfied:

1. a1 (po)az(po) = as(po)
2. Clz(/,to) > 0.
The eigenvalues i)}, A} of the matrix P; (o) are defined by the formulae:

AL = 2/as(po), Ay = 2a1 (o).

Proof. Tf X is the eigenvalue of Py(ug) then A= % is the eigenvalue of w. The

L. . . P .
characteristic equation of the matrix 42“—01 is:

(1.6) N — a1 (po)A? + as(po) X — as(po) = 0,

where ai (o), az(po), as(po) have the form (1.5). Comparing (1.6) with its expres-

sion by means of the roots £i\}, A3 of M what is

AT = MNP+ (M)A = (A)A5 =0,
we have: ~ ~ o
ai(po) = Az, az(po) = (A1)*, as(po) = (A)*As.
From this we get the assertion of lemma. The proof is over.
Lemma 1.5. Let be h(A) =1 and DP # (). Then DC' = or DC' = DP.

Proof. When DP # () then according to Lemma 1.1 ay = ksaq, a3 = kzay,
ko > 0,ks > 0. The expressions a1 (o), a2(po), az(po) from (1.5) can be expressed
in the following way:
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a1 (po) = of (o) (Bi1 + k2 Bos + k3 Bss)
(1.7) as(po) = o (po) (ko | Mas| + ks| Mas| + koks| Mi:])
Clg(/,to) = Oz?(/,to)kzk’g, det B.

According to Lemma 1.4 the conditions for criticalness are:

1. ai(po)az(po) = as(po).
az(ﬂo) > 0.

Putting the expressions (1.7) into these conditions we get the conditions for
criticalness which do not depend on u € DP:

1. (B11 + k2 Baa + k3Bsg)(ka| Mas| + ks|Maa| + koks|M11|) = koks det B.
(1.8)
2. ko|Mss| + ka|Maao| + koks| M| > 0.

Suppose that DC' # @ and take p* € DC. This means that the conditions (1.8)
are satisfied at p* € DC' and as they do not depend on p € DP they are satisfied
at every yu € DP. The proof is over.

Consider now DP and DC of the bifurcation equation (1.1) and suppose that
DP # (. Then on DP the system (1) can be reduced to the system (4) with
T € R3,§01 S RS,I/1 € R"S.

Theorem 1.1. Let be DP # (). Then to every small enough p € DP\DC there
exists the invariant manifold

z1 = ||plln(e, |pll, po)
(1.9)
vi = ||ul]?O1 (1, ||l o),

where n,©1 are continuous functions 2w - periodic in all components of ¢q,p, €
€ R? z1 € R?, vy € R*5. The natural number p can be taken p = 1.

Proof. Consider an arbitrary pu € DP\DC. This parameter p lies on the beam
d(po) = {epo : 0 < & < L}. On this beam the system (1) can be reduced to the
system (4) what is the system with one positive parameter £. According to Theorem
from Section 3 of Chapter 1 in [1] the invariant manifold (1.9) exists. The proof is
over.

Suppose that g € DC of the bifurcation equation (1.1). On the beam d(uo)
we can perform the second step of the transformation procedure. The bifurcation
equation of the system (4) on the beam d(uo)is

Bi(p0)pt +eCi(no) =0,

where By (po) € R.

Assume that By (po) # 0 and 87 (o) = —%Cﬁ(uo) > 0. Then the system (4)
can be reduced to the system (6) with p=2,21 € R, 1 € R3 5 € R, 11 €
€ Rn_6, Vo € R and Pz(/,to) = 26%(/10)31(#0) ;é 0.

Utilizing Theorem from Section 3 of Chapter 1 in [1] the following theorem can

be formulated.
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Theorem 1.2. Let be u € DC. If By(po) # 0 and 37 (o) > 0 then to every small
enough pt € 6(pg) there exists the invariant manifold

Ty = IIullg(sol,soz,llull,uo)
vi = |[pl]PO1(¢1, @2, [|1l], f10)
vo = ||pl|?©2(¢1, @2, |1, o),

[5¥)

where 1,01, ©4 are continuous functions 2w - periodic in all components of @1, @2,
p1 € R3, wo € Ryxs € Ryvy € R?=% vy € R. The natural number p has the value
p=2.

2. Four pairs of pure imaginary eigenvalues

Suppose that the matrix P of the system (1) has four pairs of pure imagi-
nary eigenvalues 4i)\;, +idg, +iA3, £iAs and the others Ag, ..., A, have non-zero
real parts.

The bifurcation equation (3) of the system (1) is:

(2.1) Bp® + Cp =0,

where p* = col(p7, p3, p3, p3), 1t = col(pua, ..., pa),

Suppose that det B # 0. Take u € M and consider the beam d(pg) = {epo : 0 <
< e < L}. The solution of (2.1) with respect to p? on the beam d(juq) is:

(2:2) p° = e(=B~ Cpo) = ea*(po),

where a?(po) = col(a? (o), ..., a3(po)) = Ao, A = col(ay, ..., aq) =

o?(po)B11 ar(po)ea(mo)Biz  ar(mo)as(po)Bis o1 (po)oa(wo)Bia
Pi (o) = 2 a1 (po)oa(po)Ba1 o2(u0)Baa as(po)os(mo)Bas  ca(po)oa(po)Baa
aq(po)as(umo)Bar o (po)as(po)Bae o2(uo)Bas as(uo)oa(po)Bsa |’
aq(po)oa(pmo)Bar  an(po)aa(po)Bas  as(po)oa(po)Bas o2 (10 )Baa

where o; (o) = \/m(a“ul + oot @iapa), i=1,2,34.

The following 4 lemmas say how the existence of D P of the bifurcation equation
(2.1) depends on the rank of the matrix A from (2.2). The proofs of these lemmas
can be performed in the same way as they were done in the lemmas 1.1 - 1.3 of the
section 1.
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Lemma 2.1. Let be h(A) = 1. Then DP # § if and only if a1 # 0, a; = kiaq,
ki>0,i=2,34.

Lemma 2.2. Let be h(A) = 2. Let ay,,a;, be a linearly independent pair from
the tetrad {aq, s, a3, as}. If for the third and the fourth members of this tetrad
is holds:

ai, = ko, + kooy,, a5, = kaay, + kaa,,

kizoai:1a2a3a4a k1+k2>0ak3+k4>0a
then DP # ().

Lemma 2.3. Let be h(A) = 3. Let oy, a;,, @, be a linearly independent triad from
the tetrad {ay, as, as, as}. If for the fourth member «;, of this tetrad it holds:

a;, = ki, + koo, + k3o, ki > 0,4 =1,2,3, k1 4 ko, k3 > 0,

then DP # ().
Lemma 2.4. Let be h(A) = 4. Then DP # 0.

Now we shall deal with the question when the matrix Py(uo) is critical. As at
every u € DP det Py(po) = det {2[diag o(po)]B[diag a(uo)]} # 0 the eigenvalues
of Pi(po) are different from zero. Therefore Py(uq) is critical at g € DP only when
its eigenvalues are one of the following kinds:

A FiA] Ei]
B. 4, A = =ML
C. Fid, AL, Redd # 0,0 # =L,

Consider the characteristic equation of the matrix M, wEeDP:

(2.3) A — @y (o) A + as(po) A — as(po) X + aa(pe) = 0,

where aq(po) = T?“ﬂzu—ul,az(/,to) - the sum of all principal minors of order 2 of

M, as(o) - the sum of all principal minors of order 3 of Pl(zuu) yaa(po) =

_ Py (p
= det 42—01

Lemma 2.5. The matrix Py (uo) has at yp € DP the eigenvalues £i\}, +i)\l if and
only if

(2.4) a1 (o) = 0,a(po) > 0,a3(po) = 0, aa(po) > 0, a5(po) > 4aa(puo).

The values A}, \} are determined by the formulae:

A = V3| — as(pu0) + /a3 (o) — Aaa(pa)l,
(2.5)

Ay = V3| — ax(p10) — /a3 (o) — Aata (o).
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Proof. Comparing (2.3) with its expression by means of its roots :I:z:\% , :I:z:\é what
is

(2.6) A HIAD + (AT + (AP (A)* = 0,

we get the assertion (2.4). The roots of the equation (2.6) using the notation
as(po) = (D2 + (A2, aa(po) = (A)?(A1)? are determined by the equation A\*+
+az(po)A? + as(po) = 0. Putting u = A? we have: u? + as(po)u + aa(po) = 0. The

—az(po)Er/a3(#o)—4a4(uo)
5 .

roots of this equation are given by the formula: w9 =
From this we have:

A= iigw — as(po) + \/ag(uo) — 4aa(po)l,

V2
Ae = +i2[| = az(po) — /a3 (o) — 4as(po)].
Taking into account that \} = 2:\21,1' = 1,2, we get the assertion (2.5). The proof

1S over.

Note 2.1. If follows from (2.5) that when a3(uo) = 4a4(po) then
M = /2a2(po), A} = /2as(po). This means that the eigenvalues +i\] have the

multiplicity two.

Lemma 2.6. The matrix Py (o) has at u € DP the eigenvalues +iA}, A}, AL = —\}
if and only if

(2.7) a1 (po) = 0,as(po) = 0, as(po) < 0.

The values A}, \} are determined by the formulae:

AL = V24 as(po) + \/ad(p0) — 4aa(po),

(2.8)

Ny = V3 —as(u0) + /a3 () — daa(puo).

Proof. Comparing (2.3) with its expression by means of its roots :I:i:\%, /N\é, /N\}1 = —:\:1))
what is
(2.9) M7 = ()1 = (AD)*(R3)° = 0,

we get the assertion (2.7). Putting u = A\? we have from (2.9): u? + as(po)u+

+aa(po) = 0,as(po) = (M)? — (A%, aa(po) = —(A)?(AL)%. The roots of this

—az(po)Er/a3(po)—4aa(po)
2

.From this we

equation are given by the formula: wyo =
have:
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h = 42| () — /0] — daa(uo).

Ny = L2/ —as(u0) + /a3 (o) — Aaa(puo).

This gives (2.8). The proof is over.

Lemma 2.7. The matrix P (uo) has at yu € DP the eigenvalues i\, A\, A},
Re)} #0,\} #£ —\L, if and only if the following conditions are satisfied:

ai(po) # 0, as(po) # 0, ar(po)as(po) > 0,

(2.10)

1o Jas(po)
Ay =2 a1(ﬂ0)’
(2.11) A= ai(po) + %ﬁ(uo) — 4as(po) — Z?EZS;],

A= ai(po) — \/a%(uo) — Afas(po) — Ftho)].

Proof. C~omp§u‘ing (23)~ with iNts ?XpI'eSSiONIl by means of its roots :I:Nz:\%, /N\é, /N\}1 what
is A — (AL + MDA+ D2+ M2 = (AD 2L+ 2D+ (A1) 2AIAL = 0, we have:
a1 (no) = Aj + A}, az(no) = (M)? + MAL,
(2.12)
as(po) = (M) (A3 + A3), aa(po) = (A)*A3AL
From (2.12) we get the assertion (2.10). Solving (2.12) with respect to A1, AL, A}
and taking into account the relation between the eigenvalues of the matrices Py(uo)

and ﬂ;—”l we get the assertion (2.11). The proof is over.
Lemma 2.8. Let be h(A) =1 and DP # (). Then DC' = or DC' = DP.

The proof of this lemma is similar to the proof of Lemma 1.5.

Consider DP and DC' of the bifurcation equation (2.1). Suppose that DP is
non-empty set. Then on DP the system (1) can be reduced to the system (4) with
1 ERY o1 e R v e RP 8 p=1.
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Theorem 2.1. Let be DP # (). Then to every small enough p € DP\DC there
exists the invariant manifold
21 = |lulln(er, llell; o)
vi = [|pll*©1 (@1, [[ull, po),
where 1n,©; are continuous functions 27 - periodic in all components of 1,
01 € R* 1 € R, v; € R"~8. The natural number p can be taken p = 1.

The proof of this theorem is similar to the proof of Theorem 1.1.

Suppose that DC' # (. Take u € DC. We can perform on the beam ()
the second step of the transformation procedure. The bifurcation equation of the
system (4) on the beam d(uo) is:

(2.13) Bi(po)pi +eCi(po) = 0,
where:
1. Bi(uo) is the matrix of the order 2 when the eigenvalues of Py(ug) are of the
kind A

2. Bi(po) € R when the eigenvalues of Py (ug) are of the kind B, C.
Consider firstly the cases when the eigenvalues of Py (ug) are of the type B, C.

Suppose that Bj(po) # 0 and 72 (ug) = —%Cﬁ(uo) > 0. Then the system (4)
can be reduced to the system (6) with 22 € R, 1 € R*, 2 € Ryvy € R 8 1n €

€ R, p=2and Pa(po) = 28?(1t0) B1 (o) # 0. Utilizing Theorem from Section 3 of
Chapter 1 in [1] we can formulate the following theorem.

Theorem 2.2. Let be € DC' and the eigenvalues of Py(pg) of the kind B or C.
If Bi(po) # 0 and 7 (po0) > 0 then to every small enough p € 6(po) there exists
the invariant manifold

vy = |lplin(er, o2, [l po)
vi = [|ul*©1(p1, 2. ||, po)
ve = ||ul*©2(21, 2. ||, po),
where 1,01, ©4 are continuous functions 2w - periodic in all components of @1, @2,

P € R*, o € Ryzo € Ry € R"~8 vy € R?. The natural number p has the value
p=2.

Suppose now that the eigenvalues of Py (o) at pp € DC are i)}, £i\}. Let the
following conditions be satisfied:

LAl +¢2A5 #0,0 < Jg] <5
3. 7 (no) = =B ' (10) C1 (o) > 0.

Then on the beam §(p0) the system (4) can be reduced to the system (6) with
p=2,29€ R? 1 € R*, s € R?, 11 € R"% and

Papin) = W — Sdiag G (uo)] By (o) ldiag B (o).

On the base of Theorem from Section 3 of Chapter 1 in [1] the following theorem
is valid.
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Theorem 2.3. Let be y € DC, the eigenvalues of Py (ug) of the kind A and the
conditions (2.14) statisfied. If the matrix P2(po) in non-critical then to every small
enough pt € 6(pg) there exists the invariant manifold

zo = ||pl|n(er, o2, [lull, o)

v1 = ||pl*O1 (1, @2, ||, 10,

where 1, © are continuous functions 27 - periodic in all components of 1, @2, 1 €
€ RY, ¢y € R?, 29 € R?, 1y € R"~8. The natural number p has the value p = 2.

Suppose that the matrix Pa(pup) is critical. Then the third step of the transfor-
mation procedure can be performed on the beam §(pg). The bifurcation equation
of the system (6) is

(2.15) Ba(p0)p2 + eCs (o) = 0,

where Bs(po) € R.
Assume that Bs(ug) # 0 and 32 (po) = —mCQ(uo) > 0. Then the system
(6) with p = 2 can be reduced to the system (6) with p= 3,23 € R, 1 € R, ¢2 €

€ R’ p3€ R,v1 € R"® and

Pa(o) = ZX I 5 1) By ) £ 0.

On the base of Theorem from Section 3 of Chapter 1 in [1] the following theorem
is valid.

Theorem 2.4. If By(p10) # 0 and 32(po) > 0 then to every small enough p € §(ju0)
there exists the invariant manifold

T3 = ||/’L||l7(301a§02a§03a ||/’L||a/'L0)
vi = [[pl[*©1(p1, 92, @3, |1, 10),

where 1,01 are continuous functions 27 - periodic in all components of @1, 2, @3,
P € R4, o € RZ, ps € R,xs € Ry € R"*~8. The natural number p has the value
p=3.

Note Many significant results in the bifurcation theory of dynamical systems were
achieved during last three decades. A nice survey of them can be found in the
books [4], [5] in which also the relations among reached results are discussed. The
question of the existence of bifurcations in the case of two pairs of pure imaginary
eigenvalues is for example studied in the articles [2], [3], [7], [8].
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