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LAGRANGEANS ON A MANIFOLD
WITH A (1,1)-TENSOR FIELD

ANTON DEKRET

ABSTRACT. The main object of this paper is the Lagrange calculus of first order on
a manifold with a given (1,1)-tensor field.

INTRODUCTION

In this paper we deal with Lagrangians of first order that are functions L :
TM — R on the tangent bundle 7'M of a manifold M, when on M is given a
(1,1)-tensor field A : M — T*M @ T M. Recall two canonical objects on TM: the
Liouville field V' the flow of which is determined by the homotheties on the fibres of
pym 2 T'M — M and the endomorphism v : T'"M — 1" M ® V1I'M which is induced
by the identity on T'M and by the canonical identification VI'M = TMux T M of
the subbundle VT'M of vertical vectors on T'M.

We use well known notions of the Lagrange formalism and the theory of lifting:

1. The Lagrange equation ixdd,L = dL — V L, see for example [1].

2. The Lagrange fields Sy, that are the semisprays (vector fields .S on 7'M with
the property v(S) = V) satisfying the Lagrange equation.

3. The Lagrange forms d,L,wy = dd,L,dE = d(L — VL).

4. The connection ['s canonically determined by a semispray S on T'M, see
[2].

5. The natural lifts of a (1,1)-tensor field A on M in the tangent bundle 7'M
first of all the vertical lift Av and the complete lift Ac, see [5].

In the first section we deal with the affine space of the connections on T'M with
the property Ac(HT') C HT, where HT is the horizontal subbundle of a connection
I'. In general, a (1,1)tensor field & on 7'M is called I'-parallel if o(HT') C HI'. We
find conditions for A such that Ac is I's-parallel and conditions under which there
exists a unique connection I' such that LgAv is [-parallel where Lg denotes the
Lie derivative of Av with respect to a given semispray S.

The second section is devoted to the mutual relations between wy and A. Here
some equalities of the first order Lagrangian calculus on a manifold M with a (1,1)-
tensor field are introduced. Proposition 8 states the conditions under which there
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is a unique connection I' such that wy, (hr, Ac-hr) = 0. In Proposition 9 it is proved
that the Lagrange field Sp satisfies the equality

igddayL = iacdl — d(VaL), Va = Av(S).
It is proved (Proposition 11) that the equality
iacxddy L = ixdda, L

is satisfied if the 2-form dig.dL is semibasic. Proposition 12 states the conditions
under which the equation

isincwr = d(Val) —iac(d(E — L))

has a unique solution.
In this paper we suppose that all manifolds and maps are smooth.

1. SEMISPRAYS AND CONNECTIONS ON A MANIFOLD WITH
(1,1)-TENSOR FIELDS

Let M be a manifold, (1”) be a local chart on M and (zi, 1:21) be the induced chart
onTM. Denote by V = 20/} the Liouville field on T'M, by v = dz’ ® 9/ 0z} the
canonical (1,1)-tensor field determined by the identity on 7'M and by the canonical
identification VI'M = TMap/T M, where VI'M is the vector bundle of all vertical
vectors on 1T'M.

Recall that a vector field X : T'M — T7TM on T'M is called a differential
equation of second order (shortly a semispray) if v(X) = V, i.e. if its coordinate
form is

X =210/0x" + 0 (x,21)0/0z} .

Let a = (a%dz? + b;dzf) ® 0/d2" + (cide? 4+ hidel) © 0/0x} be a (1,1)-tensor field
on I'M. We say that o is vertical if a(VI'M) C VI'M,ie. ifv-a-v=0.

A connection T on the fibre manifold p,, : TM — M can be introduced as a
(1,1)-tensor field Ar (the horizontal form of the connection) satisfying the conditions
hr(VI'M) =0, T'pmhr = T'py where throughout this paper we use the denotation
TF for the tangential prolongation of a map F. In coordinates hp = dz' ® a/aci +
F;(x, x1)ded @0/ 0x} , where 1"; are the local components of T'. Then HT := Imhr C
TTM is the horizontal subbundle of the connection I' (satisfying the equation
dxli = 1"; dx’ and the decomposition TTM = VT M & HT) and vr = Idpryr — hr
is the vertical form of the connection I'. Recall that the set of all connections on
TM is an afinne space associated with the vector space C°(T*M @ VI'M) of all
semibasic 1-vector forms with values in VT M. _

There is a unique semispray Sr : x%d/0x" + F}x]l 0/0x" which is I-horizontal.

Every semispray S determines the connection I's the horizontal form of which
s hp = %(IdTTM — Lgv), where Lgv is the Lie derivative of v with respect to .S.
Its components are 1’7 = %77"7:1, where the denotation f;, : af/axil together with
fi = 0f /02" will be used throughout our paper.
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Definition 1. Let o be a (1,1)-tensor field and ' be a connection on T'M. The
field e is called I-parallel if a( HT') C HT.

We will introduce the coordinate condition for « to be I'-parallel. If we use the
above expression of « and if I'; are the components of I' then

(1) o-hr = (a;» + bir§)dxf ® a/axi + (c; + hiF;)da?j Q 8/317% .
Then « is I'-parallel iff
(2) Li(a¥ 4+ by1%) = ¢ + AT .

Let A = aé»dxj © 9/9z" be a (1,1)-tensor field on a manifold M. We will prefer
two natural lifts of A on 7'M, see [5]:

a) the vertical lift Av = a;»dwj © 9/0x" that is a semi-basic vector 1-form on
T'M induced by the identification VI'M = T'MaxaT M,
b) the complete lift Ac = a%dzi @ d/d2" + (aék:b’fd:rj +a’ dz]) @ 0/dx} which is
determined by the map i5-T'A-i5, where 45 : (2*, 2}, da*, da}) — (2', da*, 2}, d2h)
is the canonical involution on T'M.
Recall that the vector field Ac is vertical and

v-Ae=Ac-v=Av .

Definition 2. A (1,1)-tensor field A on M is called T-parallel if Ac is T-parallel.
We will need the coordinate form of the Lie derivatives Lg Av, Lg Ac with respect

to a semispray S. We get

LsAv = —a;»dxj ©0/0x" + [(a;kxlf - nilaﬁ)da}j + aédx{] © 8/dx"

LsAc = [(ajywyay + ajyn® + ayny — gy, afr — njaf)da’ +

+ (2} + i, -, af)dai] © 0/0x)

So the field LgAc i1s a vector 1-form with values in VT M. Therefore v-LgAc = 0.
The field LgAv is vertical and v - LgAv = —LgAv - v = Awv.

Proposition 1. Let S be a semispray and I's be the canonical connection deter-
mined by S. Then Ac — Ls Av = 2hr, - Ac.

Proof. The equality Av = v - Ac gives LgAv = Lgv - Ac +v - LsAc = Lgv - Ac.
Then the equality Lgv = Idrpp — 2hr, completes our proof.

Corollary. The tensor field Ac — LgAv is a vector 1-form with values in Hl g.

Remark. If A is a regular field then also LgAv is regular. It is easy to show that
(LsAv)~!Ts is just the connection on T'M the horizontal subbundle of which is
given by vectors V' such that Lz(LgAv)(Y') is vertical and that the connection T
does not depend on the choice of the semispray S.



Let T' be a connection on T'M. If A is regular then also Ae is regular and then
the subbundle I'm Ac - hr states the connection AI' the local components of which

immediately follow from the equality (1).
In the case of the tensor field o« = Ac the equality (2) reads

5 iU o 1 k 718
(2%) Iay = alei +agl’ .

If T, T are two connections with respect to which is the tensor field A parallel then
from (27) we get '

(T, — Fu)a;‘ - als(I’; — Fj) =0.
This equality together with the fact that Av and T — T are sections TM —

T*M @rp TM immediately give

Proposition 2. Let T’ be a given connection on TM. The set of all (1,1)-tensor
fields A on M which are I'-parallel is a real vector space. Let A be a given (1,1)-
tensor field on M. Then the set of all connections T' on T'M with respect to which
A is I'-parallel is an afinne space associated with the kern of the linear map

B C°(T*M @pyr TM) — C°(T*M @ppr TM), € — AvE — EAv |

Proposition 3. Let S be a semispray on TM, T's be the canonical connection
determined by S and A be a (1,1)-tensor field on M. Then the following conditions
are equivalent

a) A is Tg-parallel,

b) LgAc is a semibasic vector 1-form with values in VT M,

¢) LsAv is I's-parallel.

Proof. By the equality (2) the tensor field LsAv is I'g-parallel iff

1 .

: 1,
k ko k k k
—57721%’ = ajr] — N, a; + 5%%‘1 .

This condition coincides with the equality (2) for the connection I'g, I’; = %77;1,
and with the coordinate condition 2a§-kx]f + ain;?l - a;?nfcl = 0 for LgAc to be

semibasic. Proof is finished.

Proposition 4. Let S be a semispray on I'M and A be a (1,1)-tensor field on M.
If the (2,2)-tensor field AT := A @ Idpy + Idry @ A is regular then there Is a
unique connection I' on T'M such that the tensor field Lg Av is I'-parallel.

Proof. Let F;- be the components of a connection I'. Then the condition (2) for the
tensor field LgAv to be I'-parallel reads

78 1 5 u 1 k 7 k
(a7 + 9,a5)U =y af — a7
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It completes our proof.

Remark. 1t is easy to prove that the tensor field LgLgs Av is not vertical and that it
holds v - LsLgAv - v = —2Av. Therefore if A 1s regular then there are connections
I'y, Ty such that HI'y = LgLsAv(VITM) and LsLgAv(HT) = VTM.

2. GEOMETRY OF LAGRANGIANS ON MANIFOLDS WITH
A (1,1)-TENSOR. FIELD

First, recall some notions and properties.
Let a be a (1,1)-tensor field on TM, X be a vector field, ¢ be a k-form on T'M.
Then the symbols i, and ix denote derivatives

k
ine(Y1,.. Ye) =Y e(Vi,...,a(Y),.... Vi),

i=1

ixe(Yi, .. Yeo)=e(X,V1, ... Yio1), do = [in, d] = ind — dis,

where d denotes the exterior derivative.
It holds
dod = —dd,, Lx =ixd+dix, dLx =Lxd,

where Lx denotes the Lie derivative of exterior forms with respect to a vector field
X.
When ¢ is a (0, 2)-tensor field on T'M we will use the following denotations

%, e*(X,Y) = e(aX,Y),
€, goc(X: Y) = E(X) aY)a
ca, ca(X,Y)=¢(aX,aY)=a"e(X,Y) .
It is clair that if ¢ is a 2-form then i,6 = ¥ + ¢,.
Let L be a Lagrangian of first order on M, i.e. a function on T'M. Then the
forms
dy I = L dzt, d,L =i,dl
wr, i =ddyL = Liljdxj Adat + Liljldx{ A da’
are called the Lagrange 1- and 2-form of Lagrangian L. When the map I :
Co(TM - TTM) — C®(TM — T*T'M),X — ixwr, is regular then the La-

grangian L is called regular. In this case, the Lagrange 2-form wy is symplectic.
Locally L is regular iff det L;,;, # 0. The equation

(3) ixwp=dE, E=L-VL,

is a basic equation of the Lagrange formalism of first order. It is called the Lagrange
equation. Every semispray, which is a solution of (3) is called the Lagrange field

7



and denoted by Sr. Recall that when L is regular then there is a unique solution
of the equation (3) and moreover it is a semispray, i.e. it is the Lagrange field.
We introduce some coordinate expressions we will need.

(4) Liltlnt =L — Lllk‘xlle )
that is the equation (3) for semisprays

w§ = (Lj,sai 4 Ljys,¢f — Ly ja)da'dy’ + (Lj, o8 + Ljy s, b — Ly, ;08 da' i dy’ —
— Lo jaidetdy] — Ly, bidadyl
wra = (leuafa? + leulafc;)dxj Adzt + (leuafb? + leulafh}‘ — leub;a?—
—Lyyubict)dad Ada' + (LoyubbY + Ly, bict)dal A dat
wfe = (lesaf + leslaka;f — lejaf)d:ci @ dad + leslafdzil @ dad — lejlafdl’i@)
& dx{ ,
wiV = Ly, aideidy’ ) WY = Ly, datdy’ .

The tensor fields wf”, wy can be interpreted as the sections &f“, wi ITM —
V*TM @ V*TM.

These expressions immediately give
Lemma 1. Ifo.)fc is symmetric or skew-symmetric then wf”
symmetric,

is skew-symmetric or

Lemma 2. The tensor field w$ is symmetric or skew-symmetric iff i,wy = 0 or
lqwr = 2wy respectively.

Proof. Since wy, is a 2-form therefore wio(X,Y) = wr(X,aY) = —wr(aY,Y) =
—w(Y, X) = —(w$)!(X,Y). Then the equality iowy = w®+wr, finishes our proof.

Definition 3. Wesay that vector fields X, Y on T'M are wr-orthogonal if wr (X,Y) =
0. Tensor (1,1)-fields a1, s on T'M are called wy-orthogonal if wy (a1 X, a2Y) =0
for any vector fields X, Y. A tensor (1,1)-field a on T'M is said to be wg-isotropic
if wpa = 0. A tensor (1,1)-field A on M is called wg-isotropic if its complete lift
Ac 18 wp-isotropic.

Definition 4. Let Z C TTM be a subbundle of the tangent bundle prys :
T(T'M) — TM. The symbol OrthyZ will denote the set of tangent vectors YV
on T'M such that wr (X,Y) = 0 for any X € 7 satisfying pry X = prpu Y. We will
say that Z is wp-Lagrange if Orth, 7 = 7.

Definition 5. A connection I' on T'M is called wy-isotropic or wy-Lagrange if its
horizontal form hp is wy-isotropic or wr-Lagrange respectively. We will say that
two connections I'y, T's are wyp-orthogonal if hr,, hAr, are wp-orthogonal. When a
connection I' is wy-isotropic we will say that wy i1s I'-parallel as well.

Remark. Let (M, ¢) be pseudo-Riemannian manifold and I' be the Levi-Civita con-
nection of (M,e). Then Vre = 0. Let £ be Sasaki metrics on 7'M which is the
natural lift of €. Then hr = 0, 1.e. € is ['-parallel.



Lemma 3. The tensor field wfc is skew-symmetric if and only if the vector fields

AcX and X are wp-orthogonal for every vector field X on T'M.
Proof. w(AeX,X) =0 ¢ wie(X, X) = 0. It finishes our proof.

Let I’; be the components of a connection I' on TM. Then wrhr = (Lj,; +
Lj s, L3)dz? A da’. Therefore the equality

(5) LJH_L71]—|—L‘71"’1F;s _Lilslr.; :0

is the coordinate condition for wy to be I'-parallel. B
If I' and I' are two connections on 7'M such that wy is I'- and I'-parallel then it
holds from (5)

(6) L]'131(F?_Tj)_l/i131(r§_T%) =0.

J J
We have proved

Proposition 5. Let T be a given connection on TM. Then the set of all La-
grangians L such that Lagrange forms wy, are ['-parallel is a vector subspace of the
vector space off all functions on TM. Let L be a given Lagrangian on T M. Then
the set of all connections I' on I'M such that wy, is I'-parallel is an affine space as-
sociated to the kernel of the antisymmetrization of the map ¥ . V*TM Q VT M —
V*TM @ V*TM determined by the rule § — (&Y)7, ﬁ; — Limﬁ;.

It is known, see for example [3], that wy is [y parallel, i.e. we have

Proposition 6. Let Sp be a Lagrange field. Then the connection T, determined
by the semispray Sp is wp-isotropic, i.e. wy, is I'p- parallel.

We will say that the tensor (2,2)-field A ® Idyar + Idpy @ A = Ay is regular if
the vector bundle morphism A7 : T* M@ T*M — T*M @ T* M over Idyr, (Zgm) —
(afd¥ 4 0} al)wye, is regular.

Proposition 7. Let the tensor field Ay and the Lagrangian L be regular. Let the
tensor (0,2)-field wf” be skew-symmetric. Then there is a unique connection ' such
that hp and Ac - h are wy-orthogonal, i.e. wr(hrX,a-hpY) =0.

Proof. Recall that if w® is symmetric then wf? is skew-symmetric, i.e. Lj ¢ al =

—Liyp,af. Let X = £0/0x' + 00 /02", Y = £ 0/02' +770/0x be two vector fields
on T'M. Let F;» be the components of a connection T' on 7M. Then wy, (hrX, Ac -
hFY) = (Ltlja§ - leta§ + Lt1U1FJua§ - L‘7'1U1a;'lkl’llC - leula;lrzs)é’]f_z USng the
condition for wf” to be skew-symmetric the equality wy (hr X, Ac- hrY) = 0 holds
if and only if

¢ ¢ t t k
(a;0F +9i ;) Ls,1, Ty, = Lijeay — Liyidi + Liyu, af ey

It finishes our proof.

Remark. The equality wfc(Ac ~hp,hr) = 0 in the case when A% = FIdpy is
equivalent to the wy-isotropy of I' or of Ac - hp in the case when wfc 1s symmetric
or skew-symmetric.

Inspiring by [4] we formulate



Lemma 4. Let X,Y be vector fields, L be a Lagrangian, a be a (1,1)-tensor field
and € be a 1-form on TM. Then the conditions

aixddoL =e—dYL, b (Ly —ixds)dL=¢

are equivalent.

Proof. LydL = (iyvd + div)dL = diydL = d(YL),ddo L = —dodL. Tt completes
our proof.

Let 5 = ﬁ;drf ®8/0x% be a vector semibasic form on TM with values in VT M.
Denote V3 := B(S), where S is an arbitrary semispray. In the case of § = Av we
will denote Av(S) := VA.

Lemma 5. Let S be a semispray, L. be a Lagrangian and 3 be a semibasic vector
(1,1)-form with values in VI'M. Then

(Lvg —isds)L =0 .

Proof. We get dgL = igdL = Ltlﬁfcd:ck. Then isdgL = dgL(S). From the other
side LygL = VB(L) = Ly, fixf = dgL(S). Our proof is completed.

Corollary. Under the conditions of Lemma 5 it holds
(8) d(VBL) = digdgL .
We return to the case when a = Ae¢, = Av. We have dg, L = Ltlaﬁdl’i
dday L = (Lt jat + Ltlaﬁj)dﬁj Adzt + Ltljlaﬁdx{ Adzt

It immediately gives

Proposition 8. Let both the Lagrangian L and the (1,1)-tensor field A on M be
regular. Then ddy, L is a symplectic form.

Lemma 6. Let S be a semispray. Then

tacLsdy L = Lgda, L .

Proof. Lgd, I = (Lilk.rlf + Lilklnk)dxi + Lild,rﬁ ,
LSdAUL = [(Lt1k1a§ + Ltlaﬁk)xllC + Lt1k1a§nk]dxi + Ltlat'dxi .

I3

Now the equality of Lemma 6 follows from the expression of Ac.
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Proposition 9. Every Lagrange field St is also a solution of the equation

(*) isddayL = iacdL — d(VA(L)) .

Proof. Being a Lagrange field Sy, satisfies the equation isdd, L = d — dV L. Then
(9) iac(d(VL) +isdd, L) = igcdL .
Using the equality (8) we get

d(VL)+isdd, L = digd, L + isdd, L = (dis + isd)dyL = Lsdy L .

Then by (9)
facdl = lAc[d(VL) + ngde] =ig.Lsd, L .

Analogously using (8) and Lemma 6 we get
d(VAL) +igdday L = digdgy L +isddg, L = Leday L = Iq.Lsd, L .

Therefore Sy satisfies the equation (*). Proof is finished.
Let X = £10/9x' + 1n°0/02% be a vector field on TM. We calculate
AcX = aé{j@/@xi + (a;kx’ffj + a;nj)ﬁ/ax’i
faexdd, L = [(—Ltlia; + Lilta; + Liltla;»k;rlf)fj + Liltla§rjj]dwi - Ltlilagfjdwg .

ixddayL = [(Li,jaf — Li,sal — Ly, al; + Le,al;)& + Liyjain’lda’ — Ly, b€ day

These expressions immediately give

Lemma 7. For any vertical vector field X on T'M the 1-formsixdda, L, iacxdd, L
are semibasic. For every vector field X the 1-formis.xdd, L —ixddg, L 1s semibasic.

Corollary. Let Y be a vertical vector field on T'M . Then it holds
faexddy L(Y) =ixdday L(Y)

for any vector field X on I'M.
Definition 6. A (1,1)-tensor field A on M is called L-commutative if

tacxddyL = ixdda, L

for any vector field X on TM.

Proposition 10. If a (1,1)-tensor field A on M is L-commutative then wj is
skew-symmetric.

Proof. The (0,2)-form w# is skew-symmetric iff dd, L(AcY, X) = —dd, L(AcX,Y).
Let A be L-commutative. Then for any vector fields X,Y we get dd, L(AcX,Y) =
iaexddy L(Y) = ixdday L(Y) = dd 4y L(X,Y). Analogously dd,L(AcY, X) =

dda, L(Y, X) = —dd 4, L(X,Y). It completes our proof.
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Proposition 11. A (1,1)-tensor field A on M is L-commutative if and only if the
2-form dd 4.L is semibasic.

Proof. By the direct computation we get
dige.dl = (Ltjaf + Ltazj + Ltljagkl’;f + Ltlagkjl’lf)da:j Adzi+

+ (Ltjlag + Ltljlagkx;lC + Ltlagj - Ltlia’} - Ltla;z)dx]l A dxl—i—

+ Ltljlafdx{ Adz! .
Comparing it with the expression for i4.xdd, L — ixdd s, L we finish our proof.
Remark. Recall the map Iy : X — ixdd,L. If we denote by Ips the map X —
ixdday L we can say that A is L-commutative if and only if I 4 = I - Aec.
Lemma 8. wf is symmetric iff ig.xdd, L = —iscixdd, L. wf is skew-symmetric
M igexddy L =igcixdd, L.
Proof. (iacxddyL)(X) = ddyL(AeX,Y) = wf(X,Y), (tacixdd, L)(Y) =
(ixdd,L)(AcY) = dd, L(X, AcY) = wpa(X,Y) = —(wf) (X,Y). It completes our
proof.

In the rest part of this paper we will deal with the 2-form i4.wr. In general it is
not closed. We introduce its expression ig.wyp = (Ltljaf- —|—Li1ta§- —I—Liltla;kazlf)dxj A
dx’ + (Lg,j, ab + Liltlaé)dx]l Adzt,

Let s(wi’) = (Liys,a§ + Lj,s,af )dz'dy’ denote the symmetrisation of wi¥. Tt is
clair that i4.wy, is regular iff s(wf) is regular.

181

Proposition 12. If the (0,2)-tensor field s(wi¥) is regular then there is a unique
vector field X such that

ixinewr = iac(dE +dL) —dVAL, E=L-VL.

This vector field is a semispray.

Proof. By direct computation we obtain that the form ix (iacwr) + d(VAL) —
iac(dE + dL) is semibasic iff X is a semispray. Then the assertion of Proposition

(12) follows from the term (L, ;,at + Li1t1a§)dx{ A dz' in the expression of i4.wy .

Remarks.

1. If S is the Lagrange field then isi4,wr(Y) = tacwr(S,Y) = wp(4cS,Y) +
wr (S, AcY) = iacswr(Y) + iacdE. Therefore if A is L-commutative then
iacswr = tgddayl = iacdl — d(V AL), (see Proposition (9)), and then
Istgewr = ig4.dL — d(VAL) +i4.dE.

2. In the case when wf 1s skew-symmetric then i4.wp = 2(.02‘. Then i4.wy,
is regular iff Lagrangian L is regular and A is regular. Then the Lagrange
field satisfies the equation

is({acwr) = 2iacdE .
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