KERNEL AND SOLUTION NUMBERS OF DIGRAPHS

Matúš Harminc

ABSTRACT. In this paper we show that for given nonnegative integers k,s there exist infinitely many strongly connected digraphs with exactly k kernels and s solutions.

Kernels and solutions are certain vertex subsets of digraphs that are studied in many books and papers e.g., [2, 3, 4, 5]. The number of kernels (or solutions) was investigated in the papers [1, 6, 7]. The following provide a recapitulation of basic observations:

- (i) A directed cycle of an odd length has no kernel and no solution.
- (ii) A digraph with no directed cycles has exactly one kernel and one solution.
- (iii) A cycle of an even length possesses exactly two kernels and two solutions. In connection with this two natural questions arise:
 - 1. How many kernels and solutions a digraph can have?
 - 2. Are these numbers mutually dependent or not?

The answer to the first question is trivial when k=s and the pairs of opposite arcs are allowed. In this case it is sufficient to take the complete digraph with k vertices (its kernels are vertex singletons). In this paper we show that for given nonnegative integers k, s there are infinitely many pairwise nonisomorphic strongly connected digraphs with no couple of opposite arcs that have exactly k kernels and s solutions.

1. Preliminaries

An ordered pair D=(V,A) is said to be a digraph—whenever V is a nonempty set (vertices of D) and A (arcs of D) is a subset of the set of the ordered pairs of V such that for each $v \in V$ it holds $\overrightarrow{vv} \notin A$, and if $u,v \in V$ then $\overrightarrow{uv} \in A$ implies $\overrightarrow{vu} \notin A$. A set of vertices $W \subseteq V$ is called independent—if for every pair of vertices $u,v \in W$ neither of arcs $\overrightarrow{uv}, \overrightarrow{uv}$ is present in the digraph. $W \subseteq V$ is absorbent—if for each $u \in V - W$ there exists $\overrightarrow{uv} \in A$ with $v \in W$ and dominant—if for each $v \in V - W$ there exists $\overrightarrow{uv} \in A$ with $v \in W$ and dominant—if for each $v \in V - W$ there exists $v \in A$ with $v \in W$ and dominant—if for each $v \in V - W$ there exists $v \in A$ with $v \in W$ as the $v \in V$ is a kernel of $v \in V - W$ is independent and it is a solution of $v \in V - W$ is independent and dominant. A conversion of $v \in V - W$ is a digraph $v \in V - W$ in the same vertex set as $v \in V - W$ and with the arc set $v \in V - W$. It is easy to see that the following lemma is valid.

¹⁹⁹¹ Mathematics Subject Classification. 05C20. Key words and phrases. kernel of digraph, solution of digraph.

1.1. Lemma. Let D = (V, A) be a digraph and let $W \subseteq V$. Then W is a kernel of D if and only if W is a solution of c(D).

As usual, a digraph is *strongly connected*, if for every $u, v \in V$ there exists a sequence $\overrightarrow{ua_1}, \overrightarrow{a_1a_2}, \overrightarrow{a_2a_3}, \ldots, \overrightarrow{a_kv}$ in A. Let \mathcal{G} denote the class of all finite strongly connected digraphs. For a digraph D we immediately have:

1.2. Lemma. $D \in \mathcal{G}$ if and only if $c(D) \in \mathcal{G}$.

Let us denote by C_n the directed cycle with n vertices $(n \geq 3)$. Evidently, $C_n \in \mathcal{G}$.

1.3. Remark. By (i) above, each of digraphs $C_3, C_5, \ldots, C_{2n+1}, \ldots$ has no kernel and no solution. By (iii), each of digraphs $C_4, C_6, \ldots, C_{2n}, \ldots$ has two kernels which are simultaneously the all solutions of the even cycle.

2. Results

The following lemma (c.f. [1]) provides a method for constructions of digraphs belonging to \mathcal{G} with the same number of kernels.

2.1. Lemma. Let D = (V, A), $\overrightarrow{ac} \in A$ and let $D(\overrightarrow{ac}) = (V', A')$ be a digraph such that $V' = V \cup \{v_1, v_2\}$, $v_1, v_2 \notin V$ and $A' = (A - \overrightarrow{ac}) \cup \{\overrightarrow{av_1}, \overrightarrow{v_1v_2}, \overrightarrow{v_2c}\}$. Then the number of kernels of $D(\overrightarrow{ac})$ equals to the number of kernels of D.

Proof. Let \mathcal{K} and \mathcal{L} denote the systems of the all kernels of D and of $D(\overline{ac})$, respectively. Define a mapping f from \mathcal{K} to \mathcal{L} in the following way: for $K \in \mathcal{K}$ put

$$f(K) = \begin{cases} K \cup \{v_1\} & \text{if } c \in K, \\ K \cup \{v_2\} & \text{if } c \notin K. \end{cases}$$

It is easy to verify that the mapping f is a bijection between $\mathcal K$ and $\mathcal L$. Thus, $\operatorname{card} \mathcal K = \operatorname{card} \mathcal L$. \square

Let $\mathcal{G}_{(k,s)}$ denote the set of all strongly connected digraphs with k kernels and s solutions.

2.2. Corollary. If $\mathfrak{G}_{(k,s)}$ is not empty then it is infinite.

Proof. Let D be a digraph from \mathcal{G} and let k be the number of its kernels. Let $\overline{x_1y_1}$ be an arbitrary arc of D. Create $D' = D(\overline{x_1y_1})$ as above (see 2.1). Then choose an arbitrary arc $\overline{x_2y_2}$ of D' and create $D'' = D'(\overline{x_2y_2})$, etc.. Every member of the sequence D, D', D'', \ldots belongs to \mathcal{G} and by Lemma 2.1 each of them has exactly k kernels. Since the number of vertices in these digraphs increases, they are pairwise nonisomorphic.

Let s be the number of solutions of D. Then c(D) belongs to \mathcal{G} and it possesses s kernels as well as $c(D'), c(D''), \ldots$ In such way, D, D', D'', \ldots have s solutions. \square

According to Corollary 2.2 it suffices to find one digraph of \mathcal{G} with k kernels and s solutions for each pair of integers k, s. First, we shall present a digraph belonging to \mathcal{G} with exactly one kernel. The smallest digraph with such property is $D_1 = (V_1, A_1)$ with $V_1 = \{a_1, b_1, c_1, d_1\}$ and with $A_1 = \{a_1\overline{b_1}, b_1\overline{c_1}, c_1\overline{d_1}, d_1\overline{d_1}, b_1\overline{d_1}\}$.

- **2.3.** Corollary. § contains infinitely many digraphs with exactly one kernel.
- **2.4. Example.** Let D_1 be defined as in the previous. Take the arc $\overline{b_1d_1}$ of D_1 and create $D'_1 = D_1(\overline{b_1d_1})$. Then choose the arc $\overline{v_2d_1}$ of D'_1 and construct $D''_1 = D'_1(\overline{v_2d_1})$, and continue in this way. Each member of the sequence D_1, D'_1, D''_1, \ldots belongs to \mathcal{G} and by Lemma 2.1 they have exactly one kernel (and one solution).

Fig.1: The first three members of a sequence of digraphs D_1, D_1', D_1'', \dots

Let D_0 be the cycle with the vertices a_0, b_0, c_0 and with the arcs $\overrightarrow{a_0b_0}, \overrightarrow{b_0c_0}, \overrightarrow{c_0a_0}$. Let $D_2 = (V_2, A_2)$ where $V_2 = \{a_2, b_2, c_2, d_2\}$ and $A_2 = \{\overrightarrow{a_2b_2}, \overrightarrow{b_2c_2}, \overrightarrow{c_2d_2}, \overrightarrow{d_2a_2}\}$. Now we can construct digraphs with k kernels belonging to \mathfrak{G} for $k \geq 3$ in the following way: Let k be an integer, $k \geq 2$. Denote by $D_{k+1} = (V_{k+1}, A_{k+1})$ the digraph with

$$V_{k+1} = V_k \cup \{a_{k+1}, b_{k+1}, c_{k+1}, d_{k+1}\} \quad \text{and}$$

$$A_{k+1} = A_k \cup \{\overrightarrow{a_{k+1}b_{k+1}}, \overrightarrow{b_{k+1}c_{k+1}}, \overrightarrow{c_{k+1}d_{k+1}}, \overrightarrow{d_{k+1}a_{k+1}}\} \cup \{\overrightarrow{c_{k+1}c_k}, \overrightarrow{a_2a_{k+1}}, \overrightarrow{a_3a_{k+1}}, \dots, \overrightarrow{a_ka_{k+1}}\}.$$

The following figure shows the digraph $D_3 \in \mathcal{G}$ with three kernels, namely $\{a_2, c_2, b_3, d_3\}, \{b_2, d_2, a_3, c_3\}, \{b_2, d_2, b_3, d_3\}$.

Fig.2: The digraph D_3 is strongly connected and has three kernels.

For every $k \geq 0$ let D_k be defined as above.

2.5. Proposition. The digraph D_k has exactly k kernels for each nonnegative integer k.

Proof. We have already stated that if $k \in \{0,1,2,3\}$ then D_k has k kernels. Now, we shall proceed by induction. Let k be an integer, $k \geq 3$. For every kernel K of D_{k+1} holds that either $b_{k+1} \notin K$ or $b_{k+1} \in K$. In the first case $c_{k+1} \in K$, $d_{k+1} \notin K$ and $a_{k+1} \in K$. Hence $a_i \notin K$ for $i \in \{2,3,\ldots,k\}$ and $K = \{b_2, d_2, b_3, d_3, \ldots, b_k, d_k, b_{k+1}, d_{k+1}\}$. In the second case $c_{k+1} \notin K$, $d_{k+1} \in K$ and there exists a bijective mapping ϕ from the set $\{K : K \text{ is a kernel of } D_k\}$ to the set $\{L : L \text{ is a kernel of } D_{k+1}\}$ given by $\phi(K) = K \cup \{b_{k+1}, d_{k+1}\}$. In this way we have shown that the digraph D_{k+1} has one kernel more than the digraph D_k . \square

Fig.3: D_i for $i \in \{0, 1, 2, 6\}$ with 0, 1, 2 and 6 kernels, respectively.

2.6. Theorem. Let k, s be nonnegative integers. Then $\mathfrak{G}_{(k,s)}$ is infinite.

Proof. By Corollary 2.2 it suffices to show that $\mathfrak{G}_{(k,s)} \neq \emptyset$.

We take D_k and $c(D_s)$ with the disjoint vertex sets $\{a_i, b_i, \ldots\}$ and $\{\overline{a_i}, \overline{b_i}, \ldots\}$, respectively. First we add all the possible arcs beginning at a vertex of $c(D_s)$ and ending at a vertex of D_k . Then we add one new vertex v together with arcs from v to every a_i , and to every existing d_i of D_k and from v to every $\overline{b_i}$ and every $\overline{c_i}$ of $c(D_s)$. Also we add all the arcs from every b_i and every c_i of D_k to v and from every $\overline{a_i}$ and every existing $\overline{d_i}$ of $c(D_s)$ to v.

We shall show that the resulting digraph D is an element of $\mathcal{G}_{(k,s)}$. It is easy to see that the digraphs D_k and $c(D_s)$ are strongly connected and therefore the digraph D which we have constructed is strongly connected as well. Any kernel K of D must not contain vertex v because if v would be in some kernel K then the independence of K implies that there is no more vertices in K; it means $K = \{v\}$ what contradicts to the absorbency of K.

Fig.4: The construction of a digraph belonging to $\mathfrak{G}_{(k,s)}$.

The independence of K implies that K cannot have nonempty intersections with D_k and with $c(D_s)$ simultaneously. It means that K is a subset of D_k or a subset of $c(D_s)$. But subsets of $c(D_s)$ are not absorbent in D. Therefore K is a kernel of D_k . Conversely, every kernel of D_k is a kernel of D because we did not add any new arc among the vertices of D_k (the independence) and each kernel of D_k contains either a_k or d_k , so it is absorbent not only in D_k but in D as well. Now we have verified that D has k kernels.

Analogously, the set of the all solutions of D is the same set as the set of the all solutions of $c(D_s)$, therefore D has s solutions, and the proof is complete. \square

A digraph belonging to $\mathcal{G}_{(k,s)}$ with the minimal number of vertices is called a minimal digraph of $\mathcal{G}_{(k,s)}$. The number of the vertices of a minimal digraph of $\mathcal{G}_{(k,s)}$ will be denoted by $k \star s$.

2.7. Proposition. Let $k \star s = \min \{ \operatorname{card} V : (V, A) \in \mathcal{G}_{(k,s)} \}$. Then

- (i) $0 \star 0 = 3$, $0 \star 1 = 1 \star 0 = 5$, $0 \star 2 = 2 \star 0 = 6$,
- (ii) $1 \star 1 = 2 \star 2 = 4$, $1 \star 2 = 2 \star 1 = 5$,
- (iii) if k > 1 then $k \star 0 \le 4k$ and $k \star 1 \le 4k + 1$ and
- (iv) $k \star s \leq 4(k+s) \overline{7}$ whenever $k > \overline{1}$ and s > 1.

Proof. By Lemmas 1.1 and 1.2 the operation \star is commutative. The only minimal digraph of $\mathcal{G}_{(0,0)}$ is D_0 thus $0 \star 0 = 3$. The Figure 5 shows minimal digraphs of the classes $\mathcal{G}_{(0,1)}$, $\mathcal{G}_{(0,2)}$ and $\mathcal{G}_{(1,2)}$. D_1 is the minimal digraph of $\mathcal{G}_{(1,1)}$ and D_2 is the minimal digraph of $\mathcal{G}_{(2,2)}$. In order to obtain the inequalities for k > 1 it suffices to enumerate the number of vertices of the digraphs constructed above. \square

Fig.5: Minimal digraphs of $\mathfrak{G}_{(0,1)}$, $\mathfrak{G}_{(0,2)}$ and $\mathfrak{G}_{(1,2)}$.

References

- [1] M.Behzad, F.Harary, Which directed graphs have a solution?, Math.Slovaca 27 (1977), no. 1, 37-42.
- [2] V.V.Belov, E.M.Vorobjov, V.E.Shatalov, Graph Theory, Vyshshaja Shkola, Moskva, 1976. (Russian)
- C.Berge, Graphs and Hypergraphs, Dunod, Paris, 1970. (French)
- [3] C.Berge, Graphs and Hypergraphs, Dunod, Paris, 1970. (French)
 [4] F.Harary, R.Z.Norman, D.Cartwright, Structural Models, John Wiley & Sons, Inc., New York - London - Sydney, 1965.
- [5] L.Lovász, Combinatorial problems and exercises, Akadémiai Kiadó, Budapest, 1979.
- [6] M.Harminc, T.Olejníková, Binary operations on digraphs and solutions, Zb.ved.prác, VŠT, Košice, 1984, pp. 29-42. (Slovak)
- [7] R.G.Nigmatullin, The largest number of kernels in graphs with n vertices, Kazan.Gos.Univ. Učen.Zap. 130 (1970), kn.3, 75–82. (Russian)

(Received May 11, 1998)

Dept. of Geometry and Algebra Faculty of Science, P.J. Šafárik University Jesenná 5 041 54 Košice SLOVAKIA

E-mail address: harminc@duro.upjs.sk