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ON V-IRREDUCIBLE ELEMENTS IN
THE POSITIVE CONE OF AN /-GROUP

JAN JAKUBIK AND GABRIELA PRINGEROVA

ABSTRACT. Let GG be an {-group. The relations between the structure of G and the
conditions concerning V-irreducible elements in the lattice G are investigated in
this paper.

1. INTRODUCTION

The classical theorem of Birkhoff ([1], pp. 142-143) deals with the representation
of elements of a distributive lattice as irredundant joins of V-irreducible elements.

For related results and for further references cf. the expository paper of Dilworth
(3]

Let Gt be the positive cone of an f-group GG. Then G is a distributive lattice.
In this note we are concerned with the following conditions for the lattice G*:

(a) For each x € G there exists an irredundant representation
r=x1Vxa2V---VI,

such that each z; (i = 1,2,...,n) belongs to Gt and is V-irreducible in G7.
(b) For each € G there exists an irredundant representation =z = \/
such that each z; belongs to GT and is V-irreducible in G*.

The notion of completely subdirect product of linearly ordered groups was in-
troduced by Sik [6].

In the present note we prove

(A) The condition (a) holds if and only if G is a direct sum of linearly ordered
groups.

(B) The condition (b) is valid if and only if G is a completely subdirect product
of linearly ordered groups.

ier i

The main result of the recent paper [7] is the following theorem:

(¥) Let L be a lattice such that

(1) L satisfies the descending chain condition;
(ii) each element of L has one and only one representation as an irredundant
join of a finite number of V-irreducible elements.
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Then the lattice L is distributive.

Unfortunately, in the proof of (*) there was applied a lemma (given on p. 95 of
[7]) which is false, and the assertion (x) is false as well (cf. the remark at the end
of Section 3 below).

2. PRELIMINARIES

Let L be a lattice. An element a € L is called V-irreducible if, whenever b, ¢ € L
and a = bV ¢, then either a = b or a = c.

Let # € L and let (#;)ier be an indexed system of elements of L such that the
relation
(1) r= \/ T

i€l

is valid in L. The representation (1) is said to be irredundant if either

(1) card I =1,
or

(i) card I > 1 and whenever j € I, then the relation

xr = \/ g
ieI\{j}
fails to be valid.

For lattice ordered groups (shortly ¢-groups ) we apply the notation as in Conrad
[2]. In particular, the group operation is denoted by +, though we do not suppose
this operation to be commutative.

The positive cone GT of an £-group G is the set {z € G : 2 > 0}.

Let (G5)ser be an indexed system of £-groups . The direct product

[Ic:
i€l
is defined in the usual way.
Assume that GG is an ¢-group and that we have an isomorphism

(2) p:G— H G

i€l
of G into [[;c; Gi. For g € G and i € I we denote by g; the component of ¢(g) in
G;.
If for each ¢ € I and each element ¢ € G; there exists ¢ € G with ¢; = ¢, then
(2) is said to be a subdirect product representation of G.

If, moreover, for each i € I and each t* € G; there exists ¢ € G such that g; = ¢
and g; = 0 whenever j € I'\ {¢}, then (2) is called a completely subdirect product
decomposition of G.

Let (2) be a completely subdirect product decomposition of G. For each g € G
put

Hg)={i€ 1 g#0).
Assume that I(g) is finite for each ¢ € . Then (2) is called a direct sum represen-
tation of G.
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3. CoNVEX CHAINS IN GT

Again, let G be an {-group . For a,b € G with a < b, the interval [a, ] is the
set {# € G :a < < b}. A nonempty subset H of G is conver in G if, whenever
hi,ha € H and hy < ha, then [h1, hs] C H. A subset of G which is linearly ordered
under the induced partial order is called a chain in G.

3.1. Lemma. Let a € Gt. Then the following conditions are equivalent:

(i) The element a is V-irreducible in G¥.
(ii) The interval [0, a] of G is a chain.

Proof. The validity of the implication (ii)=(i) is obvious. Suppose that (i) holds.
By way of contradiction, assume that the condition (ii) is not valid. Then there
are w1, 22 € [0,a] such that z; and z2 are incomparable. Put v = 21 V @2; hence
v € [0,a]. There is t € Gt with v+t = a. Denote

Yy =x; +1 (i:l,?).

Then y; and y» are incomparable. Moreover, y; Vys = a and y; < a, y2 < a.
Therefore the element a fails to be V-irreducible | which is a contradiction. (|

We denote by C(GT) the system of all convex chains in GT containing the element
0. This system is partially ordered by the set-theoretical inclusion. Further, let
Cn(GT) be the system of all maximal elements of C(G1).

3.2. Lemma. (i) Let 0 < z € G, [0, 2] € C(GT). Then [0,2z2] € C(GT).
(i) Let X,Y € C(GT), X NY # {0}. Then either X CY orY C X.
(iii) Let X € C(GT). Then there exists = Cp (G) such that X C X.

Proof. (i) First we show that whenever z € [0, 2z], then either € [0,2] or z €
[2,22].
In fact, let # € [0,22]. By way of contradiction, suppose that z and z are
incomparable. Put
u=xANz, v==xVz,

p=z—u, (¢=x—u.

Then p and ¢ are incomparable as well. Moreover,
pAG=(z—u)A(z—u)=(zAz) —u=0.

Since p, q € [0, 2], the interval [0, z] fails to be a chain, which is a contradiction.
Now let z; (¢ = 1,2) belong to the interval [0,2z]. Let ¢ € {1,2,}. Then either
z; € [0,z] or #; € [z,2z]. The interval [z,22] is isomorphic to [0, z] hence it is a
chain. Therefore 1 and x4 are comparable. Hence [0, 27] is a chain.
(i) Let X and Y satisfy the assumptions of (ii). By way of contradiction, assume
that neither X C Y nor Y C X is valid. Hence there exist z, y with

r€eEX\Y, yeY\X.
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Then z and y must be incomparable. Put
TANYy=z, T—2=x1, Y—2Z2=1Y.

Hence we have
x1,2€X, wy,z€Y.

Therefore z is comparable with both 21 and y;. We distinguish the following cases:
a) z1 £ zand y1 < z. Then

0<z== +2Z5 22

and similarly 0 £ y < 2z. Thus according to (i), # and y must be comparable,
which is a contradction.
b) #1 > z and y; > z. Then z; Ayy 2> z. Since

Ay =(&—2)A(y—z) =0,

we get z = 0.

Let ' € X; put 2/ Ay = z1. Hence z1 € X NY. If z; 2 z, then # € Y, which
is impossible. If z; < x, then z; < 2 Ay, whence z; = 0. Therefore ' Ay = 0 for
each z’ € X.

Then by a similar argument we conclude that for each ' € X and each v/ € YV
we have 2’ Ay’ = 0, whence X N'Y = {0}, which is impossible.

c) If neither a) nor b) is valid, then without loss of generality we can suppose
that

y Sz <xy.
Hence we have
y=n+zSritr=u
yielding that y € X, which is a contradiction.
(iii) By applying (ii), we can use the same method as in [5], Proof of 1.4. d

If G = {0}, then both the assertions (A) and (B) obviously hold. In what follows
we suppose that G # {0}; hence G # {0}.
In 3.3 - 3.10 we assume that the lattice G satisfies the condition (b).

3.3. Lemma. LetY € C,,(GT). Then Y # {0}.

Proof. In view of the assumption, there exists 0 < z € GT. Hence in view of (b),
there i1s an irredundant representation

such that all z; are V-irreducible . In view of the irredundancy, #; > 0 for each
i € I. Choose an arbitrary ¢ € I. Thus according to 3.1, [0, z;] € C(GT). Then
3.2 yields that there is Y; € C,, (GT) with [0, ;] C Y;, hence Y; # {0}. If Y = {0},
then Y C Y}, thus YV fails to be maximal in C(G*), which is a contradiction. a

Let 0 < x € GT and suppose that x is V-irreducible in GT. Then in view of 3.1
and 3.2 there exists a uniquely determined element T of C,, (G*) such that z € .
Further, 3.2 immediately implies
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3.4. Lemma. Let 0 < z € (G, 0 < y € (G. Suppose that both  and y are
V-irreducible . Then either T =3 or x Ay = 0.

3.5. Lemma. Let Y € Cp(G™). Then the set Y has no upper bound in Gt.

Proof. a) In view of 3.3 there exists 0 <y € Y.

First we prove that 2y € Y. In fact, in view of 3.2 (i), [0, 2y] € C(G™T). According
to 3.2 (iii) there is Y7 € C,,(G*) with [0,2y] C Y;. Hence Y NY; # {0}. Then
3.2 (ii) yields that either ¥ C Y7 or Y7 C Y. Since both Y and Y7 are maximal
elements of C(GT) we get Y = V7.

Thus for each 0 < ¢ € Y we have t < 2t € Y. Therefore Y has no greatest
element.

b) By way of contradiction, suppose that there is € G such that « is an upper
bound of the set Y in G*t. Clearly > 0. Let (z;);es be as in the proof of 3.3.

It is well-known that the lattice G7T is infinitely distributive, hence for each
0 <yeY we have

y:y/\x:y/\(\/ z;) = \/(y/\xl-).
iel iel
According to 3.1, y is V-irreducible | hence there is ¢ € [ with y = y A z;. Thus
y < x;. Hence in view of 3.4, 5 = T;.

Let iy €1, 4y # 4. Since the representation of x under consideration is irredun-
dant, the elements x; and z;, are incomparable. Thus 3.4 yields that y; Az, =0
for each y1 €Y.

On the other hand, there exists iy € I such that y; < 2;,. Thus we must have

i = ¢. Then z; is the greatest element of Y. In view of a), we arrived at a
contradiction. O
For each Y € Cp,(GT) we put
Y =Y U{-Y},

Y ={9€G:|g|ny=0 foreachyeY}.
3.6. Lemma. Let Y € C,,(GT). Then
(1) Y’ is a convex chain in G
(i) Y’ is an {-subgroup of G;
(i) Y fails to be bounded in G.

Proof. (iii) is a consequence of 3.5. Then by applying [4] (Lemmas 3 and 5) we get
that (i) and (ii) are valid. a
3.7. Lemma. There exists a mapping oy of G onto Y’ x Y* such that

(1) ¢y Is a direct product decomposition of G;

(i) if g € G* and ¢y (g9) = (y,y"), then
y=max{y €Y :y < g}
In particular, if g € Y, then y = g.

Proof. (i) is a consequence of 3.6 and of [4], Theorem 1. The assertion (ii) is well-
known (moreover, for validity of (ii) the corresponding direct factor need not be
linearly ordered). O
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3.8. Lemma. Let z and (z;)ic; be as in 3.3. Let iy € I; put 3;,, = Y. If
ey () = (y,y"), then y = z;,.

Proof. We have z;, € Y and #;, < z. Let yy € Y, y1 < 2. Then in view of 3.4,
y1 Aw; =0 for each ¢ € I\ {in}. Hence

n=ynpAr=un /\(\/l‘z) = \\/(:lh/\wi):l‘io/\yy
iel iel
Thus 1 < 2;,. According to 3.7 (ii), y = 4. a

Let {V;};ecs be the set Cp(G1). For g € G and j € J we denote by g; the
element of Yj’ such that, under the direct product decomposition

py 1 G—= Y] x Y],

the component of ¢ in Yj' is g;.
Consider the mapping

v:G— H Y/
JjeJ
defined by ¢(g) = (9;)je-
From the definition of ¢ we immediately obtain

3.9. Lemma. ¢ is a homomorphism of the {-group G into the {-group HjeJ Y/

Let g € G and assume that ¢(g) = 0. Hence ¢(|g|) = 0 and [g| 2 0. If |g| > 0,
then there exists an irredundant representation

lg| = \/ 2k

keK
such that each zp is V-irreducible . In particular, zx > 0 for each z; € Yi(k)- Then
in view of 3.8,
l9k) = 2k,
whence ¢(|g|) # 0, which is a contradiction.

From this and from 3.9 we infer

3.10. Lemma. ¢ is an isomorphism of G into [[;c ;Y.

3.11. Lemma. Let j € J and t/ € Y;. Then
(i) (#7); =
(i) if j1» € J and ji # j, then (t7); = 0.
Proof. The case t/ = 0 is trivial. Let #/ > 0. Then in view of 3.7 (ii) we have
(t); =t If j1 € J, j1 # j, then 3.4 and 3.7 yield that (¢/);, = 0.
If / < 0, then it suffices to consider the element —t7. a
3.12. Proposition. Let G be an (-group such that the lattice Gt satisfies the

condition (b). Let ¢ be as above. Then ¢ is a completely subdirect product
decomposition of .

Proof. This is a consequence of 3.10 and 3.11. (|
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3.13. Lemma. Let G be an {-group which can be represented as a completely
subdirect product of linearly ordered groups. Then the lattice Gt satisfies the
condition (b).
Proof. Let
p:G— H Gy
teT

be a completely subdirect product decomposition of G. Without loss of generality
we can suppose that Gy # {0} for each t € T. Let 0 < g € G and ¢(g9) = (g¢)ter-
Then for each ¢t € T there exists g, € G such that

(T)ier =gt ,

(@), =0 if t; €T\ {t}.

Then g, is V-irreducible for each ¢t € T'.
Put Ty ={t € T : g: # 0}. We have T} # ). Moreover,

g:\/gt

teTy

and this representation of ¢ is irredundant. Therefore the condition (b) holds for
the lattice GT. d

From 3.12 and 3.13 we conclude that (B) is valid.
Now suppose that G is an (-group such that the lattice G satisfies the condition
(a). Since (a) is stronger than (b), we can apply 3.12. For ¢ € G and j € J we put

((9)); = 9;-
3.14. Lemma. Let g € G. There exists a finite subset J; of J such that g; = 0
whenever j € J \ Ji.

Proof. First suppose that g > 0. In view of (a) there exists an irredundant repre-
sentation

(1) g=x1VaeaV---Va,

such that each z; (i =1,2,...,n) is V-irreducible . Further, for each x; there exists
j(#) € J such that
Ti = Yi(0):
Put J1 ={j(1),4(2),...,4(n)}. If j € J\ J1, then (1) and 3.11 yield that g; = 0.
Thus the assertion of the lemma is valid in the case g > 0. Next, since each

element g of G can be written in the form ¢ = u — v with u,v € GT, we conclude
that the assertion is valid for an arbitrary element of G. |

3.15. Proposition. Let G be an (-group such that the lattice Gt satisfies the
condition (a). Let ¢ be as in 3.12. Then ¢ is a direct sum decomposition of G.

Proof. This is a consequence of 3.12 and 3.14. a
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3.16. Lemma. Let G be an {-group which can be represented as a direct sum of
linearly ordered groups. Then the lattice Gt satisfies to condition (a).

Proof. We apply an analogous notation as in the proof of 3.13; the distinction is
that ¢ is now a direct sum representation of (G. Then the set 7} is finite, whence
(a) is valid. O

In view of 3.15 and 3.16 we infer that (A) holds.
We conclude with the following remark concerning the paper [7].
Let L be a lattice. For each a € L we put

L(a)={z € L:z < a}.

Further, let () be as in Section 1. The following lemma was presented in [7]:

(#+) If L is a lattice which satisfies the conditions (i) and (ii) from (%), then for
each a € L, the set L(a) is finite.

Let NN be the set of all positive integers with the natural linear order and let w
be an infinite ordinal. We put L = NU {w} and for each n € N we set n < w.
Then L is a linearly ordered set, hence the condition (ii) is satisfied. Moreover, the
descending chain condition is valid in L. But the set L(w) fails to be finite. Hence
() does not hold.

Next let L be the lattice on Fig. 1. Then {u,a,b,c} is the set of V-irreducible
elements of L. The lattice L satisfies the conditions (i) and (ii) from (%), but it
fails to be distributive. Hence the assertion (*) is not valid.
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