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FUZZY MAPPINGS AND FUZZY
METHODS FOR CRISP MAPPINGS

VLADIMIR JANIS

ABSTRACT. We deal with the notion of fuzziness from two different aspects. First
we study the properties of fuzzy functions, mostly their derivatives, integrals and
fixed point properties. The second aspect is the study of a classical real function,
fuzzyfying the notions themselves. The last part of the paper is devoted to this
aim, showing that introducing the methods of fuzzy mathematics can provide some
interesting results for the real functions theory.

The work is a review of results already published or submitted.

1. INTRODUCTION

In a natural language we often use words describing the grade of some quality
(very, somewhat, a little, ... ) or the quality itself (young, heavy, dark, loud, etc.),
quite often combined together. Usually a given object corresponds to the above
mentioned linguistic construction only with some degree of membership. Therefore
such constructions do not define sets, as we use the notion of a set in classical
mathematics. We can define the set of all real numbers that are greater than
ten, but the expression “numbers much greater than ten” does not define a set.
On the other hand, in various situations we need to build e.g. a decision model
based on “linguistic variables”. The theory of fuzzy sets (or, more generally, fuzzy
mathematics) provides us a tool to handle it.

The notion of a fuzzy set was introduced by Zadeh in [Za 1] in 1965. Since
then the fuzzy mathematics has developed in a variety of directions. The most
fruitful, also from the applications point of view, seems to be the fuzzy control.
Moreover, the fuzzy theory appears to be a convenient tool for those applications,
where the exact quantitative description of a particular model is either impossi-
ble or inappropriate. Hence we often find fuzzy methods used in various decision
models designed for the real-time performance. Fuzzy objects and methods can
be found also in other applications, like regulation, production control, household
appliances, and many others, including music (see [Ha 1], [Ha 2]). The theoretical
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and methodological background of fuzzy mathematics is fuzzy logic and approxi-
mate reasoning closely connected to fuzzy logic. A review of the current state of
fuzzy logic can be found in the work by Novik [No 1].

In this work we deal with two aspects of mappings analysis. The first one is
the study of fuzzy mappings. These mappings are mainly understood as functions
that assign a fuzzy set (or a fuzzy element) to a (crisp) element of a given domain.
We study the derivatives of such mapping. In this area this work is a direct con-
tinuation of the study by Kalina [Ka 1]. The results concerning fixed points of
fuzzy mappings, their derivatives and integrals have been published in Janis [Ja 1],
[Ja 2] and Jani§ and Nedié [JN 1]. The second aspect of our study corresponds
to the attitude proposed by Burgin and Sostak in [BS 1]. Here the authors deal
with classical functions, but use methods of fuzzy mathematics. This way they
obtain more compact and more general results for such functions. Namely, they
study fuzzy continuity of classical functions. We continue in this direction and use
fuzzy methods for the study of uniform continuity and properties of derivatives.
It is shown that also here it is possible to achieve results that generalize results
of classical mathematical analysis. This part of the work summarizes the results
published in [Ja 3] and [Ja 4].

2. BASIC NOTIONS AND DEFINITIONS

Let X be a nonempty set. Any of its subsets A C X can be identified with its
characteristic function xa(z). This function can be considered as a membership
degree with which the element = belongs to the set A. Obviously in case of an
ordinary (crisp) subset this value can be either one (the element z belongs to A)
or zero (the element # does not belong to A). But if we deal with collections of
object defined only vaguely, it is sometimes not possible to cope with only these
two possibilities. Hence we generalize the concept of the characteristic function,
allowing it to attain also values between zero and one. This attitude serves as
a motivation for the definition of a fuzzy subset of X.

Definition 1. A fuzzy subset A of the set X is a function A : X — [0;1]. The set
of all fuzzy subsets of X is denoted by F(X).

If the set X (the universe) is given, we speak briefly of fuzzy sets instead of fuzzy
subsets of X.

A fuzzy set A is called modal, if there exists at least one element x € X for which
A(z) = 1. The set of all those z € X for which A(z) > 0 is called the support of A
and denoted by supp(A).

Although fuzzy sets can be studied in more general frameworks, e.g. with values
in a lattice (see Goguen in [Go 1]), for our purposes it will be sufficient to work
only with fuzzy sets with values in the interval [0; 1]. To distinguish between fuzzy
sets and classical ones we sometimes use the word crisp to denote usual non-fuzzy
sets (or other objects).

A useful tool for the study of fuzzy sets are their a-cuts.
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Definition 2. Let X be a metric space, A € F(X),a € [0;1]. The a-cut of A
is the set Ay, = {x € X; A(x) > «a} for « > 0. For o = 0 we put Ay = cl{x €
X; A(x) > 0}, where ¢l is the closure operator.

In other words, if A € F(X), a € (0;1], then
A = A7H[a;1]), Ao = cl{UA,, a > 0}.

If we consider the strict inequality in the definition of A, then we speak of a strict
a-cut.

Throughout this paper the symbol R will denote the set of all real numbers.

If A € F(R) and there exists at least one # € R for which A(z) = 1, then A is
called a fuzzy number. Sometimes this set is called just a fuzzy quantity and usually
there are additional conditions on fuzzy numbers, very frequently we require that all
the a-cuts should be convex sets (in that case we speak of conver fuzzy numbers).
In some circumstances we assume that the value « for which A(z) = 1 is unique.
If this is not the case, the term fuzzy interval is preferred. Very often, mainly in
applications, we work with linear fuzzy numbers (we assume that the function A is
partwise linear). For more information on the operations with linear fuzzy numbers
see e.g. [Ko 1].

In some cases it is more convenient to define a fuzzy number as a non-decreasing
left-continuous function A : R — [0; 1], with the properties limg,_, o A(z) = 0 and
limg o0 A(z) = 1. This representation corresponds to the linguistic construction
“the number is much greater than A”, while the representation with the unique
modal value corresponds to the statement “the number is about equal to A”. Be-
cause of the resemblance to the distribution function we sometimes address this
representation as statistical one.

The complement of a fuzzy set is defined in the following way:

Definition 3. If A is a fuzzy set, then the function 1 — A is the complement of the
fuzzy set A.

For the definition of the intersection of fuzzy sets the notion of a #-norm (a tri-
angular norm, see Schweizer and Sklar in [SS 1]) is used. For more detailed study
of t-norms see the monograph [KMP].

Definition 4. Let T : [0;1]? — [0; 1] be a commutative, associative, non-decreasing
function in both variables, fulfilling the boundary conditions 7'(z,1) = #. Then T
is called a t-norm (a triangular norm).

Example 1. It is easy to show that the function
T+ [051]% = [051], T, y) = min{z, y}

1s a t-norm. We denote this ¢-norm by the symbol 7,,;,. Note that if 7" is an
arbitrary ¢-norm, then 7' < Ty,
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Example 2. Let T :[0;1]* — [0;1],

0 if max{e,y} <1
min{z,y} if max{z,y} =1

T(z,y) :{

Then 7" is a t-norm. It is called the weakest ¢-norm (or the drastic product) and
denoted by Ty . Note that for an arbitrary {-norm 7' the inequality Ty < T holds,
which justifies the adjective “weakest”.

In a lot of papers the minimum function is used to define the intersection of
fuzzy sets, but it appears that this is not always the most convenient way to think
of the intersection from practical applications point of view.

Definition 5. If A, B are fuzzy sets and a t-norm 7T is given, then the fuzzy set
C' for which C(x) = T(A(z), B(x)) for each x € X is the intersection of A and B
based on the t-norm 7.

Although we will not use the notion of a conorm, for the sake of completeness
we mention that the union of fuzzy sets based on a given ¢-norm is given by the de
Morgan rule, i.e.

Sr(A(x), B(z)) =1 - T(1 — A(z),1 — B(x)).

The function St is a t-conorm dual to T'. The t-conorm is sometimes called also an
S-norm, although this notation may lead to misunderstanding as the dependence
on T cannot be seen here.

A t-norm is used also in addition of fuzzy numbers in the following way, which
is the special case of the Zadeh extension principle (for more information on the
extension principle see [Ng 1] and [BBT]):

Definition 6. If A, B are fuzzy numbers, then their sum based on the {-norm T’
is the fuzzy number A +7 B such that

(A+7 B)(z) =sup{T(A(z), B(y)),z = = + y}.

In the first part of this work we will focus on fuzzy mappings. There are several
different definitions of this notion. We will present a review of the most frequent
ones.

Perhaps the most general concept of a fuzzy function is the following, used in
Negoita and Ralescu [NR 1]:

Definition 7. A fuzzy function from X to Y is a mapping p: X x Y — [0;1].

The generality of the later definition (which is in fact a fuzzy relation) may not
be convenient — we often require the values of a fuzzy mapping (i.e. the mappings
p(z,.) Y — [0;1] to be nonzero for at least one y € Y. Such cases were studied
e.g. in Dubois and Prade [DP 1]:

Definition 8. A mapping p : X x Y — [0;1] is a fuzzy function if for all v € X
there exists y € Y such that p(z,y) > 0.

If moreover modality of the values is required, then the following definition (see
Ovchinnikov [Ov 1]) is convenient:
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Definition 9. A mapping p : X x Y — [0;1] is a fuzzy function if for all z € X
there exists the unique y € Y such that p(x,y) = 1.

By omitting the uniqueness of the modal value in the later definition we obtain
a fuzzy multifunction from X to Y. For more detailed study of this subject see e.g.
Tsiporkova [Ts 1].

In the study of probabilistic and fuzzy metric spaces we sometimes represent
fuzzy numbers as nondecreasing left-continuous functions from the real line into
the unit interval. Another reason for using this representation is also the fact that
it enables to introduce a topology on the fuzzy real line. In such situations the
following attitude to fuzzy mappings used in Seselja [Se 1] can be useful:

Definition 10. A mapping p: X x Y — [0;1] is a fuzzy function if for all z € X
there exists the unique y € Y such that p(x,y) = 1 and if each a € (0;1) appears
at most once as a membership value of p.

There are also other definitions of fuzzy functions used by various authors.
A brief review of the most frequent concepts of this notion can be found in the
work by Filep [Fi 1].

For our purposes the following convention will be most convenient: Speaking
about a fuzzy function f from X to ¥ we mean a mapping that assigns a fuzzy
number f(z) € F(Y) to an element # € X. Hence we deal with the case of crisp
argument and fuzzy image, on the contrary to the paper [Ka 1], where the author
studies also the cases of fuzzy argument and crisp image and both fuzzy argument
and image. This does not apply for the section 6, where we study usual crisp
functions but use fuzzy methods.

The particular representation of a fuzzy number (either “statistical” or “modal”)
and if necessary also other supplementary conditions required will be mentioned
explicitly when necessary.

3. DERIVATIVES OF FUZZY FUNCTIONS

By a fuzzy real number we will understand a fuzzy set p : [—o00; 00] — [0; 1] for
which

(1) p(—o0) =0,

(2) ploo) = 1,

(3) p(r) =sup{p(s),s < r} for each r € R.
Hence we define a fuzzy real number in the sense of the comment following the
Definition 2 (the statistical representation). The set of all fuzzy real numbers will
be denoted by H(R).

The set of all (crisp) real numbers is embedded into H(R) in the following way:
a crisp real number ¢ is represented by the function d; € H(R) for which &;(r) = 0
ifr <tandd(r)=1ifr >1¢.

The partial ordering in H (R) is given by the following way:

p < o if and only if p(r) > o(r) for each r € R.
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The addition of fuzzy numbers in H (R) is based on the minimum¢-norm 7},;,, (see
Definition 6), i.e.

(p+0)(r) = sup{min{p(s), o(t)};r =5 +1}.

The multiplication by a nonnegative real number is given by the formula

(c.p)(r)=p(r/e) ife>0,
=do(r) ife=0.

A fuzzy mapping from R to R will be understood as a mapping that assigns
a fuzzy real number in H(R) to a real number. We will assume that a fuzzy
mapping we are working with is defined for each z € R.

Klement in [K1 1] defines an extension of the Lebesgue integral for this type of
fuzzy functions. Our aim will be to define a derivative of these functions that will
be connected to the mentioned integral. A drawback of this attitude will be its
validity only for the case of using the minimum ¢-norm.

First we introduce the notion of the pseudoinverse of a fuzzy real number. For
more details see the work by Hohle [Ho 1].

Definition 11. Let p € H(R). Tts pseudoinverse is the function p(=1) : [0;1] —
[—00; oc] for which p{=1)(a) = sup{r; p(r) < a}.

In the last definition we use the convention sup ) = —oo, hence the value of each
pseudoinverse at zero is —oo.

We will also need the pseudoinverse of a fuzzy function, which will be defined in
the following way:

Definition 12. The pseudoinverse of a fuzzy function f is the mapping f(=1) for
which f(=1(z) = (f(2))=Y.

We will denote by H(_l)(R) the set of all pseudoinverses of fuzzy real numbers.
The author in [K1 1] works only with the set of all positive fuzzy real number, but
the following result holds also for our case: The mapping

p:H(R) =~ HEY(R), p(p) = p= Y

is an involutive order-preserving isomorphism, where the addition in H(*l)(R) is
the usual addition of functions and the multiplication is the usual multiplication of
a function by a nonnegative number.

We will use this isomorphism to define differentiability and the derivative of
a fuzzy function in the following way:

Definition 13. Let f: R — R be a fuzzy function, let zyg € R. The fuzzy function
[ 1s differentiable at xg, if there exists the mapping

N df =) (o)

he, - -
: )

as an element of H(~1)(R).
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Definition 14. If f is differentiable at xg, then the function f'(zo) = [hxo](_l) is
the derivative of f at the point xg.

Obviously if the derivative of a fuzzy function at a point exists, then it is a fuzzy
number. Therefore it is possible to define the derivative of f, which will be a fuzzy
function. Moreover, it is easy to verify that this notion is an extension of the
classical derivative of a real function in the following way:

If f is a (crisp) function differentiable at the point a and if we identify f(z) with
d(z) for each x in a neighborhood of a, then the derivative of f at a as indicated
in the Definition 14 will be the fuzzy number §,, where z in the index is the usual
(crisp) derivative of f at the point a.

The connection with the fuzzy integration from the Klement’s work [KI 1] is
given by the theorem literally analogical to the classical theorem on the derivative
of a function with the variable in the upper integral limit (the mean theorem of
integral calculus).

4. DERIVATIVES AND FIXED POINTS OF FUZZY FUNCTIONS

A great deal of this section is based on the paper by Kalina [Ka 1], where the
derivative of a fuzzy valued mapping has been defined. We will briefly present basic
notions and definitions.

Although a generalization into ordered Banach spaces would be possible, for the
sake of simplicity the author demonstrates his apparatus on real fuzzy functions,
that means on mappings that assign an LR-fuzzy number to a crisp real number.
For more information on L-R-fuzzy numbers see e.g the paper by Mesiar [Me 1],
and on their addition see papers by Markova [Ma 1] and [Ma 2].

Let f be a real fuzzy function. We introduce its level functions f, and f_, in

the following way: Let o € (0;1]. Then

fa(z) =sup{z € R; f(x)(z) > o}
and
foalz) = inflz € R: f(2)(2) > a).

The level functions are used in [Ka 1] to define the derivative of f in the following
way:

Definition 15. Let f, and f_, be level functions of a fuzzy function f. Suppose
all the level functions are differentiable at a point  and f,'(z) and f_,’(z) be their
derivatives at . Denote

S =sup{z € R; (o € (0;1))(»
I'= inf{z € R;(3a € (0;1))(=

max{fa'(z), f-'(%)})}
min{f.'(z), f-o'(z)})}.

<
z

By the derivative of the fuzzy function f at the point x we mean the fuzzy number
f/(x) defined in the following way:
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1 ify=f'(x)
0 if y ¢ (1;5)
sup{a € (0;1); max{f.'(2), f-' ()} >y} if fi'(z) <y<S
supla € (03 1) min{ fa/(¢), f-a’(@)} <9} i f(2) > y > L.

A derivative of a fuzzy function as a function with fuzzy values has been studied
alsoin [FF 1], [PR 1] and some other works. The definition introduced in [Ka 1] is on
one hand less general, but on the other hand provides a wider class of differentiable

functions. Properties of this derivative are further studied in [Ka 2], [Ka 3], [Ja 1],
[JN 1] and [Ja 2].

f(@)(y) =

The basic question that arises with any type of differentiation is its linearity. In
[Ja 2] we prove the following:

Proposition 1. If the fuzzy functions f and g have fuzzy derivatives f' and g’ at
the point a, their sum f +p g has the fuzzy derivative (f +rp g)' at a, where T is a
t-norm, then (f +7 g)'(a) < f'(a) +7 ¢'(a).

The next example shows that the opposite inequality in general does not hold
for any triangular norm 7', not even if we use different ¢-norms for the additions on
each of its sides:

Example 3. Let the fuzzy functions f,g : [0;2] — R be given by the following
formulas: For z € [0; 2] put

flz)(t) = max{O;l— xL—|—|1}’ te R,

It]
t) = 0;1— —— t € R.
s =max{o1- e
All the level functions of f and ¢ are linear and hence differentiable on the interval
[0;2]. For an arbitrary @ € [0;2] the derivatives of f and g are equal (we take the
one-side derivatives at the endpoints of the interval) and

F(@)(t) = ¢'(2)(t) = max{0;1 - [¢[}, t€R.

We see that both f/ and ¢’ are constant fuzzy functions on [0;2]. Note that their
sum with respect to an arbitrary ¢-norm is again a constant fuzzy function and its
common value is not a crisp number.

On the other hand take an arbitrary ¢-norm 7' for which all the level functions
of the fuzzy function f 47 ¢ are differentiable. Then using the fact that for any
z € [0;1] there is

fA—z)+rg(1—2)=f(1+2)+rg(l+2)

as a consequence of the Rolle theorem we obtain that the derivative of all the level
functions for the sum f +7 ¢ at the point = 1 is zero. Therefore (f +p ¢)'(1) is
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the crisp number zero and so (f +7 ¢)'(1) < f/(1) +r ¢’(1) for an arbitrary ¢-norm
T.

Moreover, this inequality holds for even an arbitrary pair of ¢-norms, as we have
the crisp zero on the left-hand side for any ¢-norm and the fuzzy (not crisp) zero
on the right-hand side again for any ¢-norm.

In the work [Ja 1] we deal with the existence of fuzzy fixed points for fuzzy
functions and with their properties. Here the fuzzy function f is understood in the
following way:

We take (X, d) a complete metric space. The corresponding Hausdorff metric in
the space of all nonempty compact subsets of X will be denoted by h. Let for each
z € X there exist an upper semicontinuous function f(z) : X — [0; 1]. Moreover,
we require that the inverse images f;1((«;1]) are nonempty compact sets for any
a € (0;1].

Let a € (0;1]. A point « € X will be called an a-fized point of f iff x € (f())a.
(This is a generalization of the classical case, when the crisp fixed point can be
understood as 1-fixed point.)

The condition of contractivity is reformulated in the following way: Let o € (0; 1].
We will say that a fuzzy function f that maps X into itself is a-contractive iff there
exists a real number ¢, 0 < ¢ < 1 such that for each 21,29 € X there is

h((f(21))a; (F(22))a) < gd(21,22),

where h is the Hausdorfl metric on X.

The main result of [Ja 1] is the following statement:

Proposition 2. Let (X, d) be a complete metric space, « € (0;1] and let f : X —
X be an a-contractive fuzzy function. Then there is an a-fixed point of f in X.

Obviously, in contrary to the classical case, there can be more than one fuzzy
fixed point of a fuzzy function. The set of all fuzzy fixed points can be characterized
by the following propositions:

Proposition 3. The set of all a-fixed points of an a-contractive function is closed
in (X,d).

Proposition 4. The set of all a-fixed points of an a-contractive function f is
bounded in (X,d). The upper bound for the diameter of this set is the number

diam(f(x0))a, where 2y is an arbitrary a-fixed point of f and ¢ is the con-
—q
traction coefficient.

These propositions generalize results on fixed point of fuzzy mappings achieved
in [He 1], [ST 1] and [Rh 1].

There is a relationship between the derivative of a differentiable fuzzy function
and the existence of its fixed points similar to the crisp case. More details can be
found in [Ka 1].
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5. INTEGRALS OF FUZZY FUNCTIONS

For the purpose of finding a fuzzy analogy to the Lebesgue (or Riemann) integral
it is convenient to think of a fuzzy function in the sense of [Se 1] (see Definition
10). From practical reasons we restrict ourselves on nonnegative fuzzy functions.
Therefore in this section we will use the concept of a nonnegative fuzzy number
introduced by Hoéhle in [Ho 1]:

Definition 16. A nonnegative fuzzy number is a function A : [0;00] — [0;1] for

which A(0) =0, A(o0) = 1 and A(x) = sup{A(t);t € [0;z)}.

Suppose f is a mapping that assigns a fuzzy number (in the sense of the previous
definition) to each point of X, X C R. Evidently we can use the notions from
the previous section to define level functions of the fuzzy function f. The only
difference is that this time we will have only the functions f_., not the functions
fo- Analogically we can define the derivative at a point for f.

As we have already mentioned in section 3, Klement in [KI 1] defines the Lebesgue
integral for f and states some properties of this integral. The core of this work lies
in the isomorphism between the set of all nonnegative fuzzy numbers and the set
of their pseudoinverses. Unfortunately the theory of integral based on this attitude
works only under the assumption of minimum ¢-norm used in F(R). For other
t-norm than T,,;, the integral even fails to be additive.

Using the concept of level functions (similar to that of Kalina in [Ka 1]) we can
obtain the Lebesgue integral of a fuzzy function with properties resembling those
of real functions.

This integral is defined in the following way: Let f be a fuzzy function defined
on an interval J. Suppose the level functions f_, are integrable on J for each

a € (0,1]. Let
I:inf{/jf_,y(x)dx;a € (0,1]},

stup{/lf,a(x)dm;ae(0,1]}:/If1(x)dx.

The integral of a fuzzy function f on the interval J can be defined as a fuzzy
real number i;(f) in the following way:

0 ifz<I,
is(f)(z) =< o ifa=sup{ye(0,1];f, f-y(t)dt <z},.
1 ifz>S

The integral defined as above has a close connection to the derivative from
the previous section — this connection is given by the analogy of the mean integral
calculus theorem, which holds for the derivative in the sense of Kalina’s work [Ka 1]
and above defined integral.
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Proposition 5. Let f be a fuzzy function with integrable level functions on the
interval J = [a,b]. Let for @ € J F(x) = i[a»(f). If f has all its level functions
continuous at xog € J, then F'(zo) = f(zo).

6. Fuzzy METHODS IN CRISP FUNCTIONS CALCULUS

In [BS 1] the authors show how some classical results can obtain more compact
form using terms of fuzzy set theory. We introduce the main notions and results of
this work:

Let f: X — Y be a mapping, X,Y are sets of real numbers and let zq € X.
The continuity defect of f at the point g is the value

d(f,w0) = sup{ly — f(zo)l;y = lim yn,yn = flzn), 20 = lim 2}

If the continuity defect is finite at @ € X then we say that f is fuzzy continuous at
the point z.

Next the authors in [BS 1] define the local continuity measure at zq denoted by
A(f, zo) by the equality

AU, o) = (14 8(, 7)) "

(In case when 0(f, z0) = 0o we put A(f, o) =0.)
The continuity measure A(f) on a set X is defined as

A(f) = inf{A(f,2);2 € X}

Finally, a function f is called fuzzy continuous on X if A(f) > 0. Note that a func-
tion, that is fuzzy continuous at each point of a set need not be fuzzy continuous
on that set.

The authors in [BS 1] claim that

There are classical results in mathematics which are incomplete. An
example 1s given by the well-known result of the classical mathematical
analysis stating that a continuous function defined on a closed interval
1s bounded. ... But if we ask whether the converse is true we reveal that
the answer is negative. The criterion of boundedness may be found only
in terms of fuzzy set theory.

The above mentioned criterion is the proposition stating that a function f defined
on a compact space X is bounded if and only if f is fuzzy continuous (see [BS 1],
Theorem 2).

On the other hand, applying this approach, some other classical results are no
more valid. Maybe the most obvious one is the intermediate value principle (known
also as Bolzano lemma) which says that if f is continuous on a closed interval [a; b]
and y is an arbitrary number between f(a) and f(b), then there is ¢ € [a;b] such
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that f(c) = y. (Shortly - a continuous function on a compact set has the Darboux
property.) Clearly this is not true for fuzzy continuous functions, as they may have
discontinuities.

But if we realise that the intermediate value principle is a tool that enables
us e.g. to find approximate solutions of algebraic equations, then we see that in
practical calculations we are often satisfied with the value ¢ € [a;b] for which f(c)
is in some sense “not too far” from zero. This leads us again to terms from fuzzy
set theory.

In [Ja 3] we define the fuzzy version of uniform continuity and show that for
fuzzy uniformly continuous functions some version of intermediate value principle
is fulfilled.

First we have to introduce the notion of nearness that was defined in [Ka 1].
Let us assume a fuzzy relation N : R x R — [0; 1] is given satisfying the following
properties:

(1) for each z € R, Nz =1,

(2) for each 2,y € R, « Ny = yNuz,

(3) for each z,y,2€ Rif 2 <y < z then 2Ny > Nz,
(4) for each z € R, limy_,oo 2Ny = 0,

(5) for each x,y,z € R there is e Ny = (x + z)N(y + 2).

The last condition of nearness is not necessary for most results in [Ka 1] and
here, but 1t simplifies the considerations a lot.

Here are some examples of nearness relations:

Example 4. If «Ny = , then N 1s an example of nearness which has

L+ |z =yl
never the zero value.

Example 5. Let k > 0. The relation 2Ny = max{l — k |z — y|;0} is an example
of a nearness that assigns nonzero values only to those pairs (;y) for which their
distance does not exceed %

Example 6. The relation zNy = 1 if ¢ = y, 2Ny = 0 if ¢ # y is an example of
a “crisp”’nearness.

The nearness relation enables us to define the derivative also for various types
of fuzzy mappings (see [Ka 1]). Here it will serve as a tool to introduce the a-fuzzy
uniform continuity. In the rest of this work we assume a nearness N is given (hence
the terms defined are dependent on that particular nearness).

Definition 17. A function f : R — R is an a-fuzzy uniformly continuous function
on a set M C R for the given o € (0;1) if there exists § > 0 such that for all
z,y € M;|z —y| < d implies f(z)N f(y) > a.

Speaking about the a-fuzzy uniformly continuous function we assume the ex-
istence of such a € (0;1), for which the function fulfills the requirement of the
previous definition.
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Proposition 6. If f is an a-fuzzy uniformly continuous function on the set M C R,
then f is fuzzy continuous on M.

A fuzzy continuous function need not be a-fuzzy uniformly continuous for any
« € (0;1). An easy example of such function is f(z) = =% on the interval (0;1).

An a-fuzzy uniformly continuous function satisfies the intermediate value prin-
ciple in the following sense:

Proposition 7. Let f be an a-fuzzy uniformly continuous function on the interval
[a;b], let ¢ be any value between f(a) and f(b). Then there is a number x € [a; b]
for which f(z)Ne¢ > a.

In order to find the connection between the notion of an a-fuzzy uniformly
continuous function and the uniformly continuous function in the classical sense we
will assume to work with a “reasonable” nearness, i.e. we have to add the following
conditions to the definition of nearness:

(6) for each x,y € R there is Ny = 1 if and only if = y,

(7) the function n(y) = «Ny is continuous for any fixed z € R.

Adding these conditions we can easily see that if f is an a-fuzzy uniformly
continuous function for any « € (0; 1), then it is also uniformly continuous and vice
versa.

The following proposition shows the connection between the fuzzy and classical
uniform continuity.

Proposition 8. If F, denotes the set of all a-fuzzy uniformly continuous functions
on a set M C R, then ﬂaE(O'l) F, is the set of all uniformly continuous functions
on M.

In the classical mathematical analysis there is a well-known statement that a con-
tinuous function defined on a compact set is uniformly continuous on that set.
A similar result holds for fuzzy continuity.

Proposition 9. If f is fuzzy continuous on a compact set C, if N is a nearness
with nonzero values, then there is a € (0;1) such that f is an a-fuzzy uniformly
continuous function (with respect to N ).

In [Ja 4] and [Ja 5] we study how introducing fuzzy methods into crisp functions
analysis changes the basic theorems from classical mathematics. We show that a lot
of them obtains more general and compact form. Here is a short summary of the
results from the mentioned papers:

Definition 18. Let f : R — R be a function, a € R, let N be a nearness on R
and let o € (0;1). Denote

f(x) = f(a)

)= {0 ez )

The function f is fuzzy differentiable at the point a on level « if the numbers
I =1inf Dy(a), S = sup Dy(a) are both finite.

Note that Dy (a) # @ for any a € (0;1) because of the continuity of N.
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Example 7. The function f(z) = +/|z| is not fuzzy differentiable at 0 at any level,
as at this point D, (0) = R for all a € (0;1).

Example 8. The function f(z) = 0 for ¢ < 0 and f(z) = 1 for # > 0 (Dirac
function) is not fuzzy differentiable at the point 0 on any level, as for any o € (0;1)
we have sup D, (0) = oo.

Definition 19. The interval [/;S], where the numbers / and S are defined in
Definition 18 is called an a-nearness derivative of f at @ on the level & and denoted

by f(a).

In case when at some point 7 = —oo0 and S = oo we also call the interval
[/;S] an a-nearness derivative, although the function is not differentiable at that
point. (This is a similar situation as with the integrability - a function that is not
integrable may have the integral.)

We consider the arithmetical operations in the extended real line in the usual
way: @+ 00 = 00,a — 00 = —00, 4.00 = 00, a(—00) = —oo (the last two statements
hold for positive a) and 0.co = 0.

Example 9. The a-nearness derivative of the Dirac function (see Example 8) at
the point 0 is the interval [0; o0]. The a-nearness derivative of this function at some

a > 0, for which a N0 = « is the interval [O; ﬁ} .
a

Here are some properties of fuzzy differentiable functions and their a-nearness
derivatives:

Proposition 10. If«,f € (0;1), a < B, then fi(a) C f;(a).

The next propositions shows the connection between fuzzy and classical differ-
entiability.

Proposition 11. If f is differentiable at a (in classical sense), then there is an
«g € (0;1) such that f is fuzzy differentiable at a on level oy and

M file)={/' (@)}

a€g(0;1)

Instead of the linearity which holds for the classical derivative, we have only the
following inclusion:

Proposition 12. If f, g are real functions, a € R, « € (0;1), then
(f +9)ala) C fi(a) + g4 (a),

where the sum of the sets f!/(a), ¢’ (a) is the set of all sums x + y, x € fl(a),y €
/
gola).
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Proposition 13. If ¢ € R, then (cf), (a) = cfl(a), where the product cfl (a) is
the set of all products cx, x € f! (a).

From Proposition 10 we see that the a-nearness derivatives can be understood as
level cuts for some fuzzy set. This fuzzy set seems to be a generalization of the crisp
derivative (see Proposition 11). We are also able to formulate some classical state-
ments of real variable calculus without assumptions of continuity or differentiability.

In all the remaining propositions in this work we restrict ourselves to functions
defined only on a given interval. The reason is that we do not want the points
outside this interval to influence the nearness derivative. Other possibility would be
to consider the a-derivative of a function f at a point « € [m; n] as an a-derivative
of f restricted on [m;n] at z.

Proposition 14. A function f is increasing on the interval [m;n] if and only if
at each a € [m;n] there is fl,(a) N (0;00) # 0 and f),(a) N (—o0;0) = @ for every
ae (0;1).

A dual necessary and sufficient condition can be formulated in similar way for

decreasing functions. For non-decreasing functions we have:

Proposition 15. A function f is non-decreasing on the interval [m;n] if and only
if at each a € [m;n] there is f(a) N (—o0;0) = @ for every a € (0;1).

Again the dual condition can be stated for non-increasing functions. All the
proofs of these statements are just modifications of the one in Proposition 14.

Finally we state generalized versions of Rolle, Lagrange and Darboux theorems.

Proposition 16 (Rolle Theorem). If f is defined on the interval [m;n], if
f(m) = f(n), then there exists a € (m;n) and o € (0;1) such that 0 € f! (a).

Proposition 17 (Lagrange Mean Value Theorem). If f is defined on [m;n],
f(m) :
) IO ¢ o).

f(n)

n
Proposition 18 (Darboux Theorem). If f is defined on [m;n], if there is z € R
such that for each @ € supp(f'(m)) and for each y € supp(f'(n)) thereisz < z < y,
then there exists ¢ € (m;n) such that z € supp(f’'(c)).

then there is a number a € (m;n),a € (0;1) such that

7. CONCLUDING REMARKS

This work shows two possible directions of fuzzy infinitesimal calculus. The first
one deals with fuzzy object - fuzzy number and fuzzy functions. We show that
using “reasonable” definitions we obtain similar results as in the classical case.
On the other hand, the methods used to obtain these results sometimes differ a lot
from the classical ones.

Another direction, less frequent, is applying fuzzy methods into classical math-
ematical analysis. In this work the section 6 is devoted to present results of this
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kind. Tt appears that using fuzzy methods enables us both to extend validity of
some statements from the classical analysis and to formulate them in more general
way.

The results of this work are just the basic principles of fuzzy differential calculus;
there is a wide field for future research, both in theory and applications.

Finally it is worth to mention new ideas by Vojtis and Kalina which show close
links between fuzzy mathematics and non-standard analysis. This seems to be
a fruitful topic both for the theory of fuzzy mathematics and for its applications,
such as fuzzy measures or quantum computing.
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