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INVARIANT MEASURES ON LOCALLY COMPACT SPACES

PETER MALICKY

ABsTRACT. The paper considers measures on a locally compact space which are
invariant with respect to a given system of continuous maps.

Introduction

The present paper considers the following problem. There is given a locally
compact space X and a system F of continuous maps of the space X into itself.
We are interested in conditions under which there is a Borel F-invariant measure
on the space X. For example, let G be a locally compact topological group. A
map T on the group G of the form T'(z) = ax (T'(z) = zb, T'(z) = axzb) is said to
be left (right, left-right) translation of G. If a system F consists of all left (right)
translations, then a Borel F-invariant measure exists and is called left (right) Haar
measure of the group G, [2,p.246]. The group G is called unimodular if left Haar
measure is also right invariant, [1,p.119]. It is well known that left (right) Haar
measure need not be right (left) invariant, [2,p.248]. It means that the system of all
left-right translations need not have an invariant Borel measure. For compact spaces
the existence problem of an F-invariant measure was fully solved in Roberts’ paper
[4]. The paper [3] of the author contains partial results about the locally compact
case. The presented results are very similar to Roberts’ results for the compact case.
Without loss of generality we may assume that the system F contains the identity
map and is closed with respect to the composition of maps, i.e. F is a monoid with
respect to the composition. Moreover, we assume that F is a minimal monoid,
which contains sufficiently many homeomorphisms, and we obtain a necessary and
sufficient condition for the existence of an F-invariant measure. Using this result
we give a topological characterization of nonunimodular locally compact topological
groups.

1. Preliminaries

For a locally compact space X the symbol B(X) denotes the minimal o-ring
containing all compact subsets of X. The members of B(X) are called Borel sets
in X. A set A is called bounded if its closure A is a compact set in X. A Borel
measure on the space X is a set function p : B(X) — (0, 00) such that
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o0 (o]
u(@) =0, p U A = ZN(AZ') for any sequence {4;}72, of pairwise disjoint Borel
i=1 i=1

sets and p(K) < oo for any compact set K inX. A map T : X — X is called
measurable if T~1(A) € B(X) for any A € B(X). AmapT : X — X is called
proper if it is continuous and 7~!(K) is compact for any compact set K of X. A
measure y is said to be invariant with respect to a measurable map 7' if

p(T7L(A)) = p(A) for any A € B(X). If F is a system of measurable maps and a
measure p is T-invariant for any 7" € F, then p is called F-invariant. A system F
of proper maps is called minimal if for any # € X the set {T'(x) : T' € F} is dense in
X. Clearly, the system F of proper maps is minimal if and if only for any nonempty
open subset U of the space X the system {T~}(U) : T' € F} is a covering of X. We
say that a system F of proper maps contains sufficiently many homeomorphisms
if there is a bounded open subset Uy C X such that for any # € X there is a
homeomorphism 1" € F for which = € T~Y(Uy), i.e. T(x) € Up. Equivalently,
a system F of proper maps contains sufficiently many homeomorphisms if there
is a bounded open subset Uy C X such that for any compact set K in X there

n

are homeomorphisms 77, ...,7,, € F such that K C U 17 YUy). For example, if
i=1

X is compact and F contains at least one homeomorphism (e. g. the identity
map), then F contains sufficiently many homeomorphisms. So, the assumption of
sufficiently many homeomorphisms in a system F is useless in the compact case,
but not in the locally compact case. If f is a real function defined on a locally
compact space X, then the symbol supp f denotes the support of the function f,
i. e. the closure of the set {z : f(x) # 0}. The set of all continuous functions on
X with a compact support is denoted by the symbol Co(X). The subset of Co(X)
consisting of all nonnegative functions is denoted by C(')" (X). The inequality f < ¢
means f(z) < g(z) for all € X and f(z) < g(x) for some z € X.

2. Construction of an Invariant measure

To prove the main result we need two technical lemmas.

Lemma 2.1. Let F be a minimal system of proper maps of a locally compact
space X.
(i) Let g, € CF(X) and ¢ # 0. Then there are 11, ..., 1, € F,

n
©1,-yPn € CE)I'(X) and a real number a > 0 such that g < angi oT; and

i=1
n
p=2 v
i=1
(ii) Moreover, if F contains sufficiently many homeomorphisms, then there is
a function po € Ci (X) such that any g € C§ (X) may be represented in
n

a form g :BZfioTi, where f; € CH(X), 0< fi < ¢y, 1T} € F and j is
i=1
a nonnegative real number.

Proof. Denote K = supp ¢ and U = {2 : ¢(x) # 0}. The set K is compact, U is
nonempty open and F is a minimal system. Hence, there are 71, ...,7, € F such
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that K C U T YU), which implies Z e(Ti(x)) > 0 for all z € K. Put

i=1 ( ) i=1
n n-sup gl n
K
f:ZQOOTi,aZﬁanngl:...:g@n:%.ThenggaZ%oTi.
i €K i=1

(ii) There is a bounded open set Uy C X such that for any compact set K in X
n

there are homeomorphisms 71, ..., 7, € F for which K C U 17 YUp). There is
i=1
another bounded open set W for which Uy C W. Take a function ¢y € CS'(X)
such that ¢o(z) = 1 for € Uy and ¢o(z) = 0 for ¢ W, see [2,p.211]. Denote
= {x : po(x) # 0}. Obviously, Uy C U. Take an arbitrary function g € Cf (X).
Denote K = supp g. There are homeomorphlsms T, ..., T, € F such that

K C U 171 (Uo) U 177 (U),which implies ngo (i (x)) > 0 for all € K. Put

z 1 i=1
f= 2900 o T;. Define a function h by h(z) = f
i=1
z ¢ supp g. The function h is defined correctly h(z )f( ) = g(z) and h € CF (X).
Putﬁ_sugh( z) and fi(x ):;3]1( “Hz)) - po(z). Then f; € CF(X),0< f; < o
TE

and ﬁZﬁ:(Ti(l‘)) = 52 %h(Tfl(Ti(l‘)))%(Ti(ﬂﬂ)) = Zh(l‘)%(T z
x) ngo(Ti(x)) = h(z)f(z) = g(x). It proves (ii).

(z) # 0 and h(z) = 0 if

Lemma 2.2. Let F be a minimal system of proper maps of a locally compact space
X. If p is a nonzero F-invariant Borel measure, then p(U) > 0 for any nonempty
open Borel subset U of X.

Proof. Let p be a nonzero F-invariant Borel measure and p(U) = 0 for some
nonempty open Borel subset U of X. Let K be a compact subset of X. Since
the system {T~Y1(U) : T € F} is a covering of X, there are Ty,...,T,, € F such

that I C U 171 (U). F-invariance of the measure g implies (/&) = 0. Any Borel
i=1

set in X may be covered by a sequence of compact sets, [2,p.214]. Therefore, the

measure g is zero.

The following theorem is the main result of the paper.

Theorem 2.3. Let F be a minimal monoid of proper maps of a locally compact
space X which contains sufficiently many homeomorphisms. The following proper-
ties are equivalent.
(1) There exists a nonzero F-invariant Borel measure on X.
(ii) For any open subsets Uy, ..., Uy, any compact subsets K1, ..., K, and any
maps T, .. Tn,Sl, vy Sm €F

ZXU > ZXK implies 32 € X : ZXU ) > g, (@),

i=1 Jj=1 i=1 j=1
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where U; = Tl-_l(Ui) and IZ’y = Sj_] (K;).

(iii) If T, ..., 15,51, ..., Sm € F, f1, ..., Jn and g1, ..., gm are linear combinations
of characteristic functions of open and compact sets respectively with
positive rational coefficients, then

ST h> gy implies 3 € X 03 fi(Ti(x) > Y g;(S;(x)).
i=1 =1 i=1 Jj=1

(iv) For any functions @1, ..., n, U1, ..., by € CF (X) and any maps
Ty oy n, S,y S € F
m

i >y impliesTr € X 1Y pi(Ti(x)) > Y 1i(Si(x)).
i=1 Jj=1 i=1 j=1
Proof. (i)=-(ii) Let x be a nonzero F-invariant Borel measure on X. Take open

n m
subsets Uq,...,U, and compact subsets K1,...K,, such that ZXUi > ZXKJ"
i=1 j=1
Without loss of generality we may assume that the sets Uy,...,U, are bounded
to be Borel. (An open set is Borel if and only if it is o-bounded). We have
n

m n m
ZXU,(x) > Z)(Kj(l‘) for all # € X and nyl(:p) > ZXKj(x) for some
i=1 Jj=1 i=1 j=1
z € X. The last inequality holds on a nonempty open subset, because the sets
n

U; are open and K are closed. Lemma 2.2. implies Z”(Ui) > Z”(AJ) Take
i=1 j=1

n
maps 11, ..., T, S1, ..., Sm € F. Suppose ZXUz <

o

XE&; where U; = Ti_l(Ui)

i=1 i=1
and K; = S]-_I(Kj). Then Zp(f(j) > Zﬂ(ﬁ’) = Zu(Ui) > ZN(KJ'), which
=1 i=1 i=1 7j=1
is a contradiction.
(i1) = (iii) This is obvious.
(iii) = (iv) Take maps 11, ..., T}, 51, ..., Sy, € F and functions
1y ooy Py U1y oy U € CF (X)) such that Zg@i > 21/1] Put
i=1 j=1
1 n m
(1) hzi(Z%—Zd)j)~
i=1 j=1
Obviously, h € CF (X) and h # 0. Denote U/ = {z : h(z) # 0} and
(2) K= U supp(p; o T}).
i=1
Since F is minimal and K is compact, there are Ry, ..., R, € F such that
P
(3) Kc|JrHw).
j=1
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Then 0 < mf Eh z)). Put

P
4) o = inf 3 h(R;(x),
j=1
1
(5) Ymyj = ;h and
(6) Smt; =Rjforj=1,..,p
Then we have
m+p

(7) ZS"@ > ij

Take a natural number

+m-4+n
(8) ps Metmtn)

«
Denote U; , = {2 : p;(x) > %} for integers i and k such that 1 <i<n, 0 <k and
Kji ={z:¢;(x) > £} for integers j and k such that 1 < j < m, 1 < k. Obviously,
the sets U; j, are open and the stets Ix] ¢ are compact for the correspondlng integers.

Put f; = ZXU , and g; = ZXKM' In fact, both sums are finite. The
k=1
functions f; and g; have properties:
1
(9) 0<gi(e) < file) <gile) +
1
(10) 0 < gj(z) < () <gj(e) + — and
(11) 0< fi(z) & 0<pi(z) forall z € X.
Now
m+p
(12) Z fi> Z 9
and by (iii)
n m+p
(13) Je € X Y [i(Ti(@) > Y gi(S5(x)
i=1 Jj=1

This element z must belong to the compact K by (10), (11) and (2). Therefore,
Z h(R;(z)) > a and

m+p

(14) > ¥i(Si() >

j=m+1

SRR
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by (5) and (6). Using (9), (13), (10), (14), and (8) we obtain
m+p

Y@ Ti@) > ST - 1) > T4 S g5(Si(a)) >

m+p _(n m m m+p

>S4 () - 1) = TS s Y s >
=1 Jj=1 j=m+1

> UL B (S5(2)) 4 > D (85(#). 1t proves (iv).

(iv)= (i) Take po € CF (X) from (i) of Lemma 2.1. Let A be the set of all functions

¢ of the form ¢ = Z% o T;, where ¢; € CH(X), T; € F and ¢, = Z%’. Since
i=1 i=1
F is a monoid, we have

(1‘5) wo €A,
(16) A is a convex subset of Cy(X) and
(17) Voe AVI € F:poTl € A.

By (i) of Lemma 2.1., we obtain

(18) Vielo(X)Ipe ATa>0: |f] <alpl
Property (iv) implies

(19) Vo, 0 € AVa>0: p<ayp = a> L

Let p : Co(X) — (0,00) be defined as follows p(f) = inf{e : 3o € A |f] < ap}.
Then

(20) p is a seminorm on Cy(X),

(21) 0<g < f=plg) <p(f) forall f g€ Co(X),
(22) p(p) = 1for all p € A,

(23) p(foT) <p(f) forall feCo(X)and T €F,
(21) p(I1) = p(f) for all f € Co(X) and

(25) p is a norm.

Homogenity of p is obvious, subadditivity of p follows from (16). Relations (22) and
(23) follow from (19) and (17) respectively. Relations (21) and (24) are obvious.
We shall prove (25). Let f # 0. We may assume f € CF (X).

From (i) of Lemma 2.1. it follows that o < a - Zf o T; for some a > 0 and
n i=1 n
Ty,..., T, € F. Then we have I = p(pg) < p(a-Y_ foTy) <a»_p(foT;) < anp(f).

=1 i=1

Therefore, p(f) > ﬁ
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Put B = {f : p(f) < 1}. Then we have two disjoint convex sets A and B such
that B is open (with respect to the topology induced by the norm p). By Hahn-

Banach theorem, there is a nontrivial linear functional ® : C(X) — R such that
O(f) < B(p) for all f € B and p € A. We may assume that

(26) sup (f) = 1.
feB

Then ®(yp) > 1 for all ¢ € A. On the other hand p((1 —¢)p) = 1—¢ for ¢ € A and
e € (0,1) by (22). Therefore, (1 —¢)p € B and (1 —¢)®(p) = ®((1 —)p) < 1. It
means

(27) O(p) =1 for all p € A.
Let 0 < f < ¢p. Then 0 < g — f < ¢g. Relations (15), (21) and (22) imply
(po - < 1 Then (26) implies ®(¢g — f) < 1. By (15) and (27), we have
Q(¢o) = @(f) + ®(wo — f). Therefore, ®(f) =1—®(po— f) >1—-1=0, ie.
a(/) > 0.
Moreover, foT + (pg— f) € Afor all T € F. By (27) we have 1 = ®(fo T+ (¢ —
1)) = ®(f o T) + ®(p0) — B(F) = B(f o T) + 1 — B(f). Hence,
o(f o T) = 0(1).
Let g € CJ'(X) be arbitrary. Lemma 2.1. implies
g=B> fioT;,
i=1
where 3> 0, 0 < f; < ¢y and T; € F. Therefore,

=0) ®(fioTy) =) @(f) >0
i=1 i=1

and
BlgoT) =B (fioTioT) =Y ®(fi) =
i=1 i=1

whenever 7' € F. Let g € Co(X) be arbitrary and T' € F. Then

BlgoT)=®((gt —g ) oT)=®(gT o T) = ®((9- o T) = ®(g9F) — ®(g7) = B(y).
So, ® is a positive F-invariant linear functional on Cy(X). There is a unique regular
Borel measure p on the space X such that

P(g) = / gdp for any g € Co(X),
X
see [2,p.240]. Obviously, the measure p must be F-invariant.

Now, we can give a topological characterization of nonunimodular locally com-
pact topological groups.

Corollary 2.4. A locally compact group G is nonunimodular if and only if there
are open subset Uy, ..., U,, compact subsets K1, ..., Ky, of G such that

k23 m n m
doxw > Dk, and Yo xg, <3O Xk,
i=1 Jj=1 i=1 j=1

where UZ = a;U;b; and I{’j = ¢;K;d; for some a;,b;,cj,d; € G.
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