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DOMINATION IN PRODUCTS OF CIRCUITS

BOHDAN ZELINKA

ABsTrACT. Three numerical invariants of graphs concerning the domination are con-
sidered, namely the domatic number, the doubly domatic number and the total do-
matic number of a graph. These invariants are investigated for Cartesian products
of circuits. Such graphs are treated algebraically as Cayley graphs of direct products
of finite cyclic groups.

In this paper we shall study the domatic number, the doubly domatic number
and the total domatic numbers of graphs which are Cartesian products of circuits.

We shall consider finite undirected graphs without loops and multiple edges. By
V(@) we denote the vertex set of a graph (G, by N¢[v] the set consisting of v and of
all vertices which are adjacent to v in G. By C), we denote the circuit of length n.
If G1, G, ..., G, are graphs, then their Cartesian product G x G x ... x G, is the
graph whose vertex set is the Cartesian product V(G1) x V(G3) x ... x V(G,,) and
in which two vertices (21,22, ..., #,), (Y1, Y2, ..., Yn) are adjacent if and only if there
exists an integer ¢ such that 1 < ¢ < n,z; and y; are adjacent in G; and ©; = y; for
all j €{1,...,n}—{i}.

A subset D of the vertex set V(G) of a graph G is called dominating in G
(or total dominating in G), if for each # € V(G) — D (or for each z € V(G)
respectively) there exists a vertex y € D adjacent to @. The set S is called doubly
dominating in G, if for each # € V(G) — D there exist two vertices y1, y2 in D which
are adjacent to z.A domatic (or total domatic, or doubly domatic) partition of G
is a partition of V((), all of whose classes are dominating (or total dominating,
or doubly dominating respectively) sets of G. The minimum number of vertices
of a dominating set in G is its domination number (), the maximum number
of classes of a domatic partition of G is its domatic number d(G). Analogously
the total domination number (), the total domatic number d;(G), the doubly
domination number v2((7) and the doubly domatic number d?((7) are defined.

The domatic number was introduced by E. J. Cockayne and S. T. Hedetniemi
in [1], the total domatic number by the same authors and R. M. Dawes in [2]. The
doubly domatic number is a particular case of the k-ply domatic number introduced
in [3].

We shall study Cartesian products of circuits. Let G = Hy; x Hs X ... X Hp,
where Hy, Ha, ..., Hy, are circuits. The lengths of Hy, Ho, ..., H, will be hy, ho, ..., by,
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respectively. The graph G may be considered as the Cayley graph of a direct
product of finite cyclic groups of orders hy, ha, ..., hy. (Among such direct products
of groups there are all finite Abelian groups.)

We shall treat finite Abelian groups and thus we shall use the additive notation
as it is usual in this case. The group operation is denoted by + as an addition, the
neutral element 1s denoted by (0 and called the zero element, the inverse element to
x 1s denoted by —ux.

Let A be a subset of a group G such that 0 ¢ A and # € A implies —z € A for
each # € G. The Cayley graph G(G, A) is the graph whose vertex set is G and in
which two vertices x,y are adjacent if and only if 2 —y € A.

By H we shall denote the Abelian group which is a direct product of finite cyclic
subgroups #Hi,...,H,. For i = 1,...,n let a; be a generator of #; and let h; be

n

its order. Each element of H can be expressed as E aia;, where ay, ..., a,, are
i=1

n n

integers. The expressions Zaiai,Z@-ai denote the same element of H if and
i=1 i=1

only if o; = f; (mod h;) for i =1,...,n.

n
For each element of # there exists a unique expression Z aza; with 0 < a; < by
i=1
fori=1,...,n.

Let p be a positive integer. By Ho(p) we denote the subset of H consisting of
n n

the elements Z a;a; such that Z ia; = 0 (mod p). We shall prove a lemma.
i=1 i=1

Lemma 1. The set Ho(p) is a subgroup of H. If h; =0 (mod p) fori = 1,...,n,
then the index of Ho(p) in H is p. In the case when p is a prime number and n < p,
also the inverse implication holds.

Proof. Evidently #Ho(p) contains the zero element o of #, for any two elements of
Ho(p) their sum is in Ho(p) and for any element of Hq(p) its inverse is in Ho(p);
therefore Ho(p) is a subgroup of H. Suppose h; = 0 (mod p) for i = 1,...,n. If

Zaiai = Zﬁla, then Ziai = 27@ (mod p). For each integer j such that
i=1 i=1 i=1

i=1
n n
0 < j < p—1the set of all elements Z a;a; with Z iz; = j (mod p) is evidently

i=1 i=1
a class of # by Ho(p) and the index of Ho(p) in H is p. Now let there exist
k € {1,...,n} such that hs is not divisible by p. Suppose that p is a prime number
and n < p. Then there exists a solution z of the congruence pr =1 (mod hy). We

have pay € Ho(p) by the definition and also xpar = ai € Ho(p). Let b = E Bia; be

i=1
n

an arbitrary element of H and let o = Z = 1if;. As pis prime, there exists 7 such

)
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that k7 = ¢ (mod p). Let ¢ = b — 7ay. Then ¢ = Z’Yiai, where v, = B — 7 and

i=1
n n

~i = B; for i # k. We have Zi’ﬁ = Zz@ — k7 =0 (mod p) and ¢ € Ho(p). As
i=1 i=1

ai € Ho(p), also Tax € Ho(p) and b = c+1ai, € Ho(p). As b was chosen arbitrarily,

we have Ho(p) =H.

Now we prove a theorem.
Theorem 1.. Let G = Hy x ... x H,, where Hy, ..., Hy are circuits, let h; be the
length of H; fori=1,....,n. If h; =0 (mod (2n+ 1)) for i = 1,...,n, then
d(G) =2n+1,
1(G) = (11 i) /(20 4 1),

Proof. The graph G is a regular graph of degree 2n, therefore by a result from [1]
we have d(G) § 2n 4+ 1. Therefore it suffices to show a domatic partition of G
having 2n + 1 classes. We may consider G as the Cayley graph G(#, A), where A is
the above mentioned group and A = {ay, ..., an, —ai, ..., —a,} and its vertices may

n n
be considered as elements of H. For k =0, ...,2n put Dy = {Z a;a; | Ziai =k
i=1 i=1

(mod (2n +1))}.
Denote D = {D ..., Dap}. The classes of D are classes of H by Ho(2n +1). We

shall prove that Dy is a dominating set in (G. For each vertex « = Z a;a; let k(x)

i=1
be the integer such that 0 g k(L) é 2n and Ziai = k(J,) (mod (2n + 1)): this
i=1
number k(x) is determined uniquely. Tf k(z) = 0, then # € Dg. If 1 < k(z) < n,

then let y = Zﬁiai, where Brzy = ar@) — 1 and G = oy for i # k(z). If

i=1
n+1 < k(x) < 2n, then let y = Z'yiai, where Yan _p(e)+1 = Qan—k(e)+1+1, % = @

i=1
for j # 2n — k(z) + 1. In both the cases y € Dy and is adjacent to . Analogously
as for Dy the proof can be done for any other class of D. Therefore D is a domatic
partition of G and d(G) = 2n + 1.

As G is regular of degree 2n, each vertex of (G is adjacent only to vertices of
other classes of D than its own one and is not adjacent to two vertices of the same
class. Therefore the system of sets {N[x] | # € Dy} is a partition of V(G). As the
number of vertices of G is II7_; h;, we have |Dg| = (II}2;)/(2n + 1) and evidently
this is v(G). O

In the following theorem we shall consider only n = 2.

Theorem 2. Let G = Hy x Hs, where Hy, Ho are circuits of lengths hy, ho respec-
tively. Then the following two assertions are equivalent:

(i) h1 =0 (mod 5) and hy = 0 (mod 5);
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(i) d(G) = 5 and v(G) = hyha/5.

Proof. 'The implication (i)= (ii) follows from Theorem 1. Consider the groups
H, Mo (5) in this case. Let D be a domatic partition of ¢ with 5 classes, let Dy
be the class of D which contains the vertex o (the zero of ). As d(G) = 5, the
closed neighbourhoods of any two distinct vertices of Dy are disjoint and therefore
any two distinct vertices of Dy have distance at least 3 in (G. Therefore the vertex
a1+ as is not in Dy and must be adjacent to a vertex of Dy. Such a vertex is neither
a1, or as and therefore it is a1 + 2as or 2a; + as. Suppos that ay + 2as € Dy. Also
—ay + as ¢ Dy and must be adjacent to a vertex of Dg. The vertices —ay, +as are
adjacent to o and the vertex 2a, —as has the distance 2 from a; + 2a5. Therefore
—2ay + as € Dy. Silmilarly we prove that —a; — 2as € Dy and 2a; — as € Dy.
Denote b = ay + 2as,¢ = —2a; + as. Therefore the assumption o € Dy and
b € Dy implies ¢ € Dy, —b € Dy, —c € Dy. Analogously b € D and o € D implies
¢ € Dy, —b € Dy,—c € Dy. Now we may proceed further in such a way and prove
that all elements of the subgroup H of generated by the elements b, ¢ are in Dy. Here
we use the symmetry of the graph G. We have b € H(5),c € Ho(5). Any element
of 1 (5) has the expression a1ai +asas, where a1 +2a2 = 0 (mod 5) and therefore
it may be expressed as b + vye, where 8 = (a1 + 2a3) /5,7 = a2 — 2(a + 2002) /5
and j3,v are integers, Therefore the subgroup of A generated by b, ¢ is Ho(5). As
D has to be a domatic partition, the index of H(5) in G must be 5 and (i) holds
by Lemma 1. If 2a; + as € Dy instead of a; + 2as € Dy, then the proof is the same,
only with interchanging a; and as. O

Theorem 3. Let GG be the same graph as in Theorem 1. If h; = 0 (mod (n+ 1))
fori=1,...,n, then d*(G) = n+ 1.

Proof. A result from [3] implies that d*(G) < n + 1. Therefore it suffices to show
a doubly domatic partition D of G with n + 1 classes. For £ = 0,...,n put D, =

{Zaia| Zza =k (mod (n+1))}

Denote D = {Dy, ..., D,,}. The classes of D are classes of H by Ho(n +1). We

shall prove that Dy 1s a doubly dominating set in GG. For each vertex z = Z ;a;

i=1
let k’(l) be the integer such that 0 g k(x) é n and Z oy = k’(l) (mod (n + 1)):
i=1
this number k(z) is determined uniquely. If k(z) = 0, then # € Dy. Otherwise
let y =3 Bias,z =Y viar, where By(oy — 1,8 = aj for j # k(2), Yn_p(r)1 =
i=n i=1

On_p(e)+1 + 1,7 = «aj, for j #n — k() + 1. Evidently y € Do,z € Do and both
y, z are adjacent to x. Therefore Dy is a doubly dominating set. Analogously as
for Dy, the proof can be done for any other class of D. Therefore D is a doubly
domatic partition and d?(G) =n + 1.0

Lemma 2. If h; =0 (mod 2 (n+ 1)) for i = 1,...,n, then there exists a doubly
domatic partition D = {Dy, ..., D,} in G such that for each k = 0, ..., n the set Dy
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is the union of two disjoint non-empty sets D)., D}/ with the property that for each
x € V(G) — Dy there exist vertices y € D),z € D) adjacent to z.

Proof. ]n this case we may take

{ZzaZE (mod 2(n + 1))} Dy _{Zaal|2m2_n+l+k(mod

Z

2(n + 1) )} for k = 0,...,n. If we put Dy = D’ U Dy then {Dy, ..., Dy} is the
doubly domatic partltlon from Theorem 3. O

With help of this lemma we prove the following theorem.

Theorem 4. Let G be the same graph as in Theorem 1. If h, = 0 (mod 4) and
hi =0 (mod 2n) for i < n, then di(G) = 2n.

Poof. As G is regular of degree 2n, by a result from [2] we have d;(G) < 2n.

Therefore it suffices to show a total domatic partition of G having 2n classes. If
n =1, then this is D = {Dy, D1}, where Dy = {aai|a =0 (mod 4)} U {aa|a =1
(mod 4)}, D1 = {aai|le = 2 (mod 4)} U {eai|la = 3 (mod 4)}. If n > 2, then
let G, = H; X o X H,_1. By Lemma 2 there exists a doubly domatic partition

= {[)0, viiy Dy 1} of G with n classes such that for each &k = 0,...,n — 1 the set
Ek is the union of two subsets Dk7Dg such that for each vertex x € V(GO) - ]jk

there ewist vertices y € Dk, z € ch’ adjacent to . Now for k =0,...,n— 1 put

Dy = {b+aa,|b € D, & a=0(mod4)}U{b+ aa,|b € D, & a = 1(modd)}U

U{b + aa,|b € DY & o= 2(modd)} U {b+ aa,lb € DY & o= 3(modd)},
Dyir = {b+aa,lbe Bk o = 2(mod4)} U {b + aa,|b € D}, & o= 3(mod4)}U
U{b+ aan|b € D” & a=0(modd)} U{b+ aa,lbe E;C' & a = 1(modd)}.

We prove that Dy is a total dominating set. Tet x = b 4+ «a, be a vertex
of G. fbe Djand a = 0 (mod 4) or a = 3 (mod 4), then z is adjacent to
b+ (a+1)a, € Dy. Ifb e ]36 and @ = 1 (mod 4), or & = 2 (mod 4), then x is
adjacent to b+ (o — 1)a, € Dy. Analogously for b € Df. If b ¢ 130, then there
exist y € D6 and z € ﬁg adjacent to z. If « =0 (mod 4) or @ = 1 (mod 4) then &
is adjacent to y + aa, € Dy. For other classes of D = {Dy, ..., D2, _1} other than
Dyg the proof is analogous. Therefore D is a total domatic partition of G.

At the end we prove again a theorem concerning only n = 2.

Theorem 5. Let G = Hy x Hs, where Hy, Ho are circuits of lengths hq, ho respec-
tively. If at least one of the numbers hy, hy is divisible by 4, then d(G) 2 4.

Remark. In such a case, if GG satisfies the conditions of Theorem 1, then d(G) = 5,
otherwise d(G) = 4.

Proof. Without loss of generality let h; be divisible by 4. We shall consider again
the vertices of (G as elements of a group and express them in the form «aja; +
asaz, where 0 < a1 < hy — 1,0 £ ay £ hy — 1. For each k € {0,1,2,3} let

Dk = {o1a1 + asaz|ay + 2a2 = k (mod 4)}. The reader may verify himself that
= {Do, D1, D2, D3} is a domatic partition of G and this d(G) > 4.0
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