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EXISTENCE OF INVARIANT TORI OF CRITICAL
DIFFERENTIAL-EQUATION SYSTEMS DEPENDING
ON MORE-DIMENSIONAL PARAMETER. PART II

RUDOLF ZIMKA

ABSTRACT. In the paper a system of differential equations depending on more-dimen-
sional parameter is studied. It is supposed that the matrix of the first linear approxi-
mation P has m pairs of pure imaginary eigenvalues while the others do not lie on the
imaginary axis. Conditions under which such a system in the cases when m = 3,4
has invariant tori are presented (in Part T the cases when m = 1,2 were analysed).

Introduction

Consider the system of differential equations

(1) &= Xz, p) + X" (z, ),

where © € R* u € R' & = ‘fl—f,X(x,p) - a vector polynomial with respect to
z, 1, X(0,0) =0, X*(x, i) - a continuous function in M = {(z, ) : ||z|| < K, ||p]| <
< L} with the property:

—_
[\

) X* (\/El?,é;”/lo) = (\/E)3p+2)~(($157/10)’

X(:L €, jig) - a continuous function with respect to x, ¢, g of the class C} (M), prg =

ﬁ, 0 <e < L,p- anatural number.

\

It is supposed that:
2X(0,0)
o

and the others Asy,41, ..., A, have non-zero real parts
.det P#£0
3o ad A+ gnAn #0,0 < gl < 3p+2,1gl = |q1]+ ..+ |gml, ¢i - integer numbers,
1=1,...,m.
The bifurcation equation of the system (1) is (see [6]):

—_

. the matrix P = has m pairs of pure imaginary eigenvalues £+, ..., i),

[\
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(3) Bp* +Cpu =0,

pZ = COZ(/)%) p?n)nu = COZ()Ul) "')/'Ld))
Bll Blm Cll Cld

Suppose that det B # 0. From (3) we have on the beams d(ug) = {epo : ¢t =

= ErHEMO<e<L}:

1] ... g 1

a®(po) = Apo, A= | ... ,ﬂo=m601(m,-~,ﬂd)

(the notions and the notations in this article have the same meaning as in [6]).
It was shown in [6] that on the beams §(up), g € PP, the system (1) can be
reduced to the system

fbl = 5X1($17 57N0) + X?(Ibl, P1, 1/1,6,/10) + (\/5)31’“)?1(;5173017 Vi, Evﬂo)
(4) o1 = Ai(e)+e®i (1,6, po)+ B (w1, 1, w1, €, po)+(VE)FH 1 (21, 1,11, €, o)

v = Juvn + V221,01, 01, €, o) + (\/g)3p+1‘~/1($1,801,Vl,E,MD),

where Xy, ®; - vector polynomials with respect to x1,¢, X1(0,0, o) = 0,
®1(0,e, o) = 0,A1(0) = X = col(A1, ..., Ap), X{, @Y, Vlo,f(l, <i>17 Vi - continuous 27
- periodic with respect to ¢; functions in the domain M { (21, ¢1,v1,6, o) = 21 €
€ R™ ||z1]| < Ki1,vn € R*™2" ||| < Ki,1 € R™,0 < ¢ < L,y € DP} of
the class C;I,Wl,ul’Xlo’ ®9 V0 - vanishing at vy = 0, J - a Jordan canonical lower
matrix.

It holds (see [1]):

9X1(0,0, po)

(5) Pi(po) = o0,

= 2[diag a(po)|Bldiag a(po)].

Suppose that the domain of criticalness DC of the bifurcation equation (3) is
non-empty set. Take g € DC. On the beam d(ug) the system (4) is the system
with one dimensional positive parameter ¢ which was investigated in [1]. We can
perform on the system (4) on the beam d(po) the transformation procedure that
was described in [1]. This procedure consists of p steps if the following conditions
are satisfied:

1o g\ + "'+qu’\ﬁu £0,0<|q] < 3(p—k)+2, where £i)\%, ...,:I:i/\fnk are the

pure imaginary eigenvalues of Py(po), k=1, ...,p— L
2. det By # 0, 82(uo) = —Bk_le(po) > 0, where By, Ci(po) are the matrices
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of the bifurcation equation Bgpi + cCr(po) = 0 arising at the (k +1)*
step, k=1,...,p— 2.
3. Pry1(po) = 2[diag Br(po)]Brldiag Br(po)] is critical, k =1,...,p— 2.
Performing this transformation procedure consisting of p steps on the beam ()
(the transformation of the system (1) to the system (4) is the 1°¢ step) the system
(4) is reduced to the system

&y =P Xp(mp, €, o) + X]?(xp, P1y e Ppy V1 ooes Vp, €, Jho)+
+6p+1Xp (xp; PLy s Ppy V15 oy Vpy € /'LO)

(6) @k = Ek_lAk(g) + Ep(bk(wk7 EHUU) + Qg(l‘p) Pls - PpyV1y ey UP)E)NO)—i—
+5p+1&>/€(xpa Py ey Pps Vi ooy Vpa6: /’LO)

Il/k‘ = 6’;_1‘]!6—11//6:1_ Vk;o(xpvsol; vy Ppy V1, ~~~;Vp;5:/l0)+
+(\/E)3p+2_kvk(xpa§017 s Ppi V1, "'ana‘g:/'tO)vk = 1) oD

where X, ®; - polynomials with respect to xp,e, X,(0,0, o) = 0, ®5(0, ¢, po) =
=0, 2(0) = A~ = col(AF T, ...,)\fn_kl_l),:l:i/\’f_l, ., 2iAE-1 - the eigenvalues of
the matrix Pe_1,A° = A\, mg = m, Py = P, )(19, @2, \/ko, Xp, <i>k, Vi - continuous func-
tions 27 - periodic with respect to ¢, ..., ¢, in the domain My, = {(z,, ¢1, ..., ¥p,
Vi, Vp,€) 0 ||apl] < Kp, ||kl < Kp,op € R™ 1,k =1,..,p,0< e < L} of the
class C1 with respect to all variables with the exception of €, X]?, <I>2, Vko - vanishing
at vy = .=y, =0PF = W - regular matrice, Ji_1 - non-critical Jordan
matrices, Jo = J. ’

In this article the existence of invariant tori of the system (1) is studied in the
cases when the matrix P has three and four pairs of pure imaginary eigenvalues.

1. Three pairs of pure imaginary eigenvalues

Suppose that the matrix P of the system (1) has three pairs of pure imaginary
eigenvalues +¢A;, £iAo, £iA3 and the others A7, ..., A, have non-zero real parts.
The bifurcation equation (3) is:

(1.1) Bp® + Cpu =0,

where p? = col(p?, p3, p3), st = col(pa, ..., p1a),

Bi1 Bia Bz Cii ... Cua
B=| Byt By Bag | C=|Con .. Co
B3;  Bszy Bss Cs1 ... Csq

Suppose that det B # 0. Take p € M and consider the beam d(pg) = {epo : 0 <
< e < L}. The solution of (1.1) with respect to p? on the beam §(uy) is:

(1.2) p° = (=B~ Cpo) = ea’(po),
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%(/’[‘0) Q' Q11 o Qg
az(#o) = a%(/io) =Apo, A= s | = a1 ...
a%(ﬂo) Qas Q3p ... Q3¢

The matrix P;(po) which is defined by (5) has the form:
ai(ko) B ai(po)an(po)Biz  ai(po)as(po)Bis

Pi(po) =2 | ar(po)ez(po) Bar a3 (po) Baz as(po)es(po)Bas |
a1(po)as(po)Bs1 - az(po)as(po) B2 a3(po) Bss

where a;(po) = \/m(ailﬂl + ot aigpq), 1=1,2,3.

Denote the rank of the matrix A in (1.2) by the symbol ~A(A) and the domain of
positiveness and the domain of criticalness of the bifurcation equation (1.1) by the
symbols DP and DC'.

Lemma 1.1. Let be h(A) = 1. Then DP # () if and only if oy # 0, e; = kyovy, ki >
>0,:=2,3.

Proof. DP of (1.1) is determined by the inequalities:

1
a%(ﬂo) = m(auul + ... 4 arapa) > 0
5 1
(1.3) as(po) = Tl (ag1pt1 + ...+ azqprq) > 0

1
a3 (po) = m(amm + ...+ asgqpq) > 0.

The first inequality in (1.3) is satisfied at all parameters g € M which belong
to that half-sphere of the sphere O = {u = (u1,...,pq) : 0 < ||p]] < L} that is
determined by the hyperplane aq1p1 + ... + @14it¢ = 0 and by a point u* € O at
which a@f(p*) > 0. As h(A) = 1 and a1 # 0 so there exist k2 € R, ks € R such that
ag = koay, g = kzap. Using this we can express the second and the third inequality
in (1.3) in the form: ”kTZH(ozupl + .+ aygug) > 0, ||kT3H(0411H1 + ..+ arapq) > 0.
From these inequalities it follows that DP # § only if ko > 0,ks > 0. If a3 = 0
then DP = ). The proof is over.

Lemma 1.2. Let be h(A) = 2. Let oy, «;, be the linear independent pair from
the triad {a1, aa, asz}. If for the third member «;, from this triad it holds: «a;, =
= k’lozil + kzaiz,kl 2 O)kz Z 0,]{1 + ko > 0, then DP ;é 0.

The proof of Lemma 1.2. is similar to the proof of Lemma 1.1.
Lemma 1.3. Let be h(A) = 3. Then DP # ().

Proof. The set DP consists of those parameters pr € M which satisfy the inequalities
(1.3). Solving them we get:
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Q11+ -+ arapg — th =0
(14) Qo + ...+ Qogltg — 1y =0

Q311 + ...+ Q34 —13=0,%>0,1=1,2,3.

As h(A) = 3 the system (1.4) has solutions with d parameters, d > 3. Among
these parameters the variables t1,t5,t3 can always be. Those parameters p € M
corresponding to positive numbers 11, 15,¢3 create DP. The proof is over.

Denote
ay(po) = a?(po) Br1 + ad(po) B2z + a2 (po) Bas
(1.5)  as(po) = af(po)ad(po)| Mss| + o (o) (po) | Maa| + a3 (po) a3 (po) | M|

as(mo) = ai(po)ad(puo)ad(po) det B,
where |M;;| is the minor of the element B;; of det B, i =1,2,3, u € DP.

Lemma 1.4. The matrix Py(uo) is critical at y € DP if and only if the following
two conditions are satisfied:

1. ai(po)as(po) = as(po)
2. az(/,to) > 0.
The eigenvalues iA}, AL of the matrix Pi(uo) are defined by the formulae:

AL = 2v/ax(po), As = 2a1(po).

Proof. If X is the eigenvalue of Py(pug) then A= % is the eigenvalue of M' The

.. . . P .
characteristic equation of the matrix 42“—”1 1s:

(1.6) A% — ar (1o)A* + az (o)X — as(po) = 0,

where a1 (o), a2(po), as(po) have the form (1.5). Comparing (1.6) with its expres-

sion by means of the roots £i\l, A3 of % what is

AT XN+ (DA = (A)?A5 =0,
we have: - ~ o
ai(po) = Az, ax(po) = (A1)?, as(mo) = (A7)?A5.
From this we get the assertion of lemma. The proof is over.
Lemma 1.5. Let be h(A) =1 and DP # (. Then DC = § or DC = DP.

Proof. When DP # () then according to Lemma 1.1 ag = koo, a3 = ksay,
ko > 0,ks > 0. The expressions a; (o), az(po), as(po) from (1.5) can be expressed
in the following way:
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ar(po) = a?(po)(B11 + kaBaz + k3Bs3)
(L.7) as(pto) = o (po) (ka| Mss| + ks| Maz| + kaks| My:])
63(/10) = a?(uo)k2k3 det B.

According to Lemma 1.4 the conditions for criticalness are:

L a1 (po)az(pmo) = as(po).
2. a2(/10) > 0.

Putting the expressions (1.7) into these conditions we get the conditions for
criticalness which do not depend on p € DP:

1. (Bi1 + kaBas + ksBss)(ka| Mss| + ks|Maa| 4 koks|Mi1|) = koks det B.
(1.8)
2. ko|Mss| + ks|Mas| + koks|Mi1| > 0.

Suppose that DC # @ and take p* € DC. This means that the conditions (1.8)
are satisfied at p* € DC and as they do not depend on u € DP they are satisfied
at every g € DP. The proof is over.

Consider now DP and DC of the bifurcation equation (1.1) and suppose that
DP # (. Then on DP the system (1) can be reduced to the system (4) with
r1 € R3,<,01 S R3,l/1 € RS,

Theorem 1.1. Let be DP # (). Then to every small enough 1 € DP\DC there

exists the invariant manifold

z1 = [[plln(er, |lpll. po)
(1.9)

vi = [lul*©1 (e, llll, o),

where 1,0, are continuous functions 2w - periodic in all components of ¢1,p1 €
€ R3, 2, € R3, vy € R*~5. The natural number p can be taken p = 1.

Proof. Consider an arbitrary p € DP\DC. This parameter p lies on the beam
d(po) = {epo : 0 < ¢ < L}. On this beam the system (1) can be reduced to the
system (4) what is the system with one positive parameter e. According to Theorem
from Section 3 of Chapter 1 in [1] the invariant manifold (1.9) exists. The proof is
over.

Suppose that g € DC of the bifurcation equation (1.1). On the beam J(p)
we can perform the second step of the transformation procedure. The bifurcation
equation of the system (4) on the beam J(po)is

Bi(po)pi +eCi(po) = 0,

where By (po) € R.

Assume that By (po) # 0 and 8% (o) = —mcl(/m) > 0. Then the system (4)

can be reduced to the system (6) with p= 2,21 € R, 01 € R3, 02 € R,1y €
c Rn_6, V9 € R and Pg(;jo) = 2[3%(}10)31(#0) ;é 0.

Utilizing Theorem from Section 3 of Chapter 1 in [1] the following theorem can
be formulated.
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Theorem 1.2. Let be pp € DC. If By(po) # 0 and 87 (po) > 0 then to every small
enough p € d(po) there exists the invariant manifold

zy = ||/l||g7(601,€021 el o)
v = ||plPO1(e1, @2, ||, 10)
V2 = ||/LH2(~)2(301’§02’ ||ﬂ||a/"0)a

where 1,01, ©4 are continuous functions 27 - periodic in all components of 1, 2,
01 € B3,y € R,x9 € R vy € R"% vy € R. The natural number p has the value
p=2.

2. Four pairs of pure imaginary eigenvalues

Suppose that the matrix P of the system (1) has four pairs of pure imagi-
nary eigenvalues 4iAj, +idg, +iA3, +iAy and the others Ag, ..., A, have non-zero
real parts.

The bifurcation equation (3) of the system (1) is:

(2.1) Bp? +Cu=0,

where p* = col(p?, p3, p3, p3), st = col (1, ..., p1a),

Suppose that det B # 0. Take p € M and consider the beam (pg) = {gpp : 0 <
< e < L}. The solution of (2.1) with respect to p? on the beam §(uo) is:

(2.2) p* = (=B~ Cpo) = ea’(po),

where a?(p1g) = col(a?(o), ..., a2(po)) = Apo, A = col(ay, ..., aq) =

The matrix Pi(po) which is defined by (5) has the form:

o?(po)Bi a1 (wo)az(mo)Biz o1 (mo)os(ue)Bia  a1(wo)oa(wo)Bia

Pi(0) = 2 a1 (po)az(po)B21 a%(uo)Bzz az(po)aa(po)Baa  o2(po)aa(uo)Baa

ay(po)as(uo)Bar  o2(uo)os(uo)Bsz o3 (10)Bss as(po)aa(po)Bsag
ay(po)as(po)Bar  o2(mo)oa(po)Baz  aa(po)as(po)Baa o3 (o) Baa

where a; (o) = /(@i + o+ aiapa), i =1,2,3,4.

The following 4 lemmas say how the existence of DP of the bifurcation equation
(2.1) depends on the rank of the matrix A from (2.2). The proofs of these lemmas
can be performed in the same way as they were done in the lemmas 1.1 - 1.3 of the
section 1.
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Lemma 2.1. Let be h(A) = 1. Then DP # 0 if and only if oy # 0, o; = kjaq,
ki > 0,i=2,3,4.

Lemma 2.2. Let be h(A) = 2. Let a;,,a;, be a linearly independent pair from
the tetrad {aq, a9, s, as}. If for the third and the fourth members of this tetrad
is holds:

aj, = ko, + koag,, o, = kaag, + ki,

kiZO,i:1,2,3,4, k1+k2>0,l{73+l{74>0,
then DP + ).

Lemma 2.3. Let be h(A) = 3. Let o, , oy, o, be a linearly independent triad from
the tetrad {ay, s, as, aa}. If for the fourth member «;, of this tetrad it holds:

G, = klail =+ kgo% + kgai3,ki > 0,1 = 1,2,3,1’51 + kz,k’g >0,

then DP # 0.
Lemma 2.4. Let be h(A) = 4. Then DP # 0.

Now we shall deal with the question when the matrix Pi(po) is critical. As at
every i € DP det Pi(pp) = det {2[diag o(po)]Bldiag a(po)]} # 0 the eigenvalues
of Pi(po) are different from zero. Therefore Py (po) is critical at y € DP only when
its eigenvalues are one of the following kinds:

A Fidl +idl
B. i AL = =)
C. #idE AL Redl £ 0,01 £ ).

Consider the characteristic equation of the matrix M, uwEDP:

(2.3) At — a1(uo)/\3 + az(ﬂo)/\2 — az(po) A + aa(po) =0,

where ay(po) = TTM,GQ(/L()) - the sum of all principal minors of order 2 of

2
M, as (o) - the sum of all principal minors of order 3 of Plg””) ,aa(po) =

— (]Pt Pl(MD
= det 5 .

Lemma 2.5. The matrix Pi(ug) has at p € DP the eigenvalues £i\], +iA\} if and
only if

(2.4) a1 (o) = 0, az(pt0) > 0,as(po) = 0, as(po) > 0, a5(pt0) > 4aa(puo)-

The values A}, M are determined by the formulae:

M = VY| = as(aao) + /aB (o) — Aaalo)],
M = V| = as(po) — /(o) — Aaa(ao)].
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Proof. Comparing (2.3) with its expression by means of its roots :I:l:\% , :I:z:\% what
is

(2.6) A IAD? + eIV + (AD)*(Ag)* = 0,

we get the assertion (2.4). The roots of the equation (2.6) using the notation

as (o) = A2+ (A1)2, ag(po) = (AH)2(AL)? are determined by the equation A*+

+a2(p0) A% + aa(po) = 0. Putting u = A? we have: u? + az(po)u + aa(po) = 0. The
—az(po) % /a3 (o)~ 444 (o)

roots of this equation are given by the formula: w5 = z .
From this we have:

3

V2
Ar=Eig \/| — az(po) + 1/ a3(po) — 4as(po)l,

V2
Ay = Fi\ [ = az(po) — a3(po) — 4as(po)l.
Taking into account that A = 25\},7: = 1,2, we get the assertion (2.5). The proof

1s over.

Note 2.1. If follows from (2.5) that when a%(uo) = 4a4(po) then
Al = /2a3(po), A5 = \/2a2(po). This means that the eigenvalues i\l have the

multiplicity two.

Lemma 2.6. The matrix Py (o) has at u € DP the eigenvalues £iX], AL, A} = —AL
if and only if

(2.7) a1 (o) = 0, az(po) = 0, aa(po) <0.

The values A}, M are determined by the formulae:

AL = V24 as(po) + \/ a3 (po) — 4as(po),

(2.8)

Ay = \/5\/—@2(#0) +V/a3(po) — 4as(po).

Proof. Comparing (2.3) with its expression by means of its roots :I:z:\% , 5\:13, 5\}1 = —:\:1,)
what is

(2.9) A TAD? = (A3)° I = (A)?(43)° = 0,

we get the assertion (2.7). Putting u = A* we have from (2.9): u* + a2 (po)u+
+aa(po) = 0,a2(p0) = (A2 — (AD)%, aa(po) = —(AH)Z(A3)%. The roots of this
Zaz(uo)dy ag(uu)_m"w“) .From this we

equation are given by the formula: wuis =
have:
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AL = ii?\ﬂ — ax(po) — 1/ a3(po) — 4aa(po)],

Ay = %EJ—GZ(HO) +v/a3(po) — 4aa(po).

This gives (2.8). The proof is over.

Lemma 2.7. The matrix Pj(pg) has at u € DP the eigenvalues £i\}, AL, A,

ReAd #0,AL # — AL, if and only if the following conditions are satisfied:
ai(po) # 0, as(pa) # 0, a1(po)as(pe) > 0,

(2.10)

a2(Ho)as Mo as(fo 2
a4(u0) = (glzﬂngu = algzog :

The values of A}, A}, A} are given by the formulae:

Moo as(po)
a1 (po)

)

(2.11) A3 = ai(po) + \/a%(/io) — 4las(po) — a%(ﬂo)];

N} = a1 (o) — Jaf (o) — 4z (o) — L2

Proof. Clompgring (2.3)~With ilts 9xpressio~n by means of its roots :I:Nz:\%, :\:1,), 5\}1 what
is At — (AL +ADA + (A2 + A2 = (AD 2L+ ADA + (A)2A3AL = 0, we have:
a1(po) = A + Al as(po) = (AD)” + A3AL,
(2.12)
as(pto) = (A1)* (A3 + Al), aalpo) = (A1) A3Aa.
From (2.12) we get the assertion (2.10). Solving (2.12) with respect to A}, A}, A}

and taking into account the relation between the eigenvalues of the matrices Py (po)
and ﬂ;—ol we get the assertion (2.11). The proof is over.

Lemma 2.8. Let be h(A) =1 and DP # (. Then DC = or DC = DP.

The proof of this lemma is similar to the proof of Lemma 1.5.

Consider PP and DC' of the bifurcation equation (2.1). Suppose that DP is
non-empty set. Then on DP the system (1) can be reduced to the system (4) with
Ty € R47§01 € R47V1 € Rn_szp: 1.
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Theorem 2.1. Let be DP # (. Then to every small enough y € DP\DC' there
exists the invariant manifold
z1 = [|plln(er, |l 10)
vi = [lpl*©1 (1. llpll, po),
where 7,01 are continuous functions 2w - periodic in all components of 1,
¢1 € RY x1 € RY vy € R"~8. The natural number p can be taken p = 1.

The proof of this theorem is similar to the proof of Theorem 1.1.

Suppose that DC' # . Take yp € DC. We can perform on the beam §&(uq)
the second step of the transformation procedure. The bifurcation equation of the
system (4) on the beam d(uo) is:

(2.13) Bi(po)pi +Ci(po) = 0,
where:
1. Bi(po) is the matrix of the order 2 when the eigenvalues of Py (o) are of the
kind A

2. Bi(po) € R when the eigenvalues of P;(ug) are of the kind B, C'.

Consider firstly the cases when the eigenvalues of Pi(po) are of the type B, C.
Suppose that By(ug) # 0 and 7 (ug) = —WC&(#O) > 0. Then the system (4)
can be reduced to the system (6) with 22 € R, 1 € R*, 00 € R,v1 € R* 8 1y €
€ R?,p=2and Pa(po) = 28%(p0) B1 (o) # 0. Utilizing Theorem from Section 3 of
Chapter 1 in [1] we can formulate the following theorem.

Theorem 2.2. Let be yu € DC and the eigenvalues of Py(pg) of the kind B or C'.
If Bi(po) # 0 and B%(po) > 0 then to every small enough pu € &(po) there exists
the invariant manifold

xa = [|ulln(e1, w2, |ull, o)
v = |ullP©1(e1, @2, |1l po)

v = [lulP@:2(p1, @2, I, o),
where 1,01, @2 are continuous functions 27 - periodic in all components of 1, s,
©1 ERY, ps € Ryxa € R,vy € R*8, vy € R%. The natural number p has the value
p=2
Suppose now that the eigenvalues of Py(ug) at u € DC are £iA], £i)X}. Let the
following conditions be satisfied:

LM + A3 #0,0< [g] <5
3. Bt (po) = =B (10)Ci (p10) > 0.

Then on the beam d(pg) the system (4) can be reduced to the system (6) with
p=2,290€ R? o1 € R* o € R?, vy € R*8 and

0X2(0,0, . ,
Py(po) = % = 2[diag B (po)]B1(po)ldiag B (po)]-
On the base of Theorem from Section 3 of Chapter 1 in [1] the following theorem

1s valid.
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Theorem 2.3. Let be p € DC, the eigenvalues of Py(pg) of the kind A and the
conditions (2.14) statisfied. If the matrix Py(0) In non-critical then to every small
enough p € d(po) there exists the invariant manifold

xg = ||ul|n(e1, @2, ||l po)

vi = ||l (1, @2, 11l o).

where 1, ©1 are continuous functions 2w - periodic in all components of ¢1, 2,1 €
€ R, ¢y € R? x5 € R%, vy € R*~®. The natural number p has the value p = 2.

Suppose that the matrix Pa(pug) is critical. Then the third step of the transfor-
mation procedure can be performed on the beam d(uo). The bifurcation equation
of the system (6) is

(2.15) By (pto)p +£C2(po) = 0,
where By (po) € R.
Assume that Bo(uo) # 0 and B2(po) = —mCz(uo) > (. Then the system

(6) with p = 2 can be reduced to the system (6) with p= 3,25 € R, 01 € R* 2 €
€R? p3€ R,y € R % and

0X3(0,0
By(po) = P00 5001 1) £ 0,

On the base of Theorem from Section 3 of Chapter 1 in [1] the following theorem
is valid.

Theorem 2.4. If B2(po) # 0 and 8% (po) > 0 then to every small enough p € 6(p0)
there exists the invariant manifold

T3 = ||M||n(§01a ¥2,¥3, ||M||1 /’LO)
vi = ||ul[*©1 (1, @2, @3, |l po),

where 1,0, are continuous functions 2w - periodic in all components of @1, 2, 3,
Py € R, po € R?, ps € Rjxs € Ry € R*8. The natural number p has the value
p=3.

Note Many significant results in the bifurcation theory of dynamical systems were
achieved during last three decades. A nice survey of them can be found in the
books [4], [5] in which also the relations among reached results are discussed. The
question of the existence of bifurcations in the case of two pairs of pure imaginary
eigenvalues is for example studied in the articles [2], [3], [7], [8].
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