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THE MEASURE OF SCRAMBLED SETS: A SURVEY

FrRANCISCO BALIBREA AND VicTOR JIMENEZ LOPEZ

ABSTRACT. The aim of this note is to survey all known results concerning the
(Lebesgue) measure of scrambled sets for continuous chaotic functions on the inter-
val, and to complete some of them. In particular it is shown that neither continuous
maps of type 2°° (in Sarkovskii's ordering) nor C! maps of any type can possess
measurable scrambled sets of full measure. “Chaos” means here chaos in the sense

of Li and Yorke [LY].

1. Introduction.

In what follows C*(I), 0 < k < oo, will denote the set of functions f : [ — [
of the class C* where T = [0, 1] is the unit interval (in particular, C°(I) is the set
of continuous functions from I into itself). As usual, the nth-iterate of a function
f will be denoted by f* (when f° is the identity map) and a point p € I will be
called periodic —of period r— if f"(p) = p and fi(p) #£pforanyi=1,...,r—1.
The orbit of a point x € I is the set {f™(z)}3L,; a periodic orbit is the orbit of a
periodic point.

During the last few decades, there have been many attempts to apprehend the
idea of complex dynamical behaviour (so called “chaos”) for functions from C(T).
One of the most successful, and no doubt the most popular one, is due to Li and
Yorke and their famous paper “Period three implies chaos” [LY].

Definition 1.1. Let f € C°(I) and let S C T be a set having at least two elements
and such that for any z,y € S, # # y, the following properties hold:

() lim sup 1" () — 1" ()| > 0,
n— 00
(ii) liminf| /" (z) — f"(y)| = 0.
Then S is called a scrambled set (of f) and f is said to be chaotic (in the sense of
Li and Yorke).

Remark 1.2. Initially the set S was also assumed to be uncountable and satisfy
(ifi) limsup |[f* (z) — f*(p)| > 0
n—oo
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for any 2 € S and any periodic point p. However, it was later realized [Ji5, p. 8],
[BC, pp. 144-145] (and it is very easy to check) that if S is a scrambled set then
(taking off one point at most) it also satisfies (iii). Further, Kuchta and Smital
proved in [KS] (using also [Sm3] and [JS1]) that if f has a two-points scrambled
set then it also possesses a Cantor-like scrambled set.

The relevance of Li and Yorke’s idea is stressed by the fact that, in a sense, it
turns out to be the minimal requirement for a function f € C°(/) to be “complex”.
This was shown by Smital in the key paper [Sm3] (completed with [JS1]), where it
was proved:

Theorem 1.3 [Sm3], [JS1]. Let f € C°(I). Then it must satisfy one of the
following properties:
(1) f is chaotic;
(ii) all trajectories of f are approximable by cycles, that is, for any € I and
any € > 0 there is a periodic point p such that limsup|f™(z) — f"(p)| < e.
n—00
Remark 1.4. As according to [Jil, pp. 117 118] (cf. also [BC, pp. 144 145]) if two
points x, y are approximable by cycles then they cannot satisfy both (i) and (ii) in
Definition 1.1, properties (i) and (ii) in Theorem 1.3 are incompatible.

But, as it was emphasized in the literature from the very beginning (see e.g.
[CE, pp. 21-22]), from a “practical” point of view it is important to know whether
chaos in the sense of Li and Yorke can be observable, that is, whether a chaotic
map can have “large” scrambled sets. As always when the word “large” is used,
two possible approaches are available: topological and measure-theoretic. The first
one makes probably no sense here, as Gedeon proved that if S C I is scrambled
for a map f then it cannot be residual in any subinterval of I [Gel]. Instead
we shall concentrate on the question whether a continuous function may possess
(measurable) scrambled sets of positive Lebesgue measure (which in the sequel will
be denoted by A) and how large this measure can be. The present note aims to
survey all results (up to the authors’ knowledge) concerning this problem, and to
add some new few ones. In what follows we shall use the word pm-chaotic (resp.
fm-chaotic) to refer to any chaotic function possessing a measurable scrambled set
of positive (resp. full) measure.

As we shall see later, the type of the map f may play a prominent role in this
regard. Let us recall this notion. Order the set NU {2%°} as follows:

3>=5>=T>...>
2:3-2-5>2-7T>...»
s
2.3 = 2" 5 2 T
s
20 x93 92y 9 ],

We shall use the symbol > in the natural way. For any f € C°(I), let Per(f)
denote the set of periods of periodic points of f. If n € N U 2° has the property



that Per(f) = NN {m : n > m} then we shall say that f is of type n. As is well
known, Sarkovskii’s Theorem [Sal], [Sa2] states that any f € C°(I) is of type n
for some n € NU {2°°} and, conversely, that for any n € WU 2% there is a map
f € C°(I) of type n. For instance the paradigmatic logistic family {f,}o<a<4,
fa(z) = az(1 — 2), includes maps of all possible types (cf e.g. [Sm4, pp. 737?7]_).

It is worth emphasizing that the word “chaotic” is often used to refer exclusively
to maps of type larger than 2°°  as only in this setting complicated dynamics
are guaranteed: for instance they can be characterized by the property of having
positive topological entropy. Concerning Li and Yorke chaos, we conclude this
introductory section recalling that:

(a) if f has type larger than 2°° then it is chaotic [LY], [Gr];

(b) if f has type 2% then it may be both chaotic or not [Sm3] (see also [Xi],
[MS], [Dub] and the next section);

(c) if f has type less than 2% then all points from I are attracted by peri-
odic orbits, that is, for any x € [ there is a periodic point p such that
lim, 00 | /7 (2) — 7 (p)] = 0 [Le] (cf. also [Ot], [Co], [ML], [Sa2] or [CH]).

Hence f cannot be chaotic.

2. Results.

For the first chaotic function for which the problem of pm-chaoticity was eluci-
dated the answer was negative (Nathanson [Na]). Additional examples were pro-
vided by Guckenheimer [Gu], Preston [Pr, Chapter 9], Nusse [Nu], Du [Dul], [Du2],
[Du3], [Dud], Sivak [Si] and Jiménez Lépez [Ji5, pp. 40-41] in different and/or
progressively more general settings. All these functions share a common feature:
almost all their points « are attracted by periodic orbits (the corresponding periodic
orbit may depend on the point z).

An example of a radically different nature is the “tent” map f : I — [ defined
by f(z) = 1 — |22 — 1|. As shown in [Sm1], it possesses a scrambled set of full
outer Lebesgue measure; still it cannot have measurable scrambled sets of positive
measure. More general examples in this same vein can be found in [Ge2], [BJ], [Ji5,
Section 4.2] and [BKT]. In [Ji7] (which among other papers is strongly based on [Gu]
and [BKT]) both trends are merged to produce a rather general result (Theorem 2.1
below). Before stating it we need to introduce some additional notation.

We shall deal with the class S(7I) of unimodal maps with negative Schwarzian
derivative. More precisely, f € S(I) provided that

(a) feC(I);

(b) there is exactly one point ¢ € I such that f/(c) = 0; further, f'(c) # 0;

" 0N 2
(c) S(f)(x) = ffT(;)) -3 (ffT(xT))) < 0 for any z # c.

Recall that the w-limit set of a point = € I for a map f € C°(I), wy(z), is the set
of limit points of the sequence (f™(x))S%,. Let y be a probability measure defined
on the o-algebra of Borel subsets of I. The measure y is said to be invariant (with
respect to f) if pu(f~1(A)) = u(A) for any Borel set A. We say that u is absolutely
continuous (with respect to the Lebesgue measure}if A(A) = 0 implies p(A) = 0 for
any Borel set A.

Theorem 2.1 [Gu], [BKT], [Ji7]. Let f € S(I).
(1) Suppose that w¢(x) has empty interior for any & € I. Then almost all points
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from I are approximable by cycles.

(ii) Suppose that wy(x) has nonempty interior for some x € I and f has an
absolutely continuous invariant measure. Then f is not pm-chaotic but
possesses a scrambled set of outer positive Lebesgue measure.

Remark 2.2. 1t is easy to show that if ¢ is attracted by a hyperbolic attracting
periodic orbit then f satisfies (i), and from [Mil] it follows that if some iterate of
¢ belongs to a hyperbolic repelling periodic orbit then f satisfies (ii). [Recall that
the orbit of a periodic point p of period r is said to be hyperbolic attracting (resp.

hyperbolic repelling) if |f"(p)| < 1 (resp. |f"(p)| > 1).]

Remark 2.3. Although a map f satisfying (i) may be chaotic, according to Re-
mark 1.4 it cannot be pm-chaotic either. In fact, using some specific properties of
maps from S(I) it is possible to prove (under the additional assumption that all its
periodic points are hyperbolic) that if f satisfies (i) then there is a measure zero
set including all its scrambled sets.

It is interesting to apply Theorem 2.1 to the logistic family {f, }o<a<a [which is
included in S(I)]. For instance, if = 3.83187... then ¢ = 1/2 is a periodic point of
period three and according to Remark 2.2 f, is a (chaotic) map satisfying (i). On
the other hand f; satisfies (ii) and, indeed, it possesses a scrambled set of full outer
Lebesgue measure. Tt is worth noticing that from the union of works by Lyubich
[Ly1], [Ly2] and Martens and Nowicki [MN] it follows that for almost all a € [0, 4]
a map f, must satisfy either (i) or (ii).

The first examples of pm-chaotic continuous functions were simultaneously pro-
vided by Kan [Ka] and Smital [Sm2]; the corresponding scrambled sets S hold
in both cases the property A(S) < 1. Later it was realized that, since any chaotic
function possesses a Cantor-like scrambled set (cf. Remark 1.2), it is always topolog-
ically conjugate to a pm-chaotic function possessing a scrambled set with measure
as close to 1 as required [here f,g € C°(I) are said to be topologically conjugate
if there is a homeomorphism h € C°(7) satisfying foh = hog]. In particular,
this implies that there are pm-chaotic maps of all types greater than or equal to
2°°. Finally Misiurewicz [Mi2] and then Bruckner and Hu [BH] and Iwanik [Iw]
constructed examples of (topologically conjugate to the tent map) fm-chaotic func-
tions, and one can improve slightly a recent result by Babilonova [Ba] to show that
if f is transitive (that is, it has a dense orbit) then it is topologically conjugate
to a fm-chaotic function. Since transitive maps have always type greater than 2°°
([Sa3], cf. also [JS2]), it is natural to wonder whether there are fm-chaotic functions
of type 2°°. The answer is negative:

Proposition 2.4. Let f € C°(I) be of type 2°°. Then it cannot be fm-chaotic.

Proposition 2.4 is a direct consequence of two results from [Sm3] and a simple
fact. To state them we need some notation.

Let f € C°() and let J be a subinterval of I. We say that J is periodic —of
period r—if f7(J) = J and J, f(J), ..., fr=1(J) are pairwise disjoint. Also, we say
that u,v € I are separable if there are disjoint periodic intervals J,, J, such that
u € Jy, v € J,. If this is not the case the points u, v are called non-separable. A
subinterval J of I is called wandering if its iterates are pairwise disjoint and neither
of 1ts points is attracted by any periodic orbit.



Theorem 2.5 [Sm3]. Let f € C°(I) be of type 2°° and let x € I be such that
wy(z) is infinite. Then there is a sequence (J;)$2, of periodic intervals such that
for any s > 1 the following properties hold:
(1) Js has period 2°;
(i) Js41 C Js;
(i) wy(z) C Uiy F1 (7).

Theorem 2.6 [Sm3]. Let f € C%(I) be of type 2°°. Then f is chaotic if and only if
there is an « € I such that wy(z) Is infinite and contains two non-separable points.

Lemma 2.7. Let f € C°(I) be a chaotic function of type 2°°. Then it has a
wandering interval.

Proof. Use Theorem 2.6 to find a point # € [ for which wy(z) is infinite and
contains two non-separable points u # v, and then Theorem 2.5 to construct the
corresponding sequence (J;)S2, of periodic intervals. Without loss of generality we
can assume that u € J; for any s. Since u,v are non-separable we get v € J; for
any s as well. Then J = ({2, J, is a non-degenerate interval. We shall show that
J is wandering.

Obviously f*(J) N f™(J) = 0 for any n # m [which in particular implies that
A(f*(J)) = 0 as n — oo]. Now assume that there is a periodic point p of period
25=1 for some s > 1 such that lim, e [f*(y) — f*(p)| = 0 for any y € J. Since
J, is periodic of period 25, {p, f(p), ..., f* ~1(p)} N J, = 0. On the other hand
it is clear that there exists 0 < i < 2°%2 — 1 such that the closure of f/(Js;2) is
included in the interior of J;. Note that fi+23+2'”(J) C f(Js42) for any n. This is
impossible since f+27* 1 (p) = fi(p) & J,.

O

Proof of Proposition 2.4. Tt immediately follows from Lemma 2.7 and the fact that
a wandering interval can intersect a scrambled set in at most one point.
O

Remark 2.8. Beginning with [Gu] and culminating in [MMS] an impressive string of
papers has established the non-existence of wandering intervals for a large number
of “natural maps” including all analytic ones and all maps from S(I). According
to Lemma 2.7 neither of these maps can simultaneously be chaotic and of type 2°°.

All pm-chaotic maps previously referred to are just continuous. However, if we
are speaking from a “practical” point of view it is reasonable to expect for our
functions some additional smoothness properties. The existence of C'* pm-chaotic
functions was stated without proof in [JS1]; a first explicit example can be found
in [Jil, pp. 198-229]. This result was later improved in [Ji3], where it was shown
that for any n = 2° and any 0 < J < 1 there is a function f € C*([) of type n
and possessing a Cantor-type scrambled set of measure . Analogous examples to
those of [Ji3], but now of the class C! and analytic on a neighbourhood of their
(only) critical point, were given in [Ji2] (compare with Remark 2.8).

Notice that the case § = 1 has been excluded from the discussion above. As we
are next going to show, this cannot be helped.



Proposition 2.9. Let f € C*(I). Then it cannot be fm-chaotic.

Proposition 2.9 (which is stated without proof in [Sm2]) is based on the following
simple lemma.

Lemma 2.10. Let f € C'(I) be non-monotone. Then there are interior points
a # b such that f(a) = f(b) and f'(a) # 0 # f'(b).

Proof. Since f is not monotone one can find points u < v satisfying f/(u) f'(v) < 0.
Say e.g. f'(u) >0, f'(v) <0 (the other case is similar).

Let ¢ € (u,v) be an absolute maximum of f in [u,v]. Say for example f(u)
f(v). Take d € (u,c) such that f'(z) > 0 for any = € [u, d] and notice that f(u)
F(d) < f(c). Write G = (c,0) N 7~ (f(u), £(d))). Then £(G) = (f(u), F(d).
Since (¢ is open and its image by f is uncountable, it has a component .J with the
property that f is not constant on it. Take b € J satisfying f'(b) # 0 and use
the property of intermediate values to find a € (u,d) such that f(a) = f(b) and

f'(a) #0.

>
<

d

Proof of Proposition 2.9. We shall assume that f € C'(I) has a full measure
scrambled set S to arrive to a contradiction. It is well known (and easy to prove)
that a monotone function must be of type 1 or 2 and hence it cannot be chaotic.
Then we can apply Lemma 2.10 to find interior points a # b satisfying f(a) = f(b)
and f'(a) #0# f'(b).

Let w = f(a) = f(b) and find open intervals L, R, J such that « € L, b € R,
weJ, LNR =0, and the maps g = f|r : L — J and h = flg : R — J are
diffeomorphisms. Write A = SN L, B=5SNR. As S is a full measure scrambled
set we have A((h™! 0 g)(A)) = 0 because A(B) = A(R), and (h"L o g)(A)N B = 0.
But this is not possible since A(A) > 0 and h~' o g is a diffeomorphism.

O

3. Final remarks.

1. Although this paper is devoted to continuous maps on the interval let us recall
here some related results in the more general setting of metric spaces (where dis-
tance plays the role of absolute value in Definition 1.1). The existence of continuous
maps (even homeomorphisms) f : X — X having measurable scrambled sets of full
Lebesgue measure has been proved in the cases X = [0, 1]" for any n > 2 [Mz1], [Iw],
[Ka]. If X = (0,1)™ and n > 2 one can even construct a homeomorphism for which
the whole space is a scrambled set [Ma2]; analogous examples [replacing “(0,1)”
by “(0,00)” or “(—o0,o0)” and “homeomorphism” by “C*® diffeomorphism”, now
also including the case n = 1] are given in [Mal]. Moreover Huan and Ye have
shown that there are many compacta X admitting homeomorphisms having X as
a scrambled set, including some countable compacta, the Cantor set and continua
with arbitrary dimensions [HY]. By the way, Ceder also constructed in [Ce] a non-
continuous map f : I — [ having the whole interval as a scrambled set.

2. In sight of Theorem 2.1 and the comments below Remark 2.3 it is reasonable
to conjecture that there are no pm-chaotic analytic maps, and it is worth noticing
that according to [Mz2] the set of chaotic but not pm-chaotic maps is residual in
C°(I). These and some other similar results clearly emphasize the fact that pm-
chaoticity is a too strong property to characterize “physically observable” chaos.
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Inspired by [Pi], Jiménez Lépez proposed in [Ji6] the following weaker definition:
chaos is observable for a function f € CO(I) if the set Ch(f) C I x I of points (z,y)
satisfying
(a) limsup[f™(z) — f"(y) >0,
n—oo
(b) Tminf | () = *(5)| = .
n—0Q
(c) limsup|f™ () — f"(p)| > 0, limsup|f" (y) — f" (p)| > 0 for any periodic
point p of f,
(which is a Borel set [Ji5] and then measurable), has positive two-dimensional
Lebesgue measure. For instance the tent map is not pm-chaotic but chaos is observ-
able for it; in fact the corresponding set Ch(f) has full measure (as it is implicitly
shown in [Sm1]). The inclusion of (¢) as in the original Li and Yorke’s framework
may seem strange, but in [Ji6] (which also includes a list of relevant bibliography
on the subject) it is shown that there are chaotic maps for which Ch(f) has zero
measure but the set of points just satisfying (a) and (b) has positive measure. In

[Ji7] it is proved that if f is in the conditions of Theorem 2.1(ii) then Ch(f) has
positive measure.

REFERENCES

[BKT] Y. Baba, I. Kubo and Y. Takahashi, Li- Yorke’s scrambled sets have measure 0, Non-
linear Anal. 26 (1996), 1611-1612.

[Ba] M. Babilonova, The bitransitive continuous maps of the interval are conjugate to maps
extremally chaotic a.e., preprint MA 11/1999, Mathematical Institute, Silesian Univer-
sity Opava, 1999.

[BI] F. Balibrea and V. Jiménez Lépez, A structure theorem for C? functions verifying the
Misiurewicz condition; in Proceedings of the European Conference on Iteration Theory
ECIT 91 (Lisbon, 1991), World Sci. Publishing, Singapore, 1992, pp. 12-21.

[BC] L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathe-
matics 1513, Springer, Berlin, 1992.

[BH] A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions, Trans. Amer.
Math. Soc. 301 (1987), 289-297.

[Ce] J. Ceder, On noncontinuous chaotic functions, Proc. Amer. Math. Soc. 113 (1991),
551-555.

[CE] P. Collet and J. P. Eckmann, Iterated maps on the Interval as Dynamical Systems,
Progress in Physics Series 1, Birkauser, Boston, 1980.

[Co] W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc. 51
(1955), 41-43.

[CH] E. M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points

form a closed set, Proc. Amer. Math. Soc. 79 (1980), 127-133.
[Du1] B.-S. Du, Are chaotic functions really chaotic?, Bull. Austral. Math. Soc. 28 (1983),

53-66.

[Du2] B.-S. Du, A chaotic function whose nonwandering set 1s the Cantor ternary set, Proc.
Amer. Math. Soc. 92 (1984), 92-93.

[Du3] B.-S. Du, Almost all points are eventually periodic with minimal period 3, Bull. Inst.
Math. Acad. Sinica 12 (1984), 405—411.

[Du4] B.-S. Du, Topological entropy and chaos of interval maps, Nonlinear Anal. 11 (1987),
105-114.

[Dus5] B.-S. Du, Smooth weakly chaotic interval maps with zero topological entropy; in Dy-

namical Systems and Related Topics (Nagoya, 1990), Adv. Ser. Dyn. Syst. 9, World
Sci. Publishing, River Edge, 1991, pp. 72 79.



[Le]

[LY]
[Ly1]
[Ly2]
[Mal]
[Ma2]
[MMS]
[MN]

[Mi1]

T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral.
Math. Soc. 36 (1987), 411-416.

T. Gedeon, Generic chaos can be large, Acta Math. Univ. Comenian. 54/55, 237-241.
R. Graw, On the connection bewteen periodicity and chaos of continuous functions
and their iterates, Aequationes Math. 19 (1979), 277-278.

J. Guckenheimer, Sensitive dependence on initial conditions for one-dimensional maps,
Comm. Math. Phys. 70 (1979), 133-160.

W. Huan and X. Ye, Homeomorphisms with the whole compacta being scrambled sets,
preprint, University of Science and Technology of China, Hefei, Anhui, 1999.

A. Twanik, Independence and scrambled sets for chaotic mappings; in The Mathemat-
ical Heritage of C. F. Gauss, World Sci. Publishing, River Edge, 1991, pp. 372-378.
K. Jankova and J. Smital, A characterization of chaos, Bull. Austral. Math. Soc. 34
(1986), 283-292.

K. Jankova and J. Smital, A theorem of Sarkovskii characterizing continuous maps of
zero topological entropy, Math. Slovaca 39 (1989), 261-265.

V. Jiménez Lépez, Algunas cuestiones acerca de la estructura del caos, Master Thesis,
Universidad de Murcia, 1989.

V. Jiménez Lépez, C! weakly chaotic functions with zero topological entropy and non-
Aat critical points, Acta Math. Univ. Comenian. (N. S.) 60 (1991), 195-209.

V. Jiménez Lépez, Large chaos in smooth functions of zero topological entropy, Bull.
Austral. Math. Soc. 46 (1992), 271-285.

V. Jiménez Lépez, Is Li and Yorke’s definition a gool tool to measure chaos?, Ph.D.
Thesis, Universidad de Murcia, 1992.

V. Jiménez Lépez, Order and chaos for a class of piecewise linear maps, Internat. J.
Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1379-1394.

V. Jiménez Lépez, Defining complete and observable chaos, Ann. Polon. Math. 64
(1996), 139 151.

V. Jiménez Lépez, Chaos and order for unimodal maps with negative Schwarzian de-
riwative, preprint, Universidad de Murcia, 1998.

I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure,
Proc. Amer. Math. Soc. 92 (1984), 45-49.

H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets, Proc.
Amer. Math. Soc. 126 (1998), 2151-2157.

M. Kuchta and J. Smital, Two-point scrambled set implies chaos; in Proceedings of
the European Conference on lteration Theory ECIT 87 (Caldes de Malavella (Spain),
1987), World. Sci. Publishing, Singapore, 1989, pp. 427-430.

7. L. Leibenzon, Investigation of some properties of a continuous pointwise mapping
of an interval onto itself, having an application in the theory of nonlinear oscilations,
Prikl. Mat. i Mekh 17 (1953), 351-360. (Russian)

T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975),
985-992.

M. Lyubich, Dynamics of quadratic polinomials, IIl. Parapuzzle and SBR measures,
preprint, IMS at Stony Brook, 1995.

M. Lyubich, Almost every real quadratic map is either reqular or stochastic, preprint,
IMS at Stony Brook, 1997.

J. Mai, Continuous maps with the whole space being a scrambled set, Chinese Sci. Bull.
42 (1997), 1603 1606.

J. Mai, Scrambled sets of continuous maps of 1-dimensional polyhedra, Trans. Amer.
Math. Soc. 351 (1999)7 353-362.

M. Martens, W. de Melo and S. van Strien, Julia-Fatou-Sullivan theory for real one-
dimensional dynamics, Acta Math. 168 (1992), 271-318.

M. Martens and T. Nowicki, Invariant measures for typical quadratic maps, preprint,
SUNY at Stony Brook, 1996.

M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst.
Hautes Etudes Sci. Publ. Math. 53 (1981), 17 51.

10



[Mi2]

[MS]
[Mz1]

[Mz2]

[Sm1]
[Sm?2]
[Sm3]
[Sma]

(Xi]

M. Misiurewicz, Chaos almost everywhere; in Iteration Theory and its Functional Equa-
tions (Lochau, 1984), Lecture notes in Mathematics 1163, Springer, Berlin, 1985,
pp. 125-130.

M. Misiurewicz and J. Smital, Smooth chaotic maps with zero topological entropy,
Ergodic Theory Dynam. Systems 8 (1988), 421-424.

1. Mizera, Continuous chaotic functions of an interval have generically small scrambled
sets, Bull. Austral. Math. Soc. 37 (1988), 89-92.

I. Mizera, The size of scrambled sets: m-dimensional case; in Dynamical Systems
and Ergodic Theory (Warsaw, 1986), Banach Center Publ. 23, PWN, Warsaw, 1989,
pp. 161-164.

A. D. Myshkis and A. Ya. Lepin, Ezistence of an invariant set, consisting of 2 points,
for certain continuous maps of an interval into itself, Uchen. Zap. Belorus. Univ., Ser.
Fiz.-Mat. 32 (1957), 29-32. (Russian)

M. B. Nathanson, Piecewise linear functions with almost all points eventually periodic,
Proc. Amer. Math. Soc. 60 (1976), 75-81.

H. Nusse, Chaos, yet no chance to get lost, Ph.D. Thesis, R. U. Utrech, 1983.

G. Ottaviani, Sulla risoluzione de una equazione con il metodo de iterazione; in Scritti
Matematici Onore Fillipo Sibirani, Cesare Zuffi, Bologna, 1957, pp. 195 199.

J. Piérek, On the generic chaos in dynamical systems, Univ. lagel. Acta Math. 25
(1985), 293-298.

C. Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in
Mathematics 1347, Springer, Berlin, 1988.

A. N. Sarkovskii, Coexistence of cycles of a continuous map of the line into itself,
Ukrain. Mat. Z. 16 (1964), 61-71. (Russian)

A. N. Sarkovskii, On cycles and the structure of a continuos map, Ukrain. Mat. 7. 17
(1965), 104-111. (Russian)

A. N. Sarkovskii, The behavior of the transformation in the neighborhood of an attract-
ing set, Ukrain. Mat. Z. 18 (1966), 60-83; English transl. in Amer. Math. Soc. Iransl.
97 (1970), 227-258.

A. G. Sivak, On the measure of the domain of attractors of semiattracting cycles of
unimodal mappings; in Functional-differential Equations and Their Applications, Inst.
Math. Ukrain. Acad. Sci., Kiev, 1985, pp. 57-59.

J. Smital, A chaotic function with some extremal properties, Proc. Amer. Math. Soc.
87 (1983), 54-56.

J. Smital, A chaotic function with a scrambled set of positive Lebesgue measure, Proc.
Amer. Math. Soc. 92 (1984), 50-54.

J. Smital, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc.
297 (1986), 269-282.

J. Smital, On Functions and Functional Equations, Adam Hilger, Bristol-Philadelphia,
1988.

J. Xiong, A chaotic map with zero topological entropy, Acta Math. Sci. 6 (1986), 439—
443.

(Received August 25, 1999)

Departamento de Matematicas
Universidad de Murcia

Campus de Espinardo

30100 Murcia

SPAIN

E-mail addresses: balibrea@fcu.um.es

vjimenez@fcu.um.es

11



