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FINITELY GENERATED FREE ORTHOMODULAR LATTICES IV

M. Haviar! anDp P. KONOPKA

ABSTRACT. A full description of the finitely generated free algebras Fy (o, (n) with
n generators (n > 3) in the varieties V(Oy) (k > 2) of non-modular ortholattices
generated by the orthomodular lattices Oy which are horizontal sums of k Boolean
blocks 2% is presented.

1. Introduction

In [6] and [7] we described completely the finitely generated free modular or-
tholattices and gave formulas for their cardinalities. We recall that the lattice of
subvarieties of the variety MO of all modular ortholattices is an infinite chain

(1) TCBC MO, CMO;C - C MO C MOyy1 € C MO

of type w + 1 where B is the variety of Boolean algebras and the variety MOy
is generated by the modular ortholattice MOy of height 2 which is a horizontal
sum of k Boolean blocks 22 (see Figure 1 on the next page). Then in [8] we made
our first attempt to achieve a similar goal in locally finite varieties of non-modular
ortholattices. We described the finitely generated free algebras in the varieties
V(L) of orthomodular lattices generated by the horizontal sums Ly (k > 2) of one
Boolean block 22 and k£ — 1 Boolean blocks 22. These varieties form an another
infinite chain of type w + 1 “parallel” to the chain in (1) in the sense that each
V(L) contains the variety MOy, and the variety V(Ls) covers the variety MO,
(see [9]).

Stepping outside the variety MO not surprisingly increases the complexity of
the description. This was already clearly seen in [8] though considering the vari-
eties V(Ly) meant the smallest possible step outside the varieties MOj, of modular
ortholattices — in the generator M}, we only replaced one of the blocks 2% by a
larger block 23. In the present paper we pursue our investigation further and we
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consider the varieties of non-modular orthomodular lattices generated by the ortho-
modular lattices O which are horizontal sums of k& Boolean blocks 23 (see Figure
1). We describe the finitely generated free algebras Fv(o,)(n) with n generators
in the varieties V(Oy) for all n > 3 and k& > 2. This more ambitious step outside
the varieties MOy of modular ortholattices results in a quite complex description
(Theorem 3.11 and Corollary 3.12).

For a more detailed introduction to the topic as well as further discussion of our
method and its tools we refer the reader to papers [6] and [7].

MO modular ortholattices

Ok Mok a;c
MOy,
(0]
MO, b
MO,

® 53 Boolean algebras

® 7 trivial ortholattices

Figure 1

2. Preliminaries

In 1936 G. Birkhoff and J. von Neumann [3] suggested taking the lattice of
closed subspaces of a Hilbert space as a suitable model for ‘the logic of quantum
mechanics’. This lattice equipped with the relation of orthogonal complement can
be described as an ortholattice which in the case of a finite-dimensional Hilbert
space is modular. Tt is not modular if the Hilbert space is infinite dimensional,
but a weaker so-called orthomodular law is satisfied. Standard references for the
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algebraic aspects of the theory of orthomodular lattices are the monographs [9]
and [2] and we refer the reader to [12] for ‘quantum logics’ aspects.

An orthomodular lattice is an (abstract) algebra L = (L;V,A,,0,1) with a
bounded lattice reduct (L;V,A,0,1) and a unary operation of orthocomplementa-
tion ’ such that for every a,b € L

(@) =a,and =0,avd =1,0=1,1=0,

(and) =d VvV, (avb) =d AV

and the orthomodular law

b=(bAa)VIbA(bAa)]

hold.
In any orthomodular lattice the n-ary commutator function is defined by
e(xr,...,zn) = \/ g A At
(i1,--,i)€E{0,1}7
where z! = x; and z} = 2}. The function (c(z1,...,2,))" will be denoted by
¢(x1,...,2,). In particular, the binary commutator function, which plays an im-

portant role in our considerations, is given by
(e, y) = @Ay V(EAY) V(@ Ay V(" AY).

In this paper we focus on the orthomodular lattices O which are horizontal
sums of k Boolean blocks 2% (k > 2). We recall that a horizontal sum means here
that any two distinct blocks intersect in {0,1}. We start with the following easy
lemma describing the commutator functions on Oy.

2.1 Lemma. Let c(x1,...,2,) : Of — Oy be the commutator function on the
orthomodular lattice Oy (n,k > 2). Then for any elements ay, . ..,a, € Oy,
(1) c(ar,....an) € {0,1} and

(2) e(ar,...,a,) = 0 if and only if at least two of a1, ..., ay, are from different

blocks of Oy,.

Any interval of the form [0,v] in an orthomodular lattice L (v € L) can be
considered as an orthomodular lattice if one defines the orthocomplement of an
element a € [0,v] in [0, v] to be a’ A v, where @ is the orthocomplement of a in L.

Elements a € L such that

(2) a=(anz)V(aAa')

for every « € L are called central. The set Z(L) of all central elements of L is a
Boolean subalgebra of L, called the centre of L. Moreover,

a€Z(L),veEL=anveZ(0,v]).
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The following fact concerning arbitrary orthomodular lattices L comes from [10]
(see also [9; p. 20]).

(3) c€Z(L) & L=[0,cx[0,c].

We shall essentially employ this fact in the first step of our method where L will
be the free orthomodular lattice Fy(o,)(n) and ¢ will be the commutator function
e(zr, ..., xy).

A variety V(A) generated by an algebra A is arithmetical (that is, congruence-
distributive and congruence-permutable) if and only if A has a Pixley arithmeticity
term function p(z,y, z) : A*> — A satisfying

pla,a,b) =p(b,a,b) =p(b,a,a) =b foralla,be A

(see, for example, [4; p. 85]). The following result shows that the varieties V(Oy)
under consideration are arithmetical.

2.2 Proposition. The varieties V(Oy) are arithmetical with a Pixley arithmetic-
ity term

ple,y,2) = (V) A (@ VY) A (VYY)
Alle(z,y) Az) V(e(y,z) Ae) V(e(z,z) ANa A z)]
Proof. Tt is straightforward to verify that the identity
ple,y, o) =w
holds in Oy. Further, for any a,b € Oy we obtain
pla,a,b) = (aVb)A(a" VO)A[bV (c(a,b) Aa)] = p(b,a,a).

If a and b belong to the same Boolean block of Oy then clearly (aVb)A(a’Vb) = b and
¢(a,b) = 1; if a, b are from different blocks of Oy then evidently (aVb)A(a' V) =1
and c(a, b) = 0. Thus we have

p(a’a’b):b:p(b)a’a)
as required. O

3. Description of the free algebras Fy(o,)(n)
A free algebra Fy(o,)(1) with one generator in the varieties V(Og) (k > 2) is

isomorphic to the 1-generated free Boolean algebra
Fp(1) = 2%

which also is the free orthomodular lattice with one generator. A free algebra with
two generators in all the varieties V(Oy) (k > 2) is a direct product of the free
Boolean algebra with two generators Fz(2) and the lattice MO4. Hence

Fv(0,)(2) 2 F5(2) x MO, = 2% x MO,
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and this also is isomorphic to the free orthomodular lattice with two generators
(see [2; I11.2]).

The free algebras Fv(o,)(n) with n > 3 generators in the varieties V(Oy)
(k > 2) are certainly finite because the varieties V(Qy) are locally finite (see [4;
chapter 1.3]). A universal description of the free algebra Fv(o,)(n) says that it is
isomorphic to the algebra of all n-ary term functions on the generator Og. A more
useful description, which has been a springboard for our work, can be according to
Proposition 2.2 derived from Theorems 2.1, 2.2 of [7]. These two theorems in turn
follow from the Arithmetic Strong Duality Theorem of Theory of natural dualitites

[4; Theorem 3.11].

3.1 Theorem. ([7; Theorems 2.1,2.2]) The free algebra Fv (o, )(n) with n genera-
tors in the variety V(Oy) (k > 2,n > 3) is isomorphic to the algebra of all functions
from O}" to Oy, preserving the unary partial endomorphisms of Oy.

As for any (ai,...,a,) € Of we have ¢(a1,...,an) € {0,1} by Lemma 2.1(1), it
is easy to see that for every term function t(z1,...,xn) € Fy(o,)(n),

clag, ..., an) = (clar,...,an) Atlay, . ..;a,)) V(cay, ..., a,) ANt(ag, ..., a,)),
hence by (2) it follows that the commutator ¢(z1,..., #,) is a central element of

Fv(0,)(n). Thus according to (3), the free algebra Fy(g,)(n) can be expressed as
the product

Fv(o,)(n) =[0,c(xr, ..., 2n)] % [0, (21,...,2,)].

Analogously as in [7; Theorem 3.1], the interval [0, ¢(z1, ..., ®,)] is isomorphic to
the n-generated free Boolean algebra F5(n) = 22", We can decompose the interval
[0,¢(x1,...,®,)] by the commutators c(z;, x;) (4,7 =1,...,n, ¢t <j) as

[0, (21, ... ,2,)] = H [0, /\ iz ) N (o, )],
W N 7,7=1
e{o,1} i]<j

where the product is taken over all N-tuples W = (wy3,...,wn_1,) € {0,1}¥,

N = (g) and
¢ (g, a5) = e(xi, zj), i =0,
(i x;), fw ;=1
n

The term function tg(z1,...,2,) = A ¢¥»i(zi,2;) Ac(21,...,2,) corresponds

i,j=1

li]<j
to a labelled unoriented graph Gy (without multiple edges and loops) on the vertex
set {x1,... @,} with edges z;2; whenever w; ; = 1 for ¢ < j. Any one of G, w
and tg(z1,...,2,), the last denoted also by Cg(z1,. .., 2,), determines the other
two. A necessary and sufficient condition on the structure of the graph G for the
interval [0, (21, ... ,2,)] = [0,Cq(21, ... ,2,)] in Fy(o,)(n) to be non-trivial is

analogous to that in [7; Proposition 3.2].
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3.2 Proposition. The following conditions are equivalent:

(a) Ca(x1,...,2,) : Of — Oy is not identically equal to zero;
(b) there exist elements a1, ...,a, € Oy with the following properties:
1) Calar,...,a,) =1,
(i) the elements a1, ..., a, are not all from the same block of Oy,
(iii) x;z; is an edge of G if and only if a;, a; are elements of different blocks
in Og;

(c) the graph G, := G consists of | isolated vertices (0 <1 < n — p) and one
connected component which is a complete p-partite graph (2 < p < k).

Proof. If (a) holds then there are aq,...,a, € Oy such that Cg(ay,... a,) # 0.
This implies by Lemma 2.1(1) that ¢V+7(a;, a;) and ¢/(a1, . .. , a,) are equal to 1 for
all ¢ < j and shows (b)(i). By Lemma 2.1(2), ¢/(a1,...,a,) = 1 implies that there
exist ¢ and j such that a;,a; are from different blocks of Op which shows (b)(ii).
Further, as for all 7,7, i < j we have ¢¥%7(a;, a;) = 1, we get that a;,a; are from
different blocks of Oy if and only if w; ; = 1 if and only if z;z; is an edge in G.
This shows (b)(iii).

Let now ay,...,a, € O be as in condition (b). From the condition (b)(iii)
it follows that @; is an isolated vertex in (G whenever a; € {0,1}. If a; ¢ {0,1}
then by (b)(ii) there is j such that a; belongs to a different block than a; and by
(b)(iii) again, for all such 7, j there is an edge @;z; in (. Assume that the elements
a; ¢ {0,1} belong to p different blocks of Oy. By (b)(ii), p > 2. We conclude that
G has isolated vertices z; associated with a; € {0, 1} and the remaining vertices z;
are partitioned according to which block of Oy the corresponding elements a; come
from, giving a complete p-partite graph. This proves (c).

We finally show that for any labelled graph G = G, satisfying (c) there are
ai,...,ap € Op such that Cg(aq,...,a,) is equal to 1. The value of Cq at
(a1,...,a,) equals 1 if and only if all the expressions ¢"*7(a;, a;) and ¢/ (a1, . .. , ay,)
equal 1. If #;, z; (¢ < j) are vertices from different blocks of the p-partite connected
component of the graph G, = G then Cg contains the term ¢/(z;, ;). By Lemma
2.1(2), such term will take value 1 at (a;,a;) if we choose a;,a; from different
blocks of O. If #;, z; (i < j) lie in the same block of the p-partite graph & then
C contains the term c(z;, ;) which will take value 1 at (a;, a;) if we choose a;, a;
from the same block of Q. If z; is an 1solated vertex in G then Cg contains the
term e(x;, ;) (e(z;, ®;)) in case i < j (¢ > j). In order to have ¢(z;, #;) = 1 in this
case, we must choose a; from the same block as a; for all j, which means we must

choose a; from the set {0,1}. So we can get Cg(a;y...,a,) = 1 if we allocate a
unique block B;; (i; € {1,...,k}) of O to the jth block of the p-partite component
of G for j = 1,...,p and choose the coordinates of (ai1,...,a,) corresponding to

the vertices of the jth block of G to be (any) elements from B;, \ {0,1}. For
isolated vertices ; we choose the corresponding a; arbitrarily from {0,1}. This
proves (a). O

According to Theorem 3.1, the interval [0, Cg(x1,...,2,)] in Fy(o,)(n) con-
sists of all functions from Oy" to O, which are pointwise less than or equal to
Cg(z1,...,2,) and preserve the unary partial endomorphisms of Oy. Any such
function takes value zero at (a1, ..., ap) € O} whenever the term function Cg does.
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Let T be the set of all a = (ay, ... ,a,) from (O)" at which C¢ is non-zero, that
is Cg(ay,...,a,) = 1. Let the coordinates a; € {0,1} corresponding to isolated
vertices of (G be called trivial. Proposition 3.2 says that the non-trivial coordinates
of a € T lie in exactly p of the k Boolean blocks By, ..., By of Oy corresponding
to the blocks of the p-partite component of the graph G = Gp, 2 < p < k. Let us
assume from now that the blocks of the p-partite component of the graph G = G,
have cardinalities kq,. .., k,, where ki > ko > -+ >k, > L and >0_, k; <n. We
shall sometimes use the notation Gp(k1, ..., kp) for the given graph G. We shall
further call the elements a € Tz whose k1, ..., &k, non-trivial coordinates are taken
respectively from the first p blocks By, ..., B, of Oy standard.

In the first step we shall count the orbits of the automorphism group Aut(Ox)
on T¢. We shall denote the atoms and the coatoms of each block B; by b;,¢;, d;
and b}, ¢}, d}, respectively. Note that any automorphism f; of the Boolean algebra
B, fixes 0 and 1 and is given by a permutation of the atoms of B;, ¢ € {1,2,... k}.
The following lemma describes the automorphisms of O and guarantees that when
counting the orbits of Aut(Oy) on T, it suffices to focus only on standard elements
acle.

3.3 Lemma.

(i) For every automorphism o € Aut(Qy) there is a permutation v on the index
set Iy := {1,2,...,k} and automorphisms {f; . B; — B; | i € I;} of the Boolean
algebras (blocks) B; such that

4) a(z;) = f,,(i)(azl,(l-)) for every i € I}, and x; € B;.

(ii) Conversely, for every permutation v on the index set I := {1,2,...,k} and a
set of automorphisms {f; : B; — B; | i € I} of the Boolean algebras (blocks) B;,
a unary map « : Oy — Oy, defined by (4) is an automorphism of Oy.

(iii) For every b € Tg such that the non-trivial coordinates of b lie in p Boolean
blocks B;,, ..., B;, of Og, where 2 < p < k and {i1,...,4,} C Iy, there is a standard
element a € T and an automorphism o € Aut(Oy) such that

(5) alar) = by, ..., aa,) = by,

thus b belongs to the orbit Orb(a) of Aut(Oy) on Tg.

Proof. The observations (i) and (ii) are easy and we leave them for the reader.
To show (iii), we define a permutation v on the set I such that v(j) = ¢; for
j=1,...,pand v mapstheset [z\{1,...,p} arbitrarily onto the set 1\ {71, ...,4p}.
We take for the automorphisms {f; : B; — B; | i € I} of the Boolean algebras B;
just the identity maps. By this we define an automorphism o € Aut(Oy) such that
o [ B : B; = By, is an isomorphism for every j € {1,...,p}. Let a~ ! denote the
inverse of o and let a; := a~'(b;) for i = 1,...,n. Now clearly, a = (a1,...,a,)
belongs to T by Proposition 3.2, a is standard and (5) holds. Hence b belongs to
the orbit Orb(a) of Aut(Ox) on T, O

Let us for standard a € T call the corresponding orbit Orb(a) of Aut(Oy) on
T standard, too. The part (iii) of previous lemma shows that when counting the
orbits Orb(a) of Aut(Oy) on Ty for a p-partite graph G = Gp(k1,...,kp) where
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ky > ke > >ky,and Y.7_ k; < n, we can w.l.o.g. count only standard orbits
Orb(a), that is, to assume that for ¢ = 1,...,p, the k; non-trivial coordinates of
a are taken from the block B;. We shall therefore sometimes use the notation
a(ky,... ky) for a.

The part (i) of following lemma comes from [8].

3.4 Lemma.
(i) There are (up to the automorphism action)

P(k;) =21 46k

choices for the non-trivial k; coordinates of a(ky,..., k,) = (a1,...,a,) to be se-
lected from the block B;, i =1,...,p.

(ii) There are
P

N(n,p; kl, Cey k’p) = 9gn-r. H(?’kz—l + 1)
i=1

orbits Orb(a(ky, ..., k,)) of Aut(Oy) on Tg.

Proof. (i) If the pair of the first two coordinates of a taken from B; is one of the four
pairs (b, ¢), (b,¢'), (0, ¢), (b, ¢'), where the distinct elements b, ¢ ¢ {0, 1} are not an
atom of B; and its complement, then any of the remaining k; —2 coordinates from B;
can be chosen arbitrarily from the six elements {b,b', ¢, ¢, d, d'} of B; giving 4-6%:~2
choices for the k; coordinates from the block B; starting with such prescribed first
two coordinates. In the other case the pair of the first two coordinates is one
of (b, ), (b,d), (¥, b), (b, ') for an atom b of B; giving (up to the automorphism
action) 2 choices b and b’ for the first coordinate and, recursively, P(k; — 1) choices
for the remaining k; — 1 coordinates. Hence we arrive at the recursive formula

P(ki)=4-6"7"24+2. P(k; — 1).
By standard methods of solving such formulas we obtain
Plkj)=a-2% 4 5.65 o peR.

One can check that P(2) =8 and P(3) = 40, which leads to a = £, 8 = §. Hence
P(kg) =28 46kt

(ii) From (i) and the fact that there are 27~ 2Xi=1k: choices for the trivial coor-
dinates of a to be selected from the set {0, 1} it follows that the number of orbits
Orb(a(k, ..., kp)) of Aut(Oy) on 1 is

14

N(n,p ki,... kp) = (1_[(21“’_1 4651y i ke
i=1
P
— 2(2?:1’“!)‘13 . (H(Skl_l + 1)) L on— ki
i=1
P
=27 I3 +1). O
i=1
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Let us call the k; non-trivial coordinates of a belonging to the block B; to be of
type 1if they all are from the set {b,d'} for an atom b and its orthocomplement b’
in B; and of type Il otherwise. It is clear that among P (k;) = 2Fi=1 4 6Fi=1 choices
for the non-trivial k; coordinates of a coming from the block B; there are exactly
2k choices for the k; coordinates of type I and the rest, 2F:=1 4 gF:=1 — 2k =
6Fi—1 — 2Fi=1 are the choices for the k; coordinates of type II. So that one can
express the product N(n,p;ki,...,kp) in Lemma 3.4 as

p
(6) N(n;p; kl: cey kp) = (H[(6kl_1 - le_l) + le]) - 2n—zf=1 ki

i=1

from which it 1s clear how the coordinates of types T and II contribute to the
resulting number.

We shall say that a standard orbit Orb(a) of Aut(Oyx) on T is of type {i1, ..., 45}
if the non-trivial coordinates of a of type II are exactly from the blocks B;,, ..., B;,
for a subset {i1,...,is} C {1,...,p}.

In the second step of our method we determine the structure of the Aut(Oy)-
preserving functions from Oy" to O which are pointwise less than or equal to
Cg(z1,...,2,). Weproceed asin [7] and [8]. We may extend the action of Aut(Oy)
on Oy pointwise to (Og)”, so that for a = (a1,...,a,) € (O)” and a € Aut(Oy),
a(a) == (a(ar),...,a(a,)) € (Ok)" and a function f: (Og)"” — Oy is a-preserving
if for all a € (O)", f(a(a)) = a(f(a)). To define an Aut(Oy)-preserving function
f < Cqg, we cannot freely choose images from Oy, for representatives of the orbits
Orb(a) of Aut(Oy) on T. The reason is that for p < k there are automorphisms
« # [ in Aut(Oy) such that for any representative a of orbit Orb a, a(a) is equal to
B(a), which restricts the choices for f(a) to those which satisfy f(a(a)) = f(B(a)).
Hence we only may freely choose the image f(a) for each orbit-representative a
within (), ggiap o fixo, () (see [7]) while the values of the other elements a(a) in
Orb(a) will be determined by

(7) fla(a)) = a(f(a)).

Consequently, the algebra Ag of the Aut(Oy)-preserving functions from O to
Oy, which are pointwise less than or equal to C¢ (21, ..., #,) is isomorphic to the
product of the subalgebras (), cg;.1, o fiXo, () of Oy taken over all standard orbits
Orb(a) of Aut(Oy) on 7.

For any s € {0,1,...,p}, let L, ,_,y denote an orthomodular lattice (a subalge-
bra of Oy) consisting of s Boolean blocks 23 and p — s Boolean blocks 22.

3.5 Proposition. Let G = Gp(k1,. ..,kp) be a p-partite graph with blocks of
cardinalitites ky, ..., k, such that ky > --- >k, > 1 and Ele ki < n. The algebra
A of the Aut(Ok) -preserving funcmons from O," to O which are pointwise less
than or equal to Cg(x1, ..., &n) Is

/4
Ag = MO % H o 8) NA (n,p,s;k1,....kp )7

s=1
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where

n u 6k”_1—2k”_1
Naln,p,siky, k) =2 3 [
{iy,...is}r=1
C{1,...p}

Proof. We know that each standard orbit Orb(a) of Aut(Og) on T contributes
a factor () cgiap o X0, (7) to the algebra Ag. For each of possible types of the

orbits Orb(a) we shall recognize the structure of fixo, () and determine

Stab a
the number of orbits Orb(a) of a given type. "

Let us first consider a standard orbit Orb(a) of Aut(Oy) on T of type I, =
{1,...,p}, that is, all the non-trivial coordinates of a are of type II. Then the
stabiliser of a consists of exactly those automorphisms in Aut(Oy) which fix all
elements of the blocks By, ..., B, in O and permute atoms (and consequently

their complementary coatoms) in the remaining k — p blocks of Of. Hence

ﬂ ﬁxok (’y) = L(p,O) = Op
YEStab a

and the orbit Orb(a) contributes a factor O, to the algebra Ag. The number of
standard orbits Orb(a(k1, ..., kp)) of type I, is

o L e A
N(n,piki, .. ki L) = (6% — 2571y - 2n B ke = 9n 'Hiw ,
i=1 i=1

so that the same is the number of factors O, contributed by all standard orbits
Orb(a(ky, ..., kp)) of type {1,...,p}. Note that this number can be obtained from
N(n,p;ki,..., kp) in (6) by removing in each of the first p factors the term 2%
expressing the number of selections of the non-trivial coordinates of type I.

Let us now consider a standard orbit Orb(a) of type S := {i1,...,is} where
g # S C I, that is, 1 < s < p—1. For each j € I, \ S, the k; non-trivial
coordinates of a taken from the block B; are from the subset {b;,07} C B; for
an atom b; € B;. The stabiliser of a consists of exactly those automorphisms in
Aut(Og) which fix the elements of the p — s subalgebras {0,6;,5%,1} of B; for
J € I, \ 'S, fix all elements of the s blocks B; for j € S and permute atoms (and
their complements) in the remaining k — p blocks of Og. Hence

() fixo.(7) = Lo

~YEStab a

and each such orbit Orb(a) contributes a factor Ly, ,_s) to the algebra Ag. The
number of orbits Orb(a(ky, ..., kp)) of type S = {i1,... i} is

s

(8) N(n;pzsak];;kp;{“::ZS}):ZnH

r=1

6kzr_1 o 2i€,r—1
2

so that the same is the number of factors L, ,_,) contributed by all standard
orbits Orb(a(ky, ..., kp)) of type S = {i1,...,is} where @ # S C I,. Note that
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this number can be obtained from N(n,p;ki,...,k,) in (6) by removing in the
factors corresponding to i € S the term 2% expressing the number of selections
of the non-trivial coordinates of type T and removing in the factors corresponding
to i € I, \ S the term 6% 1 — 2Fi=1 expressing the number of selections of the
non-trivial coordinates of type 1I.

It remains to consider the orbits Orb(a) of type @, that is, such that all the
non-trivial coordinates of a are of type I. Each such orbit contributes a factor
L) = MO, and the number of such copies of MO, is

N(n,piki, ... ky; @) =25= ki gn=Xis ki — 90 O

In the third step of our method we determine which of the different standard
orbits Orb(a) of Aut(Oy) on Tz can be “glued together” by the action of the unary
partial endomorphisms of Og. By this we mean the situation when

(9) e(ar) =br,...,e(a,) = by

for representatives a = (a1,...,a,), b = (b1,...,by,) of different standard orbits
Orb(a), Orb(b) and a unary partial endomorphism e of Oy. As the functions
f: Of — Oy, that we consider must preserve all unary (partial) endomorphisms e
of O, we need to guarantee that the condition

(10) (e(ar) = b1,...,e(an) = by) = f(b1,...,bn) = e(flar,...,an))

holds for every unary partial endomorphism e of Og. The following few concepts
will prove useful in our further analysis.

3.6 Definition. A unary partial endomorphism e of Oy is said to be
(i) straight, if e maps all elements of dom(e) N B; into B; for alli € {1,... k};
(ii) proper, if the domain dom(e) consists of elements from at least two different
blocks of Oy;
(iii) 0, 1-separating, if for any « € Oy,

e(x) = 0 implies = 0 and e(x) =1 implies x = 1.

3.7 Lemma. Every unary partial endomorphism e of O can be expressed as
e=aoe

for some automorphism a € Aut(Oy) and a straight partial endomorphism €' on
Oy, with domain dom(e’') = dom(e).

Proof. 1f a partial endomorphism e of Oy is straight, then the statement clearly
holds for ¢/ = ¢ and « being just the identity map on Oy.

Let us now assume that e is not straight, that is, there exist elements z; €
Bi\{0,1}, y; € B; \ {0,1}, ¢,5 € {L,...,k}, i # j, such that e(z;) = y;, and
consequently, e(z}) = y;. Suppose that e maps an element z of a block B; # B;
into the block B;. Then the element e(z;) must be comparable to one of the elements
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Yj, y"i and w.l.o.g. we can assume that e(z) # 0. As z; Az; = 2z Az} = 0, we obtain
that e(z) Ay; = e(z) Ay; = e(0) = 0, a contradiction.

Hence any partial endomorphism e maps different blocks of Op to mutually
different blocks of Of. Therefore there is a permutation v of the index set I =
{1,2,...,k} such that ¢ maps every x; € dom(e) N B; into B,(;). Let o be an
automorphism of Oy determined by this permutation and by the identity maps
{fi : Bi & B; | i € I;} (see Lemma 3.3). Let us define a partial endomorphism e’
on Oy with domain dom(e’) = dom(e) by €’ := a~! oe. Then clearly, € is straight
and aoe' =e. O

Lemma 3.7 yields that a function f : O} — Oj preserves all unary partial
endomorphisms e of O provided it preserves the automorphisms of Oy and the
straight partial endomorphisms e’ of Oy. Hence it is sufficient for us to consider
the condition (10) only for straight partial endomorphisms e of Oy.

We note that (9) is possible only if e is proper because the non-trivial coordinates
of elements a, b € T always lie in at least two different blocks of Oy. The following
lemma shows that proper partial endomorphisms e must be 0, 1-separating.

3.8 Lemma. FEvery proper partial endomorphisms of Oy, is 0, 1-separating.

Proof. Let ¢; € dom(e) N B; and y; € dom(e) N B; for different blocks B;, B; of
Op. Note that then {z;,y;} N {0,1} = @. W.lo.g. suppose that e(z;) = 0. As
yiVe, =1= yg V x;, we obtain

e(yj) = e(y;) Ve(wi) = e(y; Vai) = e(l) =1
and analogously,
e(y;) =e(y;) Velr) =e(y; Va) =e(l)=1.

This leads to e(0) = e(y; Ay;) = e(y;) Ae(y;) = 1, a contradiction. The proof is
complete. O

Hence it is sufficient for us to consider the condition (10) only for straight and
proper (thus 0, 1-separating) partial endomorphisms e of Oy.
Let us call premitive any unary partial endomorphism wu; of Oy whose graph is

(UJ)D = {(070)7 (bjl b;’): (b}zbj)l (17 1)}

for an atom b; of the block B; of O, j € Ix. Let us further call {ji,...,7:}-
primitive any partial endomorphism « on Oy such that « [ B; is primitive for
r=1,...,s and u(x) =  for all elements z € dom(u) \ (B;, U---U B;,).

The following observation is now easy and we leave it for the reader.

3.9 Lemma. Every straight and proper (thus 0, l-separating) partial endomor-
phism e of Oy which is not an automorphism can be expressed as

e=aou
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for some {j1, ..., js }-primitive partial endomorphism u of Oy, and a straight auto-
morphism a of O.

Hence our analysis finally shows us that it is sufficient to consider the condition
(10) only for {ji1,...,js }-primitive partial endomorphisms e of Oy.

Let us consider a standard orbit Orb(a) of Aut(Oy) on T of a type S C I,
where s := |S] > 0; hence for any j € I, \ S, the k; non-trivial coordinates of a
taken from the block Bj are from the subset {b;,b%} C B; for an atom b; € B;. Let
L\S=A{ji,...,jp—s}. Let e be an {j1,...,jp—s }-primitive partial endomorphism
of O and let (9) hold for e and b € Tz \ Orb(a). Then the orbit Orb(b) is also of
type S. If the image f(a1,...,a,) of ain f is chosen from

ﬂ ﬁXOk (7) = L(s,p—s);

~yEStab a

then by the condition (10) the image f(b1,...,b,) of b in f is determined by
f(b1,...,b,) = e(f(a,...,a,)) and consequently, only one of the orbits Orb(a),
Orb(b) contributes a factor Ly, ,_,) to the algebra of functions f: (Ox)" — O

which are pointwise less than or equal to Cg(z1,...,2,) and preserve the unary
partial endomorphisms of Og. This means that for 0 < s < p — 1, the number
of factors Ly, ,_,y in the structure of the interval [0, Cg(x1, ..., #n)] in Fy(o,)(n)

will be obtained by dividing every N(n,p,s;ki,... kp;S) in (8) by two for each
JEL\S ={j1,....Jp—s}, thus by dividing the exponents N (n,p,s; ki1,..., kp)
in Proposition 3.5 by 2P=°. The number of factors MO, in the structure of the
interval [0,Cg(x1,...,2,)] in Fy(o,)(n) will obviously be obtained by dividing
N(n,p; ki, ..., kp; @) =2" by 27, thus is equal to 2" 7P, Let us denote for 1 < s < p,

NA(n,p,S;kl,...,kp)

N(n,p;s; ki, ... kp) = 503

We have arrived to the following proposition.

3.10 Proposition. The structure of the interval [0, Cg(x1, ..., 2,)] associated to
a p-partite graph G = Gp(k1, ..., kp) with blocks of cardinalitites k1, ..., k, such
that ky > - >k, >1 and > I_ ki <n is

P
[0,Ca(z1, ..., 2,)] = (MO,)? P H(L(S,p—s))N(""p"g;kl"”’k”)

s=1

where

.. S 6klr_]‘—2klr_]‘
N(n,p, s ki, ... kp)y=2"7"PT%. Z th—r O
{iy,.. i} r=1
C{1,...r}

Analogously as in [8], we use the fact that the number of the p-partite graphs
G = Gp(ki, ..., kp) on an n-clement vertex set with blocks of cardinalities &1, ..., &,
(ky > >k, > 1,5 F_ ki <n) and with { = n — >_F_, k; isolated vertices is

P
(11) ¢(n;k1,...,kp):( S k)S(Zki;kl,...,kp)
i=1

i=1 N
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where S(n —{;ky, ..., k) is the number of partitions of a labelled (n — [)-element
set S = {1,...,n— [} into exactly p blocks S!,...,SP of cardinalities ki, ..., kp,
respectively and is given by

) B B (n—1I)!
(12) S(n — l, kl, cey kp) _ P(bl, Caay bn—l) - b1'b2' B ~bn—l!(2!)b2 - ((TL — l)!)b"—’
where for ¢ = 1,...,n — [, b; denotes the number of blocks of cardinality ¢ among
the blocks S',... SP (see [1; 3.15]).

We further note that similarly to [7], Fy(o,)(n) = Fy(o,)(n) if n < k. Hence in
the following description of the finitely generated free algebras Fy(o,)(n) it suffices
to consider k < n. Note that in the case n = k = 2 we have ¢(2;1,1) = 1 and we
obtain the known description Fy(o,)(2) = F5(2) x MO;.

3.11 Theorem. For any 2 < k < n, the finitely generated free algebra Fy(o,)(n)
is isomorphic to the product of the n-generated free Boolean algebra Fi(n) with

k P
H H [(MOP)Q"*P % H(L(Szp_s))N(n,p,s;kl,..,,kp)]¢(n;k1,...,k,,)

r=2 (ki,...,kp) s=1
k1> >kp>1
2= kisn

where ¢(n; k1, ... ky) are given by (11) and (12) and

1

$ 6k,r—1_2k,r—
RIRTTRRNEE SIS S | Lty
{ir, s} r=1
C{1,...p}

It is easy to see (cf. [8]) that

> Sn—liky,... k) =Sn—1p),
(B1,.. kp)
k> > ky> 1
P ki=n—l

where the Stirling number S(n —, p) of the second kind is the number of partitions
of a labelled (n —[)-element set into exactly p parts (see [1; 3.39]). This yields that

k k
1) II [(MO,)?" " #lnikska) = TT(MO,) " "¢ (20D

p=2

where
sonn =3 (7)stn -1
=0

Now on the right hand side of (13) we have an isomorphic copy of the n-generated
free modular ortholattice F a0, (n) in the variety MOy (see [7]). Hence we can
deduce the final result.
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3.12 Corollary. For any 2 < k < n, the finitely generated free algebra Fy(o,)(n)
1s iIsomorphic to

where F po, (n) is the n-generated free modular ortholattice in the variety MOy,
é(n; ki, ..., ky) are given by (11) and (12) and

Grir =1 — 9k
N(n,p,s;k’l,...,k)—Q” pts . Z H— a

3.13 Remark. We note that for s =1,

. _ on-p+1 ' k—l
N(n,p, ke, ... k) =2""PFL. | > 27 =7 23
{i}C{1,....p}
and the factor

k
Furoom) x [T TI (Lo VOm b denplnkn k)

of the algebra FV(Ok)(n) in Corollary 3.12 is isomorphic to the n-generated free
algebra Iy, ,_,))(n) in the variety V(L1 ,-1)) described in [8] (where we used
the notation L;, for the algebra L ,_1)).

We now illustrate the obtained results by presenting the structures of the free
algebras Fy(o,)(n) for k =2,3,4 and n = 3,4,5.

The values of the coefficients ¢(n;ki1,...,k,) are displayed in the first of the
following tables:

=3
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I | eof eo
Il

Il

n
6(3:1,1)
(3,2,1)
31,1,

bl

S Raud N Raw! Ny
I
I |eo| | =]

H
=
I

ro| ol b =] B
I

—|hof eof =

ol o|lo|o

Do DN —
N T

Il
= o
o

~— [ | = |~ [— |~ —

=== ==~

»—ki[\ﬁ»—k
[l

— — | — | —
Il

== | =

YOI OO

ZIZ|
Il
= o

o

O O O Ot Ot Ot G| O G| Ot Ot Ot

—
|00~ || 0| 0| 0| - |- O
=== =|=|=|=|=|=[=]=
Do = Do wo| b =] W) i
ot Ml 2 il Ml M R
= = = ===
=

27



| n=3 n=4 n=5

N(3,2,1;2,1)=4 N(4,2,1;2,1)=8 N(5,2,1;2,1)= 16
N(4,2,1;3,1)=32 N(5,2,1;3,1)= 64

N(4,2,1;2,2)=16 N(5,2,1;2,2) = 32

N(4,2,2;2,2)=16 N(5,2,2;2,2)= 32

N(4,3,1;2,1,1)=4 N(5,3,1;2,1,1)= 8

N(5,2,1;4,1) = 208

N(5,2,1;3,2)= 80

N(5,2,2;3,2) = 128

N(5,3,1;3,1,1) = 32

N(5,3,1;2,2,1) = 16

N(5,3,2;2,2,1) =16

N(5,4,1;2,1,1,1) =4

The coefficients N (n,p, s; k1, ..., kp) which are non-zero for n = 3,4,5 are dis-
played in the second table above (all other coefficients N(n,p,s;k,... k) for
n = 3,4,5 take value zero).

As a result, we obtain the following structures:

Fv(0,)(3) = F5(3) x (MO3)'? x (Ly11)"?

Fv(0,)(4) 2 Fs(4) x (MO2)'% x (Ly 1)*™ x (Lg)*

Fv(0,)(5) = Fi(5) x (MO5)70 x (L 1)1080 x (L )1760

Fy(0,)(3) 2 F5(3) x (MO2)"?* x (L1 1)"? x (MO3)'

Fy(0.)(4) = F5(4) x (MO2)'% x (MO3)? x (L1 1)*™ x (Lg,0)* x (Ly2)*

Fv(0,)(5) 2 F5(5) x (MO2)™ x (MO3)?% x (Ly ;)8 x (L

% (L271)240

9 0)1760 % (L1 9

) )

)800

Fv(0,)(4) 2 Fp(4) x (MO2)'% x (MO3)? x (MO4)! x (Ly1)?™ x (Lg)*
X(L172)24

Fv(0,)(5) 2 F5(5) x (MO3)™% x (MO3)?%% x (MO4)3% x (Ly 1)*%0 x (L )76

X(LLZ)SOO % (LZ 1)240 % (L173)40

s
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