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ON COLOR-CLOSED MULTIPOLES

PaveEL HRNCIAR

ABSTRACT. It is shown that for each color-complete k-pole there exists a (k42)-pole
which is color-closed but not color-complete.

In the present paper we use terminology and notation from [1]. We recall them.
A multipole is a pair M = (V(M), E(M)) od disjoint finite sets, the vertex-set
V(M) and the edge-set E(M) of M. Every edge e € E(M) has two ends and every
end of e may or may not be incident with a vertex. If one end of e is incident with
some vertex but the other is not, then e is a dangling edge. An end of an edge e
that is incident with no vertex is called a semiedge.
Throughout the paper it is assumed that every vertex of every multipole is incident
with precisely three edge ends. If a multipole M has k semiedges eq, ea, ..., e,
then it is called a k-pole and we write M = M(eq,ea,...,ex).
Let M = M(e1,ea,...,ex) and N = N(f1, fo,..., fu) be two k-poles. Then the
junction M % N of M and N is the cubic graph that arises from the disjoint union
M U N by performing the junctions e; with f;, ¢ = 1,2, ... k.
Let M be a multipole and let ¢ : E(M) — {1,2,3} be a mapping assigning to
each edge of M one of the elements 1,2, and 3 called colors. Then ¢ induces
an assignment of colors to the ends of edges in M. The mapping ¢ is called a
coloring of M, if for every vertex v of M the three ends incident with v are assigned
pairwise distinct colors. A multipole will be called colorable if it admits a coloring.
Otherwise we say that M is uncolorable. An uncolorable cubic graph will be called
a snark.
Let M = M(ey,ea,...,ex) be a k-pole. The coloring set of M will be the set

Col(M) ={(p(er1), plea),...,¢(er)); ¢ is a coloring of M}

A coloring of semiedges of a k-pole is said to be admissible if it satisfies the condi-
tions of Parity Lemma (see [1, lemma 2.2]), i.e. if ky = ks = k3 = k(mod 2) where
ki is the number of semiedges colored ¢, « = 1,2,3. A multipole M is said to be
color-complete if every admissible coloring of its semiedges can be extended to a
coloring of M.
We shall say that a k-pole M (k > 2) can be extended to a snark if there exists a
colorable k-pole N such that M xN is a snark. A multipole that cannot be extended
to a snark is called color-closed.

One of the problems stated in [1] is the following
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Problem 1. Find a color-closed k-pole, k > 5, which is not color-complete.
We show that such a multipole really exists. In fact, we prove more, namely

Theorem. Let N = N(ey, e, es,eq,¢el,e) be the 6-pole in Figure 1 and M' =
M’ (et el es5, €6, ..., erta) be a color-complete k-pole, k > 3. Then the (k+2)-pole
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FIGURE 1.

M = M (e, e, ..., €exy2) that arises from N and M' by performing the junctions
et with el and e, with e/ (see Figure 2) is color-closed but it is not color-complete.
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From this theorem we easily get that the answer to Problem 1 is affirmative.
In fact, since there are color-complete 3-poles and 4-pole (even infinite families of
such multipoles) then by our Theorem there exist 5-poles and 6-poles which are
color-closed but not color complete. Examples of such multipoles can be seen in
Figure 3 (for 5-pole) and in Figure 4 (for 6-pole, cf.[1,Figure 17]).

FIGURE 3.
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FIGURE 4.

These multipoles contain 4-cycles. Nevertheless, from the point of view of the theory
of snarks (see [1]) it would be more interesting to find multipoles from Problem 1
which, additionally, have girth at least 5.

It remains to prove Theorem.

Proof of Theorem. It is easy to verify that C'ol(N) does not contain the fol-
lowing types of element (up to permutation of colors): 1212..., 1213 ..., 1232....
Further, elements of these types , evidently, do not belong to C'ol(M). Now we
will show that every admissible coloring of semiedges of M different from the above
types can be extended to a coloring of M.

Let ¢ be an admissible coloring of semiedges of M different from the above types.
It suffices to consider two possibilities:

a) The number of occurrences of each of the colors 1,2,3 in

(w(e1), ple2), p(es), plea)) is even.

Obviously, there is a coloring ¢’ of N such that ¢’(e;) = ¢(e;), ¢ = 1,2, 3,4,

and ¢'(ef) = ¢'(ef;). We will distinguish two subcases:

ai) k = 0(mod?2)
In this case the number of occurrences of each of the colors in the
sequence ¢(es), ¢(es), ..., p(ent2) is even. Then the coloring ¢” of
semiedges of M’ such that ¢"(e;) = ¢(e;), ¢ = 5,6,...,k + 2 and
" (el) = ¢ (ed) = ¢'(et) is admissible. Since M’ is a color-complete
multipole the coloring ¢ can be extended to a coloring of M’. Thus
we have a coloring of M.
as) k = 1(mod?2)
In this case the number of occurrences of each of the colors in the
sequence @(es), ¢(es), ..., p(ext2) is odd. Then, again, the coloring
" such that ¢’ (e;) = ¢(e;), 1 =5,6,...,k+2 and ¢”(ef) = ¢"(eff) =
¢'(ef) is admissible and we have the same situation as in the case a).
b) The number of occurrences of exactly two colors in

(p(e1), ple2), p(es), p(ea)) is odd.

Without loss of generality we can assume that the number of occurrences of

each of the colors 1, 2 is odd. In this case there is a coloring ¢’ of N such that

o'(ei) = p(ei), i = 1,2,3,4 and {¢(e5), ¢’ (e6)} = {1,2}. Now it is easy

to verify that the coloring ¢” of semiedges of M’ such that ¢”(e;) = ¢(e;),

i=05,6,....k+2and p"(ef) = ¢'(ef), ¢"(ef) = ¢'(ef) is admissible and

hence it can be extended to a coloring of M’. Thus we have a coloring of M.

It remains to prove that the (k+2)-pole M is color-closed. Consider a snark
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G expressible in the from M % K. If K is colorable, then Col(X) can only
contain elements of types (up to permutation of colors) 1212..., 1213.. |
1232 ... since M and K are color-disjoint. However, using a Kempe chain
in K beginning and ending with a semiedge, we can alter such coloring to a
coloring of one of the four types 11..., 2112..., 2113 ..., 2132... present
in C'ol(M) and hence to color the whole snark. It follows that K cannot be
colorable, 1.e.;, M is color-closed and the proof is finished.
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