ON COLOR-CLOSED MULTIPOLES

Pavel Hrnčiar

ABSTRACT. It is shown that for each color-complete k-pole there exists a (k+2)-pole which is color-closed but not color-complete.

In the present paper we use terminology and notation from [1]. We recall them. A multipole is a pair M = (V(M), E(M)) od disjoint finite sets, the vertex-set V(M) and the edge-set E(M) of M. Every edge $e \in E(M)$ has two ends and every end of e may or may not be incident with a vertex. If one end of e is incident with some vertex but the other is not, then e is a dangling edge. An end of an edge e that is incident with no vertex is called a semiedge.

Throughout the paper it is assumed that every vertex of every multipole is incident with precisely three edge ends. If a multipole M has k semiedges e_1, e_2, \ldots, e_k , then it is called a k-pole and we write $M = M(e_1, e_2, \ldots, e_k)$.

Let $M = M(e_1, e_2, ..., e_k)$ and $N = N(f_1, f_2, ..., f_k)$ be two k-poles. Then the junction $M \star N$ of M and N is the cubic graph that arises from the disjoint union $M \cup N$ by performing the junctions e_i with f_i , i = 1, 2, ..., k.

Let M be a multipole and let $\varphi : E(M) \to \{1,2,3\}$ be a mapping assigning to each edge of M one of the elements 1,2, and 3 called colors. Then φ induces an assignment of colors to the ends of edges in M. The mapping φ is called a coloring of M, if for every vertex v of M the three ends incident with v are assigned pairwise distinct colors. A multipole will be called colorable if it admits a coloring. Otherwise we say that M is uncolorable. An uncolorable cubic graph will be called a snark.

Let $M = M(e_1, e_2, ..., e_k)$ be a k-pole. The coloring set of M will be the set $Col(M) = \{(\varphi(e_1), \varphi(e_2), ..., \varphi(e_k)); \varphi \text{ is a coloring of } M\}$

A coloring of semiedges of a k-pole is said to be admissible if it satisfies the conditions of Parity Lemma (see [1, lemma 2.2]), i.e. if $k_1 \equiv k_2 \equiv k_3 \equiv k \pmod{2}$ where k_i is the number of semiedges colored i, i = 1, 2, 3. A multipole M is said to be color-complete if every admissible coloring of its semiedges can be extended to a coloring of M.

We shall say that a k-pole M ($k \ge 2$) can be extended to a snark if there exists a colorable k-pole N such that $M \star N$ is a snark. A multipole that cannot be extended to a snark is called color-closed.

One of the problems stated in [1] is the following

 $^{1991\} Mathematics\ Subject\ Classification.\ 05C75.$

Key words and phrases. Snark, multipole, color-complete k-pole, color-closed k-pole Supported by grant no. 1/6132/99 of Slovak Grant Agency VEGA.

Problem 1. Find a color-closed k-pole, $k \geq 5$, which is not color-complete.

We show that such a multipole really exists. In fact, we prove more, namely

Theorem. Let $N = N(e_1, e_2, e_3, e_4, e'_5, e'_6)$ be the 6-pole in Figure 1 and $M' = M'(e''_5, e''_6, e_5, e_6, \dots, e_{k+2})$ be a color-complete k-pole, $k \ge 3$. Then the (k+2)-pole

FIGURE 1.

 $M=M(e_1,e_2,\ldots,e_{k+2})$ that arises from N and M' by performing the junctions e_5' with e_5'' and e_6'' with e_6'' (see Figure 2) is color-closed but it is not color-complete.

FIGURE 2.

From this theorem we easily get that the answer to Problem 1 is affirmative. In fact, since there are color-complete 3-poles and 4-pole (even infinite families of such multipoles) then by our Theorem there exist 5-poles and 6-poles which are color-closed but not color complete. Examples of such multipoles can be seen in Figure 3 (for 5-pole) and in Figure 4 (for 6-pole, cf.[1,Figure 17]).

FIGURE 3.

FIGURE 4.

These multipoles contain 4-cycles. Nevertheless, from the point of view of the theory of snarks (see [1]) it would be more interesting to find multipoles from Problem 1 which, additionally, have girth at least 5.

It remains to prove Theorem.

Proof of Theorem. It is easy to verify that Col(N) does not contain the following types of element (up to permutation of colors): 1212..., 1213..., 1232... Further, elements of these types, evidently, do not belong to Col(M). Now we will show that every admissible coloring of semiedges of M different from the above types can be extended to a coloring of M.

Let φ be an admissible coloring of semiedges of M different from the above types. It suffices to consider two possibilities:

- a) The number of occurrences of each of the colors 1, 2, 3 in $(\varphi(e_1), \varphi(e_2), \varphi(e_3), \varphi(e_4))$ is even. Obviously, there is a coloring φ' of N such that $\varphi'(e_i) = \varphi(e_i)$, i = 1, 2, 3, 4, and $\varphi'(e_5') = \varphi'(e_6')$. We will distinguish two subcases:
 - a₁) $k \equiv 0 \pmod{2}$ In this case the number of occurrences of each of the colors in the sequence $\varphi(e_5), \varphi(e_6), \ldots, \varphi(e_{k+2})$ is even. Then the coloring φ'' of semiedges of M' such that $\varphi''(e_i) = \varphi(e_i), i = 5, 6, \ldots, k+2$ and $\varphi''(e_5'') = \varphi''(e_6'') = \varphi'(e_5')$ is admissible. Since M' is a color-complete multipole the coloring φ'' can be extended to a coloring of M'. Thus we have a coloring of M.
 - a_2) $k \equiv 1 \pmod{2}$ In this case the number of occurrences of each of the colors in the sequence $\varphi(e_5), \varphi(e_6), \ldots, \varphi(e_{k+2})$ is odd. Then, again, the coloring φ'' such that $\varphi''(e_i) = \varphi(e_i), i = 5, 6, \ldots, k+2$ and $\varphi''(e_5'') = \varphi''(e_6'') = \varphi'(e_5')$ is admissible and we have the same situation as in the case a_1).
- b) The number of occurrences of exactly two colors in $(\varphi(e_1), \varphi(e_2), \varphi(e_3), \varphi(e_4))$ is odd.

Without loss of generality we can assume that the number of occurrences of each of the colors 1, 2 is odd. In this case there is a coloring φ' of N such that $\varphi'(e_i) = \varphi(e_i)$, i = 1, 2, 3, 4 and $\{\varphi'(e_5'), \varphi'(e_6')\} = \{1, 2\}$. Now it is easy to verify that the coloring φ'' of semiedges of M' such that $\varphi''(e_i) = \varphi(e_i)$, $i = 5, 6, \ldots, k+2$ and $\varphi''(e_5'') = \varphi'(e_5')$, $\varphi''(e_6'') = \varphi'(e_6')$ is admissible and hence it can be extended to a coloring of M'. Thus we have a coloring of M. It remains to prove that the (k+2)-pole M is color-closed. Consider a snark

G expressible in the from $M \star K$. If K is colorable, then $\operatorname{Col}(K)$ can only contain elements of types (up to permutation of colors) $1212\ldots, 1213\ldots, 1232\ldots$ since M and K are color-disjoint. However, using a Kempe chain in K beginning and ending with a semiedge, we can alter such coloring to a coloring of one of the four types $11\ldots, 2112\ldots, 2113\ldots, 2132\ldots$ present in $\operatorname{Col}(M)$ and hence to color the whole snark. It follows that K cannot be colorable, i.e., M is color-closed and the proof is finished.

References

 R. Nedela and M. Škoviera, Decomposition and reductions of snarks, J. Graph Theory 22 (1996), 253-279.

(Received July 7, 1999)

Dept. of Mathematics Matej Bel University Tajovského 40 974 01 Banská Bystrica SLOVAKIA

E-mail address: hrnciar@fpv.umb.sk