CONGRUENCE CONDITIONS CONNECTED WITH DISTRIBUTIVITY AT 0

Ivan Chajda

ABSTRACT. An algebra \mathcal{A} with 0 is distributive at 0 if for all $\Theta, \Phi, \Psi \in Con \mathcal{A}$ it holds $[0]_{\Theta \cap (\Phi \vee \Psi)} = [0]_{(\Theta \cap \Phi) \vee (\Theta \cap \Psi)}$. We investigate how this property influenced direct decomposability of $[0]_{\Theta}$ for $\Theta \in Con \mathcal{A}_1 \times \mathcal{A}_2$ and what are the connections of this property to some local versions of the Chinese Remainder Theorem

The concept of distributivity at 0 was introduced in [2] as a "localization" of congruence distributivity in the vicinity of a constant 0 which is a nullary term of an algebra in question. Usefulness of it was recognized by G. Czédli [3] and J. Duda [5] for solving of some congruence problems. We proceed similar reasoning to show how distributivity at 0 influences decomposability of the congruence 0-class and how it is connected with some weakened versions of Chinese Remainder Theorem.

1 Basic concepts

Every algebra treated in this paper is considered to have a constant 0, i.e. 0 is a choosen element which is either a nullary operation (of the type of algebra) or a nullary term of this type. Some authors also consider 0 to be a constant unary term whose value is 0.

If R is a binary relation on a set A where $0 \in A$, we set

$$[0]_R = \{x \in A; \langle x, 0 \rangle \in \Theta\}.$$

Definition 1. Let $\mathcal{A} = (A, F)$ be an algebra with 0 and $\Theta, \Phi, \Psi \in Con \mathcal{A}$. We say that the (ordered) triplet (Θ, Φ, Ψ) is distributive at 0 if

(d)
$$[0]_{\Theta \cap (\Phi \vee \Psi)} = [0]_{(\Theta \cap \Phi) \vee (\Theta \cap \Psi)}$$

holds in A. We say that (Θ, Φ, Ψ) is dually distributive at 0 if

$$[0]_{\Theta \vee (\Phi \cap \Psi)} = [0]_{(\Theta \vee \Phi) \cap (\Theta \vee \Psi)}$$

holds in \mathcal{A} .

An algebra \mathcal{A} is called (dually) distributive at 0 if (Θ, Φ, Ψ) has this property for every $\Theta, \Phi, \Psi \in Con \mathcal{A}$.

¹⁹⁹¹ Mathematics Subject Classification. 08A30, 08B10.

 $[\]it Key\ words\ and\ phrases.$ Distributivity at 0, direct decomposability of congruence class, Chinese Remainder Theorem

Supported by the cooperative project "Action Österreich - Tschechische Republic", grant No. 22p2.

Lemma 1. Let $\Theta, \Phi, \Psi \in Con \mathcal{A}$ and the triplets $(\Theta \cap \Psi, \Theta, \Phi)$ and (Φ, Θ, Ψ) be dually distributive at 0. Then the triplet (Θ, Φ, Ψ) is distributive at 0. Hence, if \mathcal{A} is dually distributive at 0 then it is distributive at 0.

Proof. We can count directly

$$\begin{split} [0]_{(\Theta \cap \Phi) \vee (\Theta \cap \Psi)} &= [0]_{(\Theta \vee (\Theta \cap \Psi)) \cap (\Phi \vee (\Theta \cap \Psi))} = [0]_{\Theta \cap (\Phi \vee (\Theta \cap \Psi))} = [0]_{\Theta} \cap [0]_{\Phi \vee (\Theta \cap \Psi)} = \\ &= [0]_{\Theta} \cap [0]_{\Phi \vee \Theta} \cap [0]_{\Phi \vee \Psi} = [0]_{\Theta} \cap [0]_{\Phi \vee \Psi} = [0]_{\Theta \cap (\Phi \vee \Psi)} \,. \end{split}$$

The second assertion follows immediately.

Remark. It was shown by G. Czédli [3] that the converse of Lemma 1 does not hold. He found a \land -semilattice with 0 which is not dually distributive at 0 although the whole variety of \land -semilattices with 0 is distributive at 0, see [2].

Recall that \mathcal{A} is permutable at 0 if $[0]_{\Theta \circ \Phi} = [0]_{\Phi \circ \Theta}$ holds for every $\Theta, \Phi \in Con \mathcal{A}$. For these algebras, we can prove

Lemma 2. Let A = (A, F) be an algebra with 0 which is permutable at 0. Then

- (a) $[0]_{\Theta \vee \Phi} = [0]_{\Theta \circ \Phi}$ for each $\Theta, \Phi \in Con \mathcal{A}$;
- (b) If A is distributive at 0 then A is dually distributive at 0.

Proof. For (a), it is enough to prove $[0]_{\Theta \vee \Phi} \subseteq [0]_{\Theta \circ \Phi}$. Suppose $x \in [0]_{\Theta \vee \Phi}$. Then

$$\langle x, 0 \rangle \in \Theta \vee \Phi$$

thus there exist an odd integer n and elements y_1, \ldots, y_n of A such that

$$\langle x, y_1 \rangle \in \Theta, \quad \langle y_1, y_2 \rangle \in \Phi, \dots, \langle y_{n-1}, y_n \rangle \in \Theta, \quad \langle y_n, 0 \rangle \in \Phi.$$

Hence, $y_{n-1} \in [0]_{\Theta \circ \Phi}$ thus also $y_{n-1} \in [0]_{\Phi \circ \Theta}$, i.e. there is $z_1 \in A$ with $\langle y_{n-1}, z_1 \rangle \in \Phi$ and $\langle z_1, 0 \rangle \in \Theta$. Applying transitivity, $\langle y_{n-2}, z_1 \rangle \in \Phi$ whence

$$y_{n-2} \in [0]_{\Phi \circ \Theta} = [0]_{\Theta \circ \Phi}$$
.

We can repeat this processing and, after n-1 steps, we conclude $x \in [0]_{\Theta \circ \Phi}$. The assertion (b) was proven by J. Duda [5].

2 Decomposability of 0-classes

Definition 2. Let A_1, A_2 be algebras of the same type and $A = A_1 \times A_2$. Let $\Theta \in Con A$. We say that the 0-class $[0]_{\Theta}$ is directly decomposable if there exist $\Theta_1 \in Con A_1$ and $\Theta_2 \in Con A_2$ such that

$$[0]_{\Theta} = [0]_{\Theta_1} \times [0]_{\Theta_2} .$$

Recall that for $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$, by projection congruences Π_1, Π_2 we mean congruences on \mathcal{A} induced by the projections pr_1, pr_2 of \mathcal{A} onto $\mathcal{A}_1, \mathcal{A}_2$, respectively.

Denote by ω_i or ω_A the least congruence on \mathcal{A}_i or \mathcal{A} and by ι_i or ι_A the greatest congruence on \mathcal{A}_i or \mathcal{A} , respectively. Of course, $\Pi_1 \cap \Pi_2 = \omega_A$.

Let $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ and $\Theta \in Con \mathcal{A}$. Introduce the relations Θ^1 and Θ^2 on A by setting

$$\Theta^{1} = \{ \langle (x_{1}, x_{2}), (y_{1}, y_{2}) \rangle \in \Theta; \ x_{2} = 0 = y_{2} \}
\Theta^{2} = \{ \langle (x_{1}, x_{2}), (y_{1}, y_{2}) \rangle \in \Theta; \ x_{1} = 0 = y_{1} \}.$$

Theorem 1. Let A_1 , A_2 be algebras of the same type τ satisfying $f(0,\ldots,0) = 0$ for each n-ary $(n \geq 1)$ operation f of τ . Let $A = A_1 \times A_2$ and $\Theta \in Con A$. Then $[0]_{\Theta}$ is directly decomposable if and only if it holds

(P)
$$[0]_{\Theta} = [0]_{\Pi_1 \circ \Theta^1} \cap [0]_{\Pi_2 \circ \Theta^2}.$$

Proof. (a) Suppose that $[0]_{\Theta} = [0]_{\Theta_1} \times [0]_{\Theta_2}$ for some $\Theta_1 \in Con \ \mathcal{A}_1$ and $\Theta_2 \in Con \ \mathcal{A}_2$. Let $x = (x_1, x_2)$ and $x \in [0]_{\Pi_1 \circ \Theta^1} \cap [0]_{\Pi_2 \circ \Theta^2}$. Then

$$(x_1, x_2)\Pi_1(x_1, 0)\Theta^1(0, 0)$$
 and $(x_1, x_2)\Pi_2(0, x_2)\Theta^2(0, 0)$,

thus $(x_1,0) \in [0]_{\Theta}$, $(0,x_2) \in [0]_{\Theta}$ and, with respect to direct decomposability of $[0]_{\Theta}$, also $x \in [0]_{\Theta}$. The converse inclusion is evident, i.e. the condition (P) holds.

(b) Suppose (P) and let $y = (y_1, y_2) \in [0]_{\Theta}$. Then $\langle y, 0 \rangle \in \Pi_1 \circ \Theta^1$ and $\langle y, 0 \rangle \in \Pi_2 \circ \Theta^2$. We define

$$\Theta_1 = \{ \langle x_1, y_1 \rangle \in \mathcal{A}_1 \times \mathcal{A}_1; \ \langle (x_1, 0), (y_1, 0) \rangle \in \Theta \}$$

$$\Theta_2 = \{ \langle x_2, y_2 \rangle \in \mathcal{A}_2 \times \mathcal{A}_2; \ \langle (0, x_2), (0, y_2) \rangle \in \Theta \}.$$

Obviously, Θ_i is an equivalence on \mathcal{A}_i and, due to $f(0,\ldots,0)=0$, we can easily show that $\Theta_i \in Con \mathcal{A}_i$, i=1,2. Moreover, $\langle y,0 \rangle \in \Pi_1 \circ \Theta^1$ gives $\langle y_1,0 \rangle \in \Theta_1$, analogously, $\langle y,0 \rangle \in \Pi_2 \circ \Theta^2$ implies $\langle y_2,0 \rangle \in \Theta_2$ thus $y=(y_1,y_2) \in [0]_{\Theta_1} \times [0]_{\Theta_2}$ proving $[0]_{\Theta} \subset [0]_{\Theta_1} \times [0]_{\Theta_2}$.

proving $[0]_{\Theta} \subseteq [0]_{\Theta_1} \times [0]_{\Theta_2}$. Suppose now $x \in [0]_{\Theta_1} \times [0]_{\Theta_2}$. Then $x \in [0]_{\Pi_1 \circ \Theta^1}$ and $x \in [0]_{\Pi_2 \circ \Theta^2}$, and, by $(P), x \in [0]_{\Theta}$ giving the converse inclusion. Thus $[0]_{\Theta}$ is directly decomposable. \square

Corollary. Let A_1 , A_2 be algebras of the same type τ satisfying $f(0,\ldots,0)=0$ for every n-ary $(n\geq 1)$ operation f of τ . Let $A=A_1\times A_2$ and $\Theta\in Con\,\mathcal{A}$. If it holds

$$[0]_{\Theta} \subseteq [0]_{\Pi_1 \circ \Theta^1} \cap [0]_{\Pi_2 \circ \Theta^2}$$

and the triplet (Θ, Π_1, Π_2) is dually distributive at 0 then $[0]_{\Theta}$ is directly decomposable.

Proof. Suppose that the triplet (Θ, Π_1, Π_2) is dually distributive at 0. Then

$$\begin{aligned} [0]_{\Pi_1 \circ \Theta^1} \cap [0]_{\Pi_2 \circ \Theta^2} &= [0]_{\Pi_1 \circ \Theta^1 \cap \Pi_2 \circ \Theta^2} \subseteq [0]_{\Pi_1 \circ \Theta \cap \Pi_2 \circ \Theta} \subseteq [0]_{(\Pi_1 \vee \Theta) \cap (\Pi_2 \vee \Theta)} \\ &= [0]_{\Theta \vee (\Pi_1 \cap \Pi_2)} = [0]_{\Theta}. \end{aligned}$$

Together with (Q), this gives (P).

Remark. If a variety \mathcal{V} is permutable at 0, \mathcal{A}_1 , $\mathcal{A}_2 \in \mathcal{V}$ and $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ is distributive at 0, then $[0]_{\Theta}$ is directly decomposable for each $\Theta \in Con \mathcal{A}$. This result was proved by P. Agliano and A. Ursini [1], see Proposition 4.1. Namely, if \mathcal{V} is permutable at 0 (i.e. \mathcal{V} is subtractive in the terminology of [1]) then $\mathcal{A} \in \mathcal{V}$ has distributive lattice of all its ideals. Applying our Lemma 2 and $(1) \Leftrightarrow (3)$ in Proposition 4.1 of [1], we have the proof of the mentioned assertion.

3 Modifications of the Chinese Remainder Theorem

It is well-known that the Chinese Remainder Theorem is closely connected with congruence distributivity. In the sequel we illustrate similar connections for other (local) versions of CRT.

Recall that an algebra \mathcal{A} satisfies Chinese Remainder Theorem (briefly CRT) if for any $n \in \mathbb{N}$ and every $\Theta_1, \ldots, \Theta_n \in Con \mathcal{A}$, if $\langle w_i, w_j \rangle \in \Theta_i \vee \Theta_j$ for each $i, j \in \{1, \ldots, n\}$ then there exists $z \in A$ such that $\langle z, w_i \rangle \in \Theta_i$ for $i = 1, \ldots, n$.

Definition 3. An algebra \mathcal{A} with 0 satisfies the 0-Chinese Remainder Theorem (0-CRT) if for each $c \in A$ and every $\Theta, \Phi_1, \ldots, \Phi_n \in Con \mathcal{A}$ it holds: if $[0]_{\Phi_i} \cap [c]_{\Theta} \neq \emptyset$ for $i = 1, \ldots, n$ then $[0]_{\Phi_1} \cap \cdots \cap [0]_{\Phi_n} \cap [c]_{\Theta} \neq \emptyset$.

It is almost evident that every algebra $\mathcal A$ with 0 satisfying CRT satisfies also 0-CTR.

Lemma 3. An algebra \mathcal{A} satisfies 0-CRT if and only if for each $c \in A$ and every Θ, Φ_1, Φ_2 of $Con \mathcal{A}$ it holds:

$$[0]_{\Phi_1} \cap [c]_{\Theta} \neq \emptyset \neq [0]_{\Phi_2} \cap [c]_{\Theta} \Rightarrow [0]_{\Phi_1} \cap [0]_{\Phi_2} \cap [c]_{\Theta} \neq \emptyset.$$

П

The proof is straightforward.

Theorem 2. For an algebra A permutable at 0, the following conditions are equivalent:

- (1) \mathcal{A} is distributive at 0;
- (2) A satisfies 0-CRT.

Proof. (1) \Rightarrow (2): Suppose $[0]_{\Phi_1} \cap [c]_{\Theta} \neq \emptyset \neq [0]_{\Phi_2} \cap [c]_{\Theta}$. This and Lemma 2 imply $c \in [0]_{\Theta \circ \Phi_1} = [0]_{\Theta \vee \Phi_1}$. Similarly, $c \in [0]_{\Theta \vee \Phi_2}$. Hence

$$c \in [0]_{(\Theta \vee \Phi_1) \cap (\Theta \vee \Phi_2)} = [0]_{\Theta \vee (\Phi_1 \cap \Phi_2)} = [0]_{\Theta \circ (\Phi_1 \cap \Phi_2)}$$

i.e. there exists $d \in A$ such that $\langle c, d \rangle \in \Theta$, $\langle d, 0 \rangle \in \Phi_1$, $\langle d, 0 \rangle \in \Phi_2$ whence $d \in [c]_{\Theta} \cap [0]_{\Phi_1} \cap [0]_{\Phi_2}$. By Lemma 3, \mathcal{A} satisfies 0-CRT.

(2) \Rightarrow (1): Let \mathcal{A} be permutable at 0 and satisfies 0-CRT. Let Θ , Φ_1 , $\Phi_2 \in Con \mathcal{A}$ and $c \in [0]_{(\Theta \vee \Phi_1) \cap (\Theta \vee \Phi_2)}$. Then $c \in [0]_{\Theta \vee \Phi_1}$, $c \in [0]_{\Theta \vee \Phi_2}$. Since \mathcal{A} is permutable at 0, we have also $c \in [0]_{\Theta \circ \Phi_1} \cap [0]_{\Theta \circ \Phi_2}$. Hence, there exist $a, b \in \mathcal{A}$ such that $\langle c, a \rangle \in \Theta$, $\langle a, 0 \rangle \in \Phi_1$ and $\langle c, b \rangle \in \Theta$, $\langle b, 0 \rangle \in \Phi_2$, i.e. $a \in [0]_{\Phi_1} \cap [c]_{\Theta}$, $b \in [0]_{\Phi_2} \cap [c]_{\Theta}$. By 0-CRT, there exists $d \in \mathcal{A}$ such that

$$d \in [0]_{\Phi_1} \cap [0]_{\Phi_2} \cap [c]_{\Theta}$$
,

i.e. $\langle c, d \rangle \in \Theta$, $\langle d, 0 \rangle \in \Phi_1 \cap \Phi_2$. We conclude $c \in [0]_{\Theta \circ (\Phi_1 \cap \Phi_2)} \subseteq [0]_{\Theta \vee (\Phi_1 \cap \Phi_2)}$. Hence, \mathcal{A} is dually distributive at 0. By Lemma 1, we have (1).

Definition 4. An algebra \mathcal{A} is \circ -distributive if

$$\Theta \cap (\Phi \circ \Psi) = (\Theta \cap \Phi) \circ (\Theta \cap \Psi) \quad \text{for all} \quad \Theta, \Phi, \Psi \in Con \ \mathcal{A}.$$

If \mathcal{A} is permutable at 0 and \circ -distributive then \mathcal{A} is also distributive at 0.

Definition 5. An algebra \mathcal{A} satisfies the *block-CRT* if for every $\Theta_1, \Theta_2, \Theta_3 \in Con \mathcal{A}$ and any class X_j of Θ_j (j = 1, 2, 3) we have:

if
$$X_1 \cap X_2 \neq \emptyset$$
, $X_2 \cap X_3 \neq \emptyset$, $X_1 \cap X_3 \neq \emptyset$ then $X_1 \cap X_2 \cap X_3 \neq \emptyset$.

Of course, if $\mathcal A$ satisfies CRT, then $\mathcal A$ satisfies also the block-CRT. Conversely, we can show

Lemma 4. Let \mathcal{A} be a congruence-permutable algebra. If \mathcal{A} satisfies the block-CRT then \mathcal{A} satisfies also CRT.

Proof. It is enough to prove CRT only for three congruences. Let $\Theta_1, \Theta_2, \Theta_3 \in Con \mathcal{A}$ and $\langle w_i, w_j \rangle \in \Theta_i \vee \Theta_j$ for $i, j \in \{1, 2, 3\}$. By congruence-permutability,

$$\langle w_i, w_j \rangle \in \Theta_i \circ \Theta_j$$
.

Hence $[w_i]_{\Theta_i} \cap [w_j]_{\Theta_j} \neq \emptyset$ and the block CTR gives an element z with $\langle w_i, z \rangle \in \Theta_i$ for all i proving CRT.

Theorem 3. For an algebra A, the following conditions are equivalent:

- (1) A satisfies block-CRT;
- (2) \mathcal{A} is \circ -distributive.

Proof. (1) \Rightarrow (2): Evidently, for each Θ , Φ , $\Psi \in Con \mathcal{A}$ we have $(\Theta \cap \Phi) \circ (\Theta \cap \Psi) \subseteq \Theta \cap (\Phi \circ \Psi)$. Let us prove the converse inclusion. If $\langle a, b \rangle \in \Theta \cap (\Phi \circ \Psi)$ then there exists $c \in A$ with $\langle a, c \rangle \in \Phi$, $\langle c, b \rangle \in \Psi$, hence

$$a \in [a]_\Theta \cap [c]_\Phi, \quad b \in [a]_\Theta \cap [b]_\Psi, \quad c \in [c]_\Phi \cap [b]_\Psi \ .$$

By (1), there is $d \in [a]_{\Theta} \cap [b]_{\Psi} \cap [c]_{\Phi}$, i.e. $\langle a, d \rangle \in \Theta \cap \Phi$ and $\langle d, b \rangle \in \Theta \cap \Psi$ proving $\langle a, b \rangle \in (\Theta \cap \Phi) \circ (\Theta \cap \Psi)$.

(2) \Rightarrow (1): Let X_1, X_2, X_3 be blocks of $\Theta, \Phi, \Psi \in Con \mathcal{A}$, respectively. Suppose $a \in X_1 \cap X_2, b \in X_2 \cap X_3$ and $c \in X_1 \cap X_3$. Then $\langle a, c \rangle \in \Theta, \langle a, b \rangle \in \Phi, \langle b, c \rangle \in \Psi$, whence $\langle a, c \rangle \in (\Theta \cap \Phi) \circ (\Theta \cap \Psi)$, i.e. there exists $d \in A$ with $\langle a, d \rangle \in \Theta \cap \Phi, \langle d, c \rangle \in \Theta \cap \Psi$. Hence $d \in X_1 \cap X_2 \cap X_3$.

References

- [1] Agliano P., Ursini A., On subtractive varieties II: General properties, Algebra Universalis 36 (1996), 222–259.
- [2] Chajda I., Congruence distributivity in varieties with constants, Archiv. Math. 22 (1986), Brno, 121–124.
- [3] Czédli G., Notes on congruence implications, Archivum Math. 27 (1991), Brno, 149–153.
- [4] Duda J., Varieties having directly decomposable congruence classes, Časop. pest. mat. 111 (1986), 397–403.
- [5] Duda J., Arithmeticity at 0, Czech. Math. J. 37 (1987), 197-206.

(Received March 1, 1999)

Department of Algebra and Geometry Palacký University Olomouc Tomkova 40 779 00 Olomouc CZECH REPUBLIC

E-mail address: CHAJDA@RISC.UPOL.CZ