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MOORE-OSGOOD THEOREM
FOR FUZZY FUNCTIONS

VLADIMIR JANIS

ABSTRACT. Moore-Osgood theorem is the tool that enables us to show important
corollaries of the uniform convergence for a sequence of real functions. We show
that in the literal transcription of the uniform convergence notion for fuzzy functions
is not appropriate, as we would lose this important statement. We show that the
uniform convergence of pseudoinverses is the sufficient and necessary condition to
save Moore-Osgood theorem for fuzzy functions.

The concept of uniform convergence is one of the basic principles in the study of
real functions, or more generally of the mappings in metric spaces. One of the main
reasons of its importance is the Moore-Osgood theorem. Here is its formulation for
real functions:

Proposition 1 (Moore-Osgood). If the sequence of real functions { f, }22, uni-
formly converges to a real function f on a set A, if for a given xq € A and for each
natural number n there is limg sz, fo(2) = an, then lim, oo an = f(20).

There are many important corollaries of this statement, like hereditary continuity
of the limit function, possibility (perhaps under some additional conditions) of
termwise differentiation and integration and other.

In concepts that generalize either the one of a real function or the uniform con-
vergence, or both, we have to be aware that in fact it is exactly the Moore-Osgood
theorem (and its corollaries) that makes the uniform convergence so important.
The literal transcription may sometimes be contraproductive, as we will show on
the case of fuzzy functions.

We will start introducing the notion of a fuzzy number. Though usually a fuzzy
number is understood as a fuzzy set with the unique modal value, in a lot of works
we can find also a different definition. Here and in the rest of this work the symbol
R denotes the set of all real numbers:
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Definition 1. A real fuzzy number is a fuzzy set p : R — [0; 1] for which
(1) there is an zp € R for which p(zg) = 0,
(2) there is an x; € R for which p(x1) =1,
(3) p(r) = sup{p(s),s < r} for each r € R.

This definition resembles in a way the density function, hence this representation
of a fuzzy number is also sometimes called a statistical one. Note that due to this
definition a fuzzy number is a left-continuous function.

The set of all fuzzy real numbers will be denoted by F'(R).

The set of all (crisp) real numbers is embedded into F'(R) in the following way:
a crisp real number ¢ is represented by a function ¢, € F(R) for which d,(r) = 0 if
r<tandd(r)=1ifr >t

The partial ordering in F(R) is given by the following way:

p < o if and only if p(r) > o(r) for each r € R.

If o is a number in the interval ]0, 1], then the a-cut of a fuzzy number p is the
set (p)o = {z € R;p(x) > a}. For a = 0 we define (p)o as the closure of the set
Uaso(p)a

These cuts are evidently intervals with the right endpoint co. Clearly we can-
not use Hausdorff metric for measuring their distances, as these intervals are not
compact, but still the following is quite natural: The distance of two cuts will be
the distance of their left endpoints (note that due to Definition 1 this is always a
real number). As no confusion can emerge (we do not use Hausdorff metric in this
work), we will use the symbol h for this distance. In this sense we will also speak
about the convergence of the cuts.

Definition 2. A real fuzzy function is a mapping f : R — F(R).

Hence a fuzzy function assigns a fuzzy real number to a crisp real number.
If fis a fuzzy function and 0 < o < 1 then the a-level function of f is the
function (f), defined in the following way:

(fa(x) =inf{y € R; f(z)(y) > a}

Another useful tool will be the pseudoinverse of a fuzzy number introduced by
Sherwood and Taylor in [4] and studied in many other works, among which the
closest relation with our topic is in the paper [3] by Klement. Though this term
is used quite frequently, we remind its definition (we use the usual convention
sup ) = —oo):

Definition 3. Let p € F(R). Its pseudoinverse is the function p(=1) : [0;1] —
[—o0; oo] for which p(_”(oz) = sup{r; p(r) < a}.

The notion of pseudoinverse and its relation to quasiinverse is thoroughly ex-
plained in [5].

The set of all pseudoinverses of the fuzzy numbers in F(R) will be denoted
by F(=D(R). It has been shown in [3] that F(=D(R) is exactly the set of left-
continuous, non-decreasing functions defined on [0, 1] with the value —co at the
point zero. Moreover, the mapping p : p — p{=1) is an involutive order-preserving
isomorphism from (#'(R), +min), Where 4+, is the addition of fuzzy numbers with
respect to the minimum triangular norm, onto (F(=Y(R),4), where the addition
is the usual addition of real functions.
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Definition 4. The pseudoinverse of a fuzzy function f will be understood as the
mapping fV : R — FCD(R) such that f1 (z) = (f(z))(-Y.

The relationship between pseudoinverses and a-cuts can be seen from the fol-
lowing statement:

Proposition 2. If p is a fuzzy number, o €]0, 1], then
(Pla ={y € Rsy > p"V(a)}.

Proof. Let y € (p)o. Then according to the definition of a cut p(y) > «.
If r is an arbitrary real number for which p(r) < «a, then, as p is a non-decreasing
function, y > r. Hence

y >sup{r € Rip(r) < a} = p=V(a).

In a similar way we can show the remaining inclusion. O

We will deal with a sequence of fuzzy functions {f,}52,. A literal transcription
of uniform convergence from the crisp case to the fuzzy one would provide the
following definition: A sequence {f,,} —_; of fuzzy functions defined on a set A C R
converges uniformly to a fuzzy function f defined on A, if for each positive € there
exists a natural number ng such that for all n > ny and € A the inequality

sup {|fn(z)(y) — f(z)(y)],y € R} < ¢

holds.
The following example, introduced also in [1], shows that this definition is not
an appropriate one for a sequence of fuzzy functions.

Example 1. Let for a natural number n the fuzzy function f,, be the following:
at each z € R the value f, () is the fuzzy number

0 ify <o,

n—1 :
h@w=4 " , "

1 ify>2.

This sequence fulfills the requirement of the above mentioned definition, if for
the limit function f we take the fuzzy function whose value at any z € R is the
following fuzzy number:

0 ify<o,
flo)y)y =<y if0<y<l,
1 ify>1,

as for each # € R there 1s

sup {/(2)(4) — F(&)()]y € R} = =

n
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On the other hand the 1-level function (the level function for a = 1) of f,, for
each natural n is the constant function (f,)1(x) = 2, while the 1-level function
for the limit is the constant function (f)1(x) = 1. Thus the sequence of 1-level
functions does not converge uniformly to the 1-level function of the limit function
(not even pointwise).

As we can see, defining uniform continuity this way does not allow us to use the
Moore-Osgood theorem. Namely, the 1-cuts of f,(z) do not converge to the 1-cut
of f(x) for any real x in the previous example.

The following proposition expresses the proper condition to enable the use of
Moore-Osgood theorem. We have to note that speaking about the convergence of
a fuzzy functions pseudoinverse sequence we have to keep in mind the supremum
metric in the space of values.

Proposition 3. If for the sequence of fuzzy functions {f,}, there exists a fuzzy
function f such that the sequence of pseudoinverses {f,(fl) o_, converges to F=1
on a set A, then the sequence {f,}5%, with the function f fulfill the statement of

the Moore-Osgood theorem.

Proof. Suppose the sequence of pseudoinverses f,(fl) uniformly converges to the
pseudoinverse f(_l) on the set A. Then for each ¢ > 0 there is a natural number
ng such that for all n > ny we have

sup |fr(l_1)(l’) — f(_l)(x)| < ¢ foreach z € A,
or, using the definition of a pseudoinverse to a fuzzy function,
sup |(fn(l‘))(_1) — (f(x))(_1)| < ¢ foreach z € A.

As we use the supremum metric in the space of values, this inequality implies that
for any a €]0, 1] we have

|(fa(2)) " (@) = (F(2)"Y(a)| < ¢ for each z € A.
By Proposition 2 we get
h((fa(®))a, (f(x))a) < e for each z € A,

but this means that the distance of the left endpoints of these intervals is less than
¢ for any « € A, which is exactly the uniform convergence of level functions (fy)q
to the corresponding level functions f,. O

Hence using this type of uniform convergence for fuzzy functions we have e.g. the
corollary that if in a uniformly convergent sequence of fuzzy functions all the level
functions are continuous, then also the level functions of the limit are continuous
as the level functions in the sequence uniformly converge to the corresponding level
function of the limit. In a similar way, perhaps with additional conditions, we can
obtain other similar results.
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