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POSITIVE LINEAR MAPS ON
TRIGONOMETRIC POLYNOMIALS

MiLosLAv DUCHON AND PETER MALICKY

ABSTRACT. Positive linear maps on trigonometric polynomials with values in a par-
tially ordered vector space are investigated.

INTRODUCTION

The classical Herglotz theorem states that a sequence (z4){>_, of complex num-
bers is the sequence of the Fourier-Stieltjes coefficients of a nondecreasing function
g defined on the interval [0, 27] if and only if the sequence (z)5>_ ., is positive
defined. Recall that z; = fOZW e~'*t dg(t) is said to be the k-th Fourier-Stieltjes
coefficient of a function g of bounded variation defined on the interval [0,27]. A
sequence (zg)> _ ., of complex numbers is said to be positive defined if and only if

— 00

0< Y Y he_p CiC2k—j for any finite sequence of complex numbers (¢;)i__,,.

A generalization of Herglotz theorem for vector lattices was given in the paper [1].
Paper [2] generalizes this theorem for a sequence (z)72 _ ., elements of which be-
long to the complexification Z of a monotone o-complete partially ordered vector
space Y. For such a sequence it was constructed a positive linear map ® defined on
trigonometric polynomials with values in Y. For the proof of positivity of the map
® we have used a limit process. In this paper we show that this limit process may
be omitted ( Theorem 2.3 ). The present paper deals with a partially ordered vector
space Y and we present those statements of paper [2] which may be proved without
the assumption of monotone o-completeness of Y. However, this assumption is
necessary for an extension of the map ® onto the set of all continuous 27-periodic

functions.

1. PRELIMINARIES

In the whole paper we denote by the symbol Y a real partially ordered vector
space and Z the complexification of Y. A real vector space Y is called a partially
ordered vector space if it has a partial ordering < such that:

Ve,yz€Y o<y = v+z2<y+z
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Ve,yeYVA>0:2<y = Az <Ay.

If a sequence (yn)SL; of elements of ¥ has a least upper (greatest lower) bound,
then this element is denoted by /o, yn ( Aoy ¥n ). A partially ordered vector
space Y 1is called archimedean if /\ZO:1 %y = 0 for any positive y € Y. A partially
ordered vector space is said to be monotone og-complete if any increasing sequence
(an)%;, which is bounded above, has a least upper bound /.o, an, see [5]. Any

monotone o-complete partially ordered vector space is archimedean.

Example 1.1. Any real vector space with a trivial ordering (i.e. < y if and only
if # = y ) is monotone o-complete partially ordered vector space and archimedean.
Let Y be a set of real polynomials with natural operations and ordering defined
by P < @ if and only if P(t) < Q(t) for all ¢t € [a,b]. Then Y is not monotone
o-complete, but Y is still archimedean. Let Y, be subspace of Y consisting of all
polynomials of degree < n. Then Y,, is monotone g-complete.

Take a function A : [a,b] — Y of the form h(t) = Z?:l @;(t)y; , where
@; :[a,b] = R are continuous and y; € Y. Then the integral

/ i =3 (/ b pilt)dt )y

i=1

is correctly defined and
b
/ h(t)dt > 0 whenever h(t) > 0 for all ¢ € [a, b],

see [3,p. 253].

A function p of the form p(t) = Z?Z_n is called a (complex) trigonometric
polynomial. Obviously, the function p is real if and only if c_; = ¢; for any integer
Jj €4{-n,...,0,..,n}. The set of all real (complex) trigonometric polynomials is
denoted by Ta, (R) (by T2-(R, C)).

Clearly, any linear map ® : 75:(R) — Y may be extended onto a linear map
¢ :Th:(R,C) — Z by the formula ®(p + i ¢) = ®(p) + i®(q). For any integer j
put x;(t) = e~¥%. For a linear map ® : Ty, (R, C) — Z the element z; = ®(y;) is
sald to be the j-th Fourier coefficient of ®.

it
cje

2. FOURIER COEFFICIENTS OF A POSITIVE LINEAR MAP

We now give a characterization of a positive linear map ® : 7%(R) — Y in
terms of its Fourier coefficients.

Definition 2.1. Let z = (z;)52_., be a sequence of elements of Z.

(1) The sequence z is said to be positive defined if 0 < Z;'L:—n S e CiTRZh—j
n

for any finite sequence (c; )j:_n of complex numbers.

(ii) The sum

Y 5l
ijt
Z (1_ N + 1)2-7(3]

j=—N

is denoted by on(z,t) and is called the Cesaro sum of the sequence z.
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Lemma 2.1. Let & : 715 (R) = Y be a positive linear map. Then the sequence

7z = (2j)52_, of the Fourier coefficients of ® is positive defined.

Proof. Let (cj)7__,, be asequence of complex numbers. Put

n

f(t) = Z cjeijt and g(t) = |f(t)|2 _ Zn: Zn: chei(j—k)t.

j=—n j=—nk=—n
Then

0< ()= > D ¢iThzn-j.

j=—nk=—n
So, the sequence z is positive defined.

Lemma 2.2. Let p(t) ="

j=-n !
Then there is a complex trigonometric polynomial ¢(t) = Z?:o dje't such that

p(t) = g

Proof. Put P({) = Z;-L:_n ¢;j¢J . Then p(t) = P(e't) . Write

c;e"" be a nonnegative trigonometric polynomial.

-1 _ -
w= Z(1 _+<9: or equivalently ¢ = Z—i—z '

For real w we have || = 1. Put

w—1

w41

R(w) = (w2 +1)"P(

).
Then .
Rw) = 3 ej(w— i)™+ w4+~
which means that R is a polynomial of degree < 2n. Moreover,
R(w) > 0 for any real w .

It means that the polynomial R has only real zeros of even multiplicity and pairs
of nonreal conjugated zeros of the same multiplicity. In other words,

=

R(w)=A || (w— wg)(w — wg), where A >0 .

k

Therefore,

w—1 A e - A T W — w w— WE
P = - - = :
(w+i) (w? + 1)7 kl:[(“’ wg) (w — W) (w2_|_1)n—mkli[1 w+i w—1
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Hence,

m z(1+c) id+¢) _ —

P(C) = (17<7<) >n T H z<1+c> +wk il(};l-é)__u;k -
_4nf_1m( 7C)n7m( %) 1;[ (1+9¢) +Zwk(1_C) (1+C)+2z'£u—k(1—6) _
_ 4%(1—()”"”(1— %)n_mH(l-i-C‘i'iwk(l_C)) (1+%—iw_k(1— %)) .

=1

k
Q(C)—\/gl— H1+C+lwk1_C))

Then P(¢) = Q(C)Q(() whenever { = f ,i.e. |¢| = 1. The trigonometric polyno-
mial ¢(t) = Q(e™) has desired properties.
Remark. For another proof see [4, p.92, 294-295].

The converse of Lemma 2.1 is also true:

Theorem 2.3. Let z = (z; )J,_oo be a positive defined sequence of elements of 7.
Then the map ® : Taz (R, C) = Z defined by the formula

n n

(p) = Y ey forp(t) = Y ejelt

j=—n j=—-n
is a unique positive linear map for which the sequence of the Fourier coefficients is
the sequence z.

Proof. Linearity and uniqueness of the map @ is obvious. We shall show positivity.
Let p(t) = Z;:—n cje't > 0 for all real ¢. By Lemma 2.1,

p(t) = |q(t)|2 , where ¢(t) = Zdjeijt
J=0

Hence,
n min(n,n+j)
t) = (Zdjeijc) (Z— —zkt) Z ( Z dkm) it
j=0 k=0 j=—n k=max(0,j)
It means
min(n,n+j)
Ci = Z dkdk_j and
k=max(0,j)
n min(n,n+j) n n
Z cjzoj = Z ( Z dkw_j)z_j:Zded_ij_kzo ,
j=—n j=-n  k=max(0,j) k=0j7=0

because z = (z;)52 is a positive defined sequence.

j=—o00
So, we have the following characterization of positive linear maps by their Fourier
coefficients.
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Theorem 2.4. For any sequence 7z = (2;)5Z_c,

properties are equivalent.

of elements of 7 the following

(1) There is a unique positive linear map ® : 15 (R) — Y for which z is the
sequence of the Fourier coefficients.

(ii) The sequence z is positive defined.

Now, we consider positive defined sequences in connection with their Cesaro
sums.

o}
j=—0o0

Lemma 2.5. Let a sequence z = (z;) of elements of 7 be positive defined.

Then
(i) on(z,t) >0 for all real t and natural N.
(i) 0< 20 €Y, z2_p =7, £ Re(zn) < 20 and £ 1m(zy,) < 2z¢ for any integer n.

Proof. (i). Put ¢; = e~% for 0 < j < N. Then

N

N N
0< Y > emm = 3 (N +1=|ilze” = (N + Dowla,1).
j=0k=0 j=—-N

(ii). Put ¢g = 1. Then

0

0
0< E E CjCrZk—j = CoZ0 = Z0,
=0

k=0

le,0< 2z €Y. Put ¢g=c,=1and ¢; =0 for 0 < j <n. Then

7 n
0< Zch@zk_j =220+ 2+ 2-pn-
j=0k=0

It means that Im(z, + z_,,) = 0 and — Re(z, + z_,) < 2zg. Replacing ¢, by —1,
we obtain Re(z, + z_p) < 2z9. Put ¢, = +i, then we have +Im(z,) < z; and
Re(z, — z—y,) = 0. Therefore, z_,, = 7;, +Re(z,) < zp and £1Im(z,) < z.

Lemma 2.6. Let z = (zj)ﬁ_w be a sequence of elements of Z such that z; = 0

for |j| > m. If Z;n:_m zj ¢t > 0 for all t, then the sequence = is positive defined.
Proof. Put

n n

Fy =3 et gty = |r)] = 3 N eme U and a(t) = 3 et

j=—n j=—nk=—n j=—n

1 27 n n
0< ﬁ/o g(t)h(t)dt = Z Z CjCiZk—j -

j=—nk=—n
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Lemma 2.7. Let a sequence z = (Zj);?i—oo of elements of 7/ be such that

on(z,t) > 0 for all real t and natural N. Then0 < zg €Y, z_; = 7;, £ Re(z;) < 2z
and £ 1Tm(z;) < 2z for any integer j.

Proof. For any integer N > 0 put

¢ = (1— NLﬁl)zj for — N —1<j<N+1and ¢; =0 otherwise.

Since o (z,t) > 0 for all ¢, the sequence ((;)52_., is positive defined by Lemma 2.6.
Now, Lemma 2.5 implies 0 < ¢y € Y, {_; = {;, = Re({;) < (o and +Im(¢;) < (o
for —-N —1<j <N+ 1. It means

0<2eY, 2, =7,

1y

:I:(l— N|{i 1) Re(z;) < zp and =+ (1 N

for —N —1 < j < N+ 1. Now, for any integer j take N = 2|j| — 1. Then

- Im(z) < 20

+Re(z;) < 229 and £ Im(z;) < 2z for any integer j .

Theorem 2.8. Let a sequence z = (z;)52_., of elements of Z be such that

on(z,t) > 0 for all real t and natural N. If

=0,

f::>8
=&

1

then the linear map ® : 15, (R, C) — Z defined by the formula

n n

<I>(f) = Z CjZ_j forp(t) = E C]'e”t

j=—n j=—n
1s a unique positive linear map for which the sequence of the Fourier coefficients is
the sequence z.
Proof. Clearly, it suffices to prove positivity of ®. So, assume

n

Py =Y el >0.

j=—-n

We have to prove that

n

Z cjz_j 20

j==n
Since p(t) > 0 and on(z,t) > 0 for all ¢, we have

n

L[ il
0< o |, f@)on(z,t)dt = Z ¢; (1 T l)z_j

j=—-n
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whenever n <2N + 1. Put

n n

S = Z c;jz—j and Sy = Z Cj(l N|ﬂl)z_]

j=—n j=—n

Then

n

_ l4 l4
S>85—-Sy= Z CJN+1Z_] _ZQ Re(c N—l—lz_j)’

j=—n j=1

because the elements ¢;,c_; and z;,2z_; are conjugated. Let ¢; = a; + tb; , where
a; and b; are real, and z; = u; + tv; , where u;,v; € Y. Then

z_; =wu; —iv; and S > QZ ﬁ(aj uj +bj v;) .
=1

Lemma 2.7 implies fu; < 2z and v; < 2z5. The inequalities +a; < c¢o and

+b; < ¢ follow from Lemma 2.6 and (ii) of Lemma 2.5. Therefore,

471(71 + 1)
Cp2g = ————————CpZp -

J
= N+1 o N+1

It means

So, @ is positive.
Corollary 2.9. Let a sequence z = (zj)]_ of elements of 7 be such that

— 00
on(z.t) > 0 for all real t and natural N. If' Y is archimedean, then there is a
positive linear map ® : T5(R) — Y for which the sequence of the Fourier coeffi-
cients is the sequence z.

The last theorem summarizes our previous results.

Theorem 2.10. For any sequence z = (z;)52_., of elements of Z with

oC
20
0<z€Yand A\ ==0
N=1
the following properties are equivalent.

(1) There is a unique positive linear map ® : T, (R) — Y for which z is the
sequence of the Fourier coefficients.

(ii) The sequence z is positive defined.

(iti) The Cesaro sums oy (z,t) are nonnegative for all natural N.

53



REFERENCES

=

Duchon, M., On Herglotz theorem in vector lattices, Tatra Mt. Math. Publ. 3 (1993), 231-236.
Duchoii, M. - Maliéky, P., On Herglotz theorem in partially ordered vector spaces, Soft Com-

S

puting (to be appear).

Malic¢ky, P., On random wvariables with values in a vector lattice, Acta Mathematica Univ.
Com. LII — LIII (1987), 249-263.

Pélya, G. - Szego, G., Problems and Theorems in Analysis, Vol. 2, Nauka, Moscow, 1978.
Wright, J. D. M., Measures with values in a partially ordered vector space, Proc. London
Math. Soc. 25 (1972), 675-688.

=

EEN

(Received June 30, 1999)
Mathematical Institute
Slovak Academy of Sciences
Stefanikova 49
814 73 Bratislava
SLOVAKITA

E-mail address: duchon@mat.savba.sk

Dept. of Mathematics
Matej Bel University
Tajovského 40

974 01 Banska Bystrica
SLOVAKIA

E-mail address: malicky@fpv.umb.sk

54



