A NOTE TO THE TRANSFORMATION OF T-NORMS BASED ON THE LIMIT T-NORMS

Dana Smutná

ABSTRACT. This is a continuation of the work in Smutná, A note to the construction of t-norms based on the limit t-norms, EUROFUSE-SIC'99, Budapest, Hungaria, 1999, 408-411. Transformation of the basic t-norms T_D and T_M by means of a transformation based on a non-decreasing transformation φ of the unit interval [0,1] yielding triangular norms are studied.

1. Introduction

Let us recall the well-known definition of the triangular norm.

Definition 1. A triangular norm (t-norm for short) is a binary operation on the unit interval [0,1], i.e., a function $T:[0,1]^2 \to [0,1]$ such that for all $x,y,z \in [0,1]$ the following four axioms are satisfied:

(T1) Commutativity

$$T(x,y) = T(y,x),$$

(T2) Associativity

$$T(x, T(y, z)) = T(T(x, y), z),$$

(T3) Monotonicity

$$T(x,y) < T(x,z)$$
 whenever $y < z$,

(T4) Boundary Condition

$$T(x,1) = x$$
.

Example 1. The operators T_D , T_M defined by

$$T_D(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1, \\ 0 & \text{otherwise,} \end{cases}$$

 $T_M(x,y) = \min(x,y)$

are t-norms. They belong to the basic t-norms.

¹⁹⁹¹ Mathematics Subject Classification. 03B52. Key words and phrases. T-norm, pseudo-inverse, transformation Research supported by grant VEGA 1/4064/97.

Definition 2. Let $\varphi : [0,1] \to [0,1]$ be a non-decreasing function. The function $\varphi^{(-1)}$ which is defined by

$$\varphi^{(-1)}(x) = \sup\{z \in [0,1]; \varphi(z) < x\},\$$

is called the pseudo-inverse of the function φ , with the convention $\sup \emptyset = 0$

Remark 1. Note that for the function φ and its pseudo-inverse the inequality $\varphi^{(-1)}(\varphi(x)) < x$ for all $x \in [0,1]$ is satisfied.

Now, we deal with the formula $\varphi^{(-1)}[T(\varphi(x), \varphi(y))]$ where φ is a function from the unit interval to itself, and T is a t-norm. We are interested in the conditions under which this formula yields a t-norm. There are several methods in the literature concerning the construction of a new t-norm T, see [1],[2],[3]. We cite here one of them, see [7].

Proposition 1. Let $\varphi : [0,1] \to [0,1]$ be non-decreasing on the interval [0,1] and continuous on the open unit interval [0,1] function and T be a t-norm. Then the operator T_{φ} , which is defined by

$$T_{\varphi}(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1, \\ \varphi^{(-1)}[T(\varphi(x),\varphi(y))] & \text{otherwise,} \end{cases}$$

is a t-norm.

2. The t-norms generated by T_D

In this part we investigate the t-norms, which are produced by construction from Proposition 1, when we consider Drastic product T_D and any function φ non-decreasing on the unit interval [0,1].

Example 2. For illustration we show next examples of generated t-norms.

(i) Let $\varphi_1:[0,1]\to[0,1]$ be defined by

$$\varphi_1(x) = x^2$$
,

then

$$(T_D)_{\varphi_1}(x,y) = T_D(x,y).$$

(ii) Let $\varphi_2:[0,1]\to[0,1]$ be defined by

$$\varphi_2(x) = \begin{cases} x & \text{if } x \in [0, \frac{1}{2}] \cup [\frac{3}{4}, 1], \\ \frac{3}{4} & \text{otherwise,} \end{cases}$$

then

$$(T_D)_{\varphi_2}(x,y) = T_D(x,y).$$

(iii) Let $\varphi_3:[0,1]\to[0,1]$ be defined by

$$\varphi_3(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}], \\ 1 & \text{otherwise,} \end{cases}$$

then

$$(T_D)_{\varphi_3}(x,y) = \begin{cases} \frac{1}{2} & \text{if } (x,y) \in [\frac{1}{2},1[^2,\\ T_D & \text{if } (x,y) \in [0,\frac{1}{2}[^2,\\ T_M & \text{otherwise.} \end{cases}$$

(iv) Let $\varphi_4:[0,1]\to[0,1]$ be defined by

$$\varphi_4(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{4}], \\ x & \text{if } x \in]\frac{1}{4}, \frac{1}{2}], \\ x + \frac{1}{4} & \text{if } x \in]\frac{1}{2}, \frac{3}{4}], \\ 1 & \text{otherwise.} \end{cases}$$

then

$$(T_D)_{\varphi_4}(x,y) = \begin{cases} 0 & \text{if } (x,y) \in [0,\frac{3}{4}]^2 \cup [\frac{3}{4},1[\times[0,\frac{1}{4}] \cup [0,\frac{1}{4}] \times [\frac{3}{4},1[,\frac{3}{4}] \cup [0,\frac{1}{4}] \cup [0,\frac{1}{4}] \cup [0,\frac{1}{4}] \times [\frac{3}{4},1[,\frac{3}{4}] \cup [0,\frac{1}{4}] \cup [0,\frac{1}{4}] \cup [0,\frac{1}{4}] \times [\frac{3}{4},1[,\frac{3}{4}] \cup [0,\frac{1}{4}] \cup [0$$

(v) Let $\varphi_5:[0,1]\to[0,1]$ be defined by

$$\varphi_5(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{4}], \\ \frac{1}{2} & \text{if } x \in]\frac{1}{4}, \frac{1}{2}], \\ 1 & \text{otherwise,} \end{cases}$$

then

$$(T_D)_{\varphi_5}(x,y) = \begin{cases} 0 & \text{if } (x,y) \in [0,\frac{3}{4}[^2,\\ \frac{1}{4} & \text{if } (x,y) \in [\frac{1}{2},1[\times[\frac{1}{4},\frac{1}{2}] \cup [\frac{1}{4},\frac{1}{2}] \times [\frac{1}{2},1[,\\ \frac{1}{2} & \text{if } (x,y) \in]\frac{1}{2},1[^2,\\ T_M & \text{otherwise.} \end{cases}$$

As far as T_D is a special t-norm, Proposition 1 holds true for the all functions φ .

Proposition 2. Let $\varphi : [0,1] \to [0,1]$ be a non-decreasing function and an operator $(T_D)_{\varphi} : [0,1]^2 \to [0,1]$ be defined by

$$(T_D)_{\varphi}(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1, \\ \varphi^{(-1)}[T_D(\varphi(x),\varphi(y))] & \text{otherwise.} \end{cases}$$

Then the operator $(T_D)_{\varphi}$ is a t-norm and $(T_D)_{\varphi} = T_D$ if and only if $\varphi^{(-1)}(1) = 1$ or $\varphi^{(-1)}(1) = 0$.

Proof. Let $\varphi^{(-1)}(1) = 1$, then from Definition 2 we have $\varphi(c) < 1$ for $c \in [0, 1[$. Suppose $x, y \in [0, 1[$, then $\varphi(x) < 1, \varphi(y) < 1$ and $T_D(\varphi(x), \varphi(y)) = 0$. Therefore $(T_D)_{\varphi}(x, y) = \varphi^{(-1)}(0) = 0$. If x = 1 or y = 1, then $(T_D)_{\varphi}(x, y) = \min(x, y)$ by Proposition 1.

Let $\varphi^{(-1)}(1) = 0$, then for all $x, y \in [0, 1[, T_D(\varphi(x), \varphi(y)) \le 1$ and consequently $0 \le (T_D)_{\varphi}(x, y) \le \varphi^{-1}(1) = 0$, i.e., $(T_D)_{\varphi}(x, y) = (T_D)(x, y) = 0$.

Let $\varphi^{(-1)}(1) \neq 1$ and $\varphi^{(-1)}(1) \neq 0$. Then there exists $c \in]0, 1[$ such that $\varphi(c) = 1$ and there exists $d \in]0, c[$ such that $\varphi(d) < 1$. Then $(T_D)_{\varphi}(c, c) = \varphi^{(-1)}(1) \neq 0 = T_D(c, c)$.

Proposition 3. Let $\varphi: [0,1] \to [0,1]$ be a non-decreasing function, such that there exists $c \in [0,1[$, such that $\varphi(c)=1$ and for all $c^* < c$, $\varphi(c^*) < 1$. Let $\{[a_i,b_i]\}_{i\in I}$ be a family of subintervals of [0,c[, such that $\varphi(x)=c_i$ whenever $x\in [a_i,b_i]$ (on the set $[0,c[\setminus\bigcup_{i\in I} (a_i,b_i]]$ the function φ is strictly increasing). Then for the t-norm $(T_D)_{\varphi}$ the equality

$$(T_D)_{\varphi}(x,y) = \begin{cases} 0 & \text{if } (x,y) \in [0,c[^2,\\ c & \text{if } (x,y) \in [c,1[^2,\\ \varphi^{(-1)}(c_i) = a_i & \text{if } (x,y) \in [c,1[\times [a_i,b_i] \text{ or } (x,y) \in [a_i,b_i] \times [c,1[,\\ T_M(x,y) & \text{otherwise} \end{cases}$$

is satisfied.

Proof.

- (i) Let $(x,y) \in [0,c[^2$, then $\varphi(x) < 1, \varphi(y) < 1$ and $T_D(\varphi(x),\varphi(y)) = 0$. Therefore $(T_D)_{\varphi}(x,y) = 0$.
- (ii) Let $(x,y) \in [c,1]^2$, then $\varphi(x) = 1, \varphi(y) = 1$ and $T_D(\varphi(x), \varphi(y)) = 1$ and $(T_D)_{\varphi}(x,y) = \varphi^{(-1)}(1) = c$.
- (iii) Let $(x,y) \in [c,1] \times [a_i,b_i]$, then $\varphi(x) = 1, \varphi(y) = c_i$ and $T_D(\varphi(x),\varphi(y)) = c_i$. Therefore $(T_D)_{\varphi}(x,y) = \varphi^{(-1)}(c_i) = a_i$. If $(x,y) \in [a_i,b_i] \times [c,1]$ then $(T_D)_{\varphi}(x,y) = \varphi^{(-1)}(c_i) = a_i$ from commutativity.
- (iv) Let $x \in [c,1]$ and $y \in [0,1] \setminus [a_i,b_i]$ for all $i \in I$, then $\varphi(y) < \varphi(x) = 1$ and $T_D(\varphi(x),\varphi(y)) = \varphi(y)$. Therefore $(T_D)_{\varphi}(x,y) = \varphi^{(-1)}(\varphi(y)) = y = T_M(x,y)$. If $x \in [0,1] \setminus \bigcup_{i \in I} [a_i,b_i]$ and $y \in [c,1]$ then $(T_D)_{\varphi}(x,y) = T_M(x,y)$ from commutativity.

3. The t-norms generated by T_M

In this part we investigate the t-norms, which are produced by construction from Proposition 1, when we consider the t-norm T_M . Because of specific form of this t-norm, again we can strengthen Proposition 1.

Proposition 4. Let $\varphi : [0,1] \to [0,1]$ be a non-decreasing function and the operator $(T_M)_{\varphi} : [0,1]^2 \to [0,1]$ be defined by

$$(T_M)_{\varphi}(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1, \\ \varphi^{(-1)}[T_M(\varphi(x),\varphi(y))] & \text{otherwise.} \end{cases}$$

Then $(T_M)_{\varphi} = T_M$ if and only if φ is a strictly increasing function.

Proposition 5. Let $\varphi: [0,1] \to [0,1]$ be a non-decreasing function continuous on the open unit interval]0,1[. Let $\{[a_i,b_i]\}_{i\in I}$ be a family of subintervals of [0,1], such that $\varphi(x)=c_i$ whenever $x\in [a_i,b_i]$ (on interval $[0,1]\setminus\bigcup_{i\in I} [a_i,b_i]$ function φ is strictly increasing). Then for the operator $(T_M)_{\varphi}$ is a t-norm given by

$$(T_M)_{\varphi}(x,y) = \begin{cases} \varphi^{(-1)}(c_i) = a_i & \text{if } (x,y) \in [a_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, 1[\times [a_i, b_i] \text{ or } (x,y) \in [a_i, b_i] \times [b_i, b_i] \times [$$

Remark 2. Note that the Proposition 4 and Proposition 5 can be proved likewise as Proposition 2 and Proposition 3.

Example 3.

(i) Let $\varphi_1:[0,1]\to[0,1]$ be defined by

$$\varphi_1(x) = \begin{cases} x & \text{if } x \in [0, \frac{1}{2}], \\ \frac{x}{2} + \frac{1}{2} & \text{otherwise,} \end{cases}$$

then

$$(T_M)_{\varphi_1}(x,y) = T_M(x,y).$$

(ii) Let $\varphi_2:[0,1]\to[0,1]$ be defined by

$$\varphi_2(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{4}], \\ x & \text{if } x \in]\frac{1}{4}, \frac{1}{2}], \\ x + \frac{1}{4} & \text{if } x \in]\frac{1}{2}, \frac{3}{4}], \\ 1 & \text{otherwise,} \end{cases}$$

then

$$(T_M)_{\varphi_2}(x,y) = \begin{cases} 0 & \text{if } (x,y) \in [0,\frac{1}{4}[\times[\frac{1}{4},1[\cup[0,1[\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,\frac{1}{4}[,\frac{1}{4}],1[\cup[0,1]\times[0,1]\times[0,\frac{1}{4}],1[\cup[0,1]\times[0,1]\times[0,\frac{1}{4}],1[\cup[0,1]\times$$

(iii) Let $\varphi_3:[0,1]\to[0,1]$ be defined by

$$\varphi_3(x) = \begin{cases} \frac{1}{2} & \text{if } x \in [0, \frac{1}{4}], \\ \frac{3}{4} & \text{if } x \in]\frac{1}{4}, \frac{1}{2}], \\ 1 & \text{otherwise,} \end{cases}$$

then

$$(T_M)_{\varphi_3}(x,y) = \begin{cases} 0 & \text{if } (x,y) \in [0,1[\times[0,\frac{1}{4}] \cup [0,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [0,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}] \times [\frac{1}{4},1[\times[1,\frac{1}{4}] \cup [1,\frac{1}{4}] \cup [1,\frac{1}{4}$$

The function φ_3 satisfy neither Proposition 4 nor Proposition 5 and resulting operator $(T_M)_{\varphi_3}$ is not a t-norm. It is easy to see that for the operator $(T_M)_{\varphi_3}$ is satisfied next inequality

$$(T_M)_{\varphi_3}\left(\frac{3}{4}, (T_M)_{\varphi_3}\left(\frac{3}{4}, \frac{1}{2}\right)\right) = 0 \neq \frac{1}{4} = (T_M)_{\varphi_3}\left((T_M)_{\varphi_3}\left(\frac{3}{4}, \frac{3}{4}\right), \frac{1}{2}\right),$$

which is violation of associativity.

Corollary 1. Let $\varphi : [0,1] \to [0,1]$ be a non-decreasing function which is either right-continuous or strictly monotone. Then the mapping $(T_M)_{\varphi} : [0,1]^2 \to [0,1]$ given by

$$(T_M)_{\varphi} = \begin{cases} \varphi^{(-1)}(T_M(\varphi(x), \varphi(y)) & \text{if } \max(x, y) < 1, \\ \min(x, y) & \text{otherwise,} \end{cases}$$

is a t-norm.

Note that a general characterization of all functions φ such that $(T_M)_{\varphi}$ is a t-norm is still an open problem. The right-continuity or strict-monotonicity of the function φ are not necessary. We can see it in Example 3, case (ii), where the operator $(T_M)_{\varphi_2}$ is a t-norm.

REFERENCES

- [1] S. Jenei, Fibred triangular norms, Fuzzy Sets and Systems, (in press).
- [2] E.P.Klement, R.Mesiar, E.Pap, Triangular norms,, monograph in preparation.
- [3] E.P.Klement, R.Mesiar, E.Pap, Constructions of t-norms via pseudo-inverse, Enriched Lattice Structures for Many Valued Fuzzy Logics, Linz, 1997, 16-18.
- [4] E.P.Klement, R.Mesiar, E.Pap, Quasi and pseudo-inverses of monotone functions and the construction of t-norms, Fuzzy Sets and Systems 104(1999), 3-13.
- [5] B.Schweizer, A.Sklar, Probabilistic Metric Spaces, North Holland, New York, 1983.

- [6] Smutná, A note to the construction of t-norms based on the limit t-norms, EUROFUSE-SIC'99, Budapest, Hungaria, 1999, 408-411.
- [7] P. Viceník, A note to a construction of t-norms based on pseudo-inverses of monotone functions, Fuzzy Sets and Systems 104(1999), 15-18.

(Received August 9, 1999)

Dept. of Mathematics Matej Bel University Tajovského 40 974 01 Banská Bystrica SLOVAKIA

E-mail address: smutna@fpv.umb.sk