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THE DIMENSION OF ORTHOMODULAR POSETS
CONSTRUCTED BY PASTING BOOLEAN ALGEBRAS II

ALFONZ HAVIAR AND PAVEL HRNCIAR

ABSTRACT. In [1], the dimension of certain atomic amalgams of Boolean algebras,
so-called loops, was found. In this paper (which is a continuation of [1]) we calculate
the dimension of atomic amalgams of Boolean algebras with no loop as a subposet.

In [1] some results on the dimension of atomic amalgams of Boolean algebras
are presented. For instance, an atomic amalgam of Boolean algebras 23 can, in
general, have an arbitrarily dimension. In [1] we mainly investigated the dimension
of two extreme cases: the dimension of loops and the dimension of loopless atomic
amalgams. The basic results for loops have been presented in [1]. Here we present
the basic results concerning the loopless case.

For preliminary definitions and results we refer the reader to [1], while necessary
rudiments of dimension theory of ordered sets can be found in [4].

We consider only the finite atomic amalgams such that every pair of blocks
either intersects trivially in the bounds 0 and 1 or the intersection consists of the
bounds, an atom and its complement. Every such atomic amalgam of Boolean
algebras can be represented by the Greechie diagram, which we can consider as a
graph. One can represent a given amalgam by several Greechie diagrams mutually
different as graphs. For instance, in Fig. la and 1b the Greechie diagrams of the
same atomic amalgam of three Boolean algebras 23 are depicted. For an atomic
amalgam £ = (L,<,0,1,”) of Boolean algebras we will always choose some fixed
diagram as its graph and denote it by G(£).
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Throughout this paper we consider only atomic amalgams of Boolean algebras
which do not contain a loop of order n > 3 as a subposet (i.e. their Greechie
diagram is a tree). We also suppose that some vertex of G(L) is fixed - this is
called the root of the graph G(L£). We will always suppose that the vertices of
every block (in chosen Greechie’s diagram considered as a graph) have mutually
different distances from the root. For instance, in this paper we do not consider the
diagram in Fig. 1c to be a Greechie diagram. The atoms of the atomic amalgam £
and the corresponding vertices of the graph G/(£) will often be identified. We will
denote the set of all vertices of the graph G by V(G).

Theorem 1. Let £ = (L,<,0,1,) be an atomic amalgam of Boolean algebras
23 having the following two properties:
(i)  every block has at most two pasting atoms;
(ii)  no subposet of L is a loop of order n >3 .
Then dim( = 3.

Proof. Let (L) be a fixed graph of £ with a root ¢ satisfying the requirements
above. Throughout the proof we also suppose that every pasting atom has an even
distance from the root ¢ (i.e. in no block the ‘midle’ vertex can be a pasting atom).
We denote by d(u,v) the usual distance between vertices u and v in the graph
G(L). Without loss of generality, we can suppose that G(£) is a connected graph
(the opposite case is an easy consequence).

Let v be a pasting atom (vertex) of blocks. For every vertex w adjacent to v
such that d(c,w) = d(e,v)+ 1 there is the subgraph of G(£) induced by the set

{u e V(G(L)); u=wv or wlies on the path ¢ — u}.

We call this induced subgraph the branch (determined by w) with the starting point
v. We will denote the branches with the fixed starting point v by (arbitrarily but
fixed) BYJ), ey b';(;:). Suppose that such notation is established for every pasting
atom (vertex) v of G(L).

Obviously, dimC > 3. So it suffices to prove that dimfL < 3. To show this, it
is sufficient to find three subsets Ag, A1, As  of the set CritL of all critical
pairs [2',y] (i.e. of the set of all ordered pairs [¢/,y] where x =y is an arbitrary
atom, or x, y are atoms not belonging to the same block and z’ is the complement
of z) satisfying
(a) AgUA T UA, =Critl and
(b) each of the subsets Ap, A1, As is cycle-free
(i.e. it does not contain a sequence [z, 1], [2h, y=], - . -, [}, yn] With
< x/21 Y2 < :L‘é, s ¥n-1 < x;w Yn < xll)
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Define the sets Ag, A1, A as follows:
1. [ 2]e Ay iff d(c,2) =4k,
[/, 2] € Ay iff d(c,z) =2k+1,
[2 2] € Ay iff  d(c,z) =4k + 2,
where d(e, ¢) is the usual distance between the vertices ¢ and « in G(£).
2. If the atoms «, y do not belong to the same block and if y lies on the path
c—xzand [y,y] € A;, then we put

[, y] € Ai and [y, z] € A;.

3. If the atoms =z, y belong to different branches with the same starting point z
and if

veV(B), yeV(B[), i<i,
then

[',y] € As and [¢,z] € A1 provided [/, 2] € Ay,

[/,y] € Ay and [¢,2] € Ay provided [Z/)z] € A,

(see Fig. 2). Note that d(e, z) is an even number.

Obviously, every critical pair [/, z] belongs to AgUA; UA,. If [z, y] is a critical
pair and # # y, then there are the following possibilities: the atom z lies on the
path ¢ — y or the atom y lies on the path ¢ — z or the atoms z, y belong to different
branches with the same starting point z. Hence again [2/,y] € Ag U A3 U As.
Therefore,

AO U Al U A2 = CTZt£

Fig. 2

Now we are going to prove that the sets Ay, A1, Az are cycle-free.

Let [27, 1], [25 y2], - .-, [%},, yn] be asequence of elements of A,., r € {0,1,2},
such that

y1 < ah, y2 < xh, ... ,Yyn—1 < x,. We need to show that y, < z{ is
impossible. For this purpose we will prove that [2],y,] € A, (ie [¢],y,]is a
critical pair). Thus, to complete the proof it is sufficient to prove the statement:
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If [xll)ylL [’6/2: y2] € Ar) e {O 1)2} and n < 1/2 then [xll)y2] € Ar-

We will distinguish several cases.

1. The atoms 1, y1 belong to different branches with the same starting point z;.
a)The atom x4 lies on the path ¢ — ya, 2 # ya.

By assumption y1 < 24 and therefore yi, #2 belong to the same block. The
equality s = z; implies that [z}, 25] and [2}, y5] belong to the same set A; but
[#1,y1] and [z, z1] = [}, 23] belong to different sets A;, A; (by the definition of
Ap, Ay and As) and this contradicts our assumptions. If x2 # z; then the ordered
pairs [z}, y2] and [z, y1] belong (according to the part 3 of the definition) to the
same set A,.

b)The atom y» lies on the path ¢ — z2, ®2 # ya.

We distinguish three subcases.

b1) The atom ys lies on the path ¢ — z; and ya # 2.

The ordered pairs [y5, y2], [, y2] and [@4,y2] belong to the same set A, by the
definition (the part 2) of Ag, Ay and As.

b2) Yo = Z71.

The ordered pairs [yh, y2] and [@h, y2] belong to the same set A; (the part 2 of the
definition) but [z], y1] does not belong to A; (the part 3 of the definition) and this
contradicts our assumptions.

b3) The atom z; lies on the path ¢ — y» and 21 # ya.

The ordered pair [, y2] is a critical pair, [¢], y2] and [2], y1] belong to the same
set A, (by the definition).

c¢) The atoms 2, y» belong to different branches with the same starting point
Z2.

If d(c,21) < d(c,z2) then yi and y» belong to the same branch with the starting
point z1. Hence, we have that [z}, y2] is a critical pair and [2],y=], [*], 1] belong
to the same set A,. If the converse inequality holds then the atoms z;, 25 belong
to the same branch with the starting point z2 and the assertion is true again.

Let d(c,z1) = d(c,z2) (i.e. z1 = z2). If 21 and y, belong to the same branch
with the starting point z; then the ordered pairs [}, 1] and [z}, y2] do not belong
to the same set A; (the part 3 of the definition), which contradicts our assumption.
In the opposite case the statement follows by transitivity of the ordering of the set
of all indices of the branches with the same starting point.

2. The atom z; lies on the path ¢ — y; and =1 # y1.

a) The atoms z3, y2 belong to different branches with the same starting point
Z9.

al) Let z5 lies on the path ¢ — 21, 2o # #1.

The ordered pairs [z, y2] and [2%, y2] belong to the same set A, by the definition.
a2) z2 =1,

The ordered pairs [z}, 21] and [#], y1] belong to the same set A; (by the part 2 of

the definition) but [z}, y2] does not belong to A; (the part 3 of the definition), a

contradiction.

a3) Let zq lies on the path ¢ —z9, 21 # zo.

The ordered pair [#], y2] is obviously a critical pair and the ordered pairs [2], z1],
[¢1,y1] and [z], y2] belong to the same set.

a4) The case that 1 and 25 belong to different branches (with the same starting

point) contradicts our assumption.
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b) The atom 5 lies on the path ¢ — y; and 23 # y.

The ordered pairs [@],21], [¢], 1] and [2], y2] belong to the same set A, by the
definition.

c) Let the atom y» lies on the path ¢— 2z, and x5 # yo.

Firstly, we claim that 2, = y» or the atoms z;, y» do not belong to the same
block. Indeed, if x; # y2 belong to the same block then [«{,zi] € A; and
[v5, 2] € A;, for some i # j. By the definition it follows that [z},1] € A; and
[#h,y2] € A;,  which contradicts our assumption. If z; lies on the path ¢ — ys,
then the ordered pairs [z}, z1], [#],y2] and [z], y1] belong to the same set A, by
the definition. In opposite case [y, y2], [#], y2] and [25, y2] belong to the same set
A, again by the definition.

3. The atom y; lies on the path ¢ —z; and 27 # y;. This case can be handled
analogously as the previous case 2.

4. Let 1 =y or x2=ys.

Both equalities #; = y; and 2 = y» can not hold simultaneosly, since [/, y1],
[2%, y2] belong to the same set A, and 21 =y < @} .

Let z1 =y and z2 # y2. In this case the atoms z2, y2 do not belong to the
same block.

a) The atom y, lies on the path ¢ — y;.

If y» and z; belong to the same block then [y}, y2], [z5, y2] belong to the same set
A;, but [2], y1] is not an element A; (the part 1 of the definition), a contradiction.
If y» and z; do not belong to the same block, then [z}, ys] is a critical pair and
(¥4, yal, [xh, ya], [¢],y2] belong to the same set A,.

b) The atom y; lies on the path ¢ — ya.

If 22 lies on the path ¢ — y» then the ordered pairs [¢5, 23] and [25, y2] belong to
the same set A; but [2],y1] is not an element A; (the part 1 of the definition), a
contradiction. If 5 does not lie on the path ¢ — y, then the ordered pairs [z}, yo]
and [27,y1] do not belong to the same set (the part 3 of the definition) and this
again contradicts our assumptions.

c¢) The atoms y, y2 belong to different branches with the same starting point z.
Let xy = z. The ordered pairs [z4, z»] and [z%, y»] belong to the same set A; (the
part 2 of the definition) but the ordered pairs [}, 5] and [#], y1] do not belong to
the same set (the part 1 of the definition), a contradiction.

Let 2 # z. In this case x5 and z; belong to the same branch with the
starting point z, therefore [/, y2] and [z}, yo] belong to the set A, (the part 3 of
the definition).

The case z2 = y» and z1 # y1 18 left to the reader. O

Theorem 2. Let £ =(I,<,0,1,) be an atomic amalgam of Boolean algebras 2°
containing no loop of order n > 3 as a subposet. Then dimf <4 and dimfL =4
1s possible.

Proof. a) First we show that dimC < 4. Similarly as in the proof of Theorem 1
it is sufficient to divide the critical pairs of £ into cycle-free subsets Ag, A1, As,
A3 such that AO U A1 U Az U Ag =Critl.

Let G(L) be afixed graph of £ with a root ¢ such that the vertices of the same
block have from the root ¢ mutually different distances. We divide the critical pairs
of £ into the sets Ag, Ay, Ay, As according to the following rules:
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1. [¢,2]e A, iff d(c,z)=4k+r, 0<r<3,

for some natural numbers k, r.

2. Let [z', y] be a critical pair, = # y . If y lies on the path ¢ — z and [y, y] € A;,
then we put [¢/,y] € A; and [¢/, 2] € A;.

3. If the atoms z, y belong to different branches with the starting point z,
reV(BY), yev(BY), i<j and [, 2] € Ay,

then we put

[17,7 y} € Ak+17 [y/7 $] € Ak+2
(we compute modulo 4).

It is easy to check that Ag U A; U Ay U As = CritL. Similarly as in the proof
of Theorem 1 one can show that [z],11] € A,, [z, 2] € 4., 7€ {0,1,2,3} and
y1 <z, imply [z7,y2] € A,. Consequently, each of the sets Ap, Ay, Aa, A3z is
cycle-free.

b) Now we find an atomic amalgam £ of Boolean algebras 2° such that
dim( = 4.

Let £ be the atomic amalgam represented by the Greechie diagram (the graph
G(L)) in Fig. 3. It is pasted from fifteen Boolean algebras 2°. By the previous part
of the proof, dimC < 4. We assert that dimL = 4. Suppose on the contrary that
dimL =3, i.e. the set of all critical pairs of £ can be divided into sets A, Ay, As
such that A; U As U Az = CritL and each of the sets A;, A5, Az is cycle-free .
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Without loss of generality we may suppose that
[0',0] € A
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[1/,1],[3/,3],19,9],[15",15], [21',21] € A

[2, 2], [6', 6], [12/, 12], [18', 18], [24', 24] € A3 .

No pairs among [4’,0],[5,0],[10°,0] and [11’,0] belong to As (otherwise we would
have a cycle with [3',3] or with [9',9] in A3) and no pairs among
[7/,0],[8,0],[13,0],[14’,0] belong to As.

Now we show that if [7/,0] or [8,0] belongs to Ay then the pairs [13',0],
[14/,0] (and by symmetry also [19’,0],[20', 0], [25%, 0], [267, 0], [297, 0], [307,0] ) do
not belong to As. To verify it, take, for instance, [8 0] € Ay and [13/,0] € As.
Then we have [9',6] € A3 (otherwise we would have the cycle with [07,0]in A; or
the cycle with [8,0]in A2) and similarly [3/,12] € As. So the cycle [9,6],[3/,12]
belongs to As , a contradiction. Analogously, it can be shown that if [4’,0] € As
or [5,0] € Az then the pairs [10,0], [11/,0] do not belong to As. If in the
above assertions we change every pair of type [z’,0] by [0, 2] we also obtain true
assertions. This means that there exists a set S such that

S € {{4,5,7,8}, {10,11,13, 14}, {16,17,19,20}, {22,23,25, 26}, {27,28,29,30}}.
and [2/,0] € Ay, [0',2] € A; for each x belonging to the set S. Without loss of
generality we may suppose that
(1) [0, 4],[4,0],[0,5],[5,0],[0,7],[70],[0,8],[8, 0] € A
This implies that

[3,7],[7,3],[3,8],[8,3] € As
(otherwise we would have a cycle with [6,6] in Az or with some pair from the list
(1) in Ay). Similarly,

[67,5], [0, 6],[67,4],[4,6] € As.

This yields [4/,7] € Ay (in Az we would have a cycle with [8',3] and in Az with
[6/,5]) and [8,5] € A1 which contradicts to the assumption that A is cycle-free
([4’,7] and [8, 5] form the cycle in A;). The proof is complete. O

Theorem 3. . Let £ = (L,<,0,1/) be an atomic amalgam of finite Boolean
algebras of cardinality at least 8 and let it not contain any loop of order n > 3
as a subposet. Let L consist of blocks (Boolean algebras) Bi,...,Bi and let
dimB; =p; for i=1,... )k, and max{py,...,pr} =p>4.

Then dim( = p.

Proof. 1t is obvious that dimf > p. We are going to show that diml < p. It
suffices to divide the set of all critical pairs into sets Aq, Ay, ..., A,_1 such that
AoUAIU...UA,_1 = CritL and each of the sets Ap, Ay, ..., Ap_1 is cycle-free.
Let G(L) be afixed graph of £ with a root ¢ such that the vertices of the same
block have mutually different distances from the root ¢. Similarly as in the proof
of Theorem 2 we divide the critical pairs of £ into the sets Ay, A7, ..., A
according to the following rules:
1. [ z]eA iff dcx)=pk+r 0<r<p-1
for some natural numbers k, r.
2. Let [2/,y] be a critical pair, # # y. If y lies on the path ¢ —z and [y, y] € A;,
then we put
[¢/,y] € A; and [V, 2] € A;.
3. If the atoms z, y belong to different branches with the starting point z,
x € V(B;Z)), y € V(B;-”)7 i<j and [¢,z] € Ag, then we put

“ p—1
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[;L‘/) y} € Ak+1) and [y/) l‘] € Ak+2
(we compute modulo p).

Analogously as in the proof of Theorem 1 one can show that
AgUALU.LUA,_y =CritL and each of the sets Ay, Ay, ..., A,_1 is cycle-
free. O
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