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TANGENTIAL PROLONGATION OF SURFACES IN
Es3- CLASSIFICATION OF PARAMETRIC NETS

ANTON DEKRET AND JAN BAKSA

ABSTRACT. The paper is devoted to some applications of the classical differential
geometry of surfaces in Ej3 in the computer grafics. It contains a classification of
parametric nets on surfaces by a tangential prolongation of nets. This classification
gives possibilities of the choice of a suitable parametrisation from the point of view
drawing of surfaces in computer grafics.

INTRODUCTION

In the computer grafics of surfaces in E3 a very useful frame tool is a suitable
parametric net. Let us introduce basic notions on parametric representations of
surfaces in Esg, see for example [1],[2]. Let

(1) Fu,v) = (x(u, v), y(u,v), 2(w,v)), (u,v) €QC R?

be an equation of a surface P in a cartesian coordinate frame. Let functions
z(u,v), y(u,v), z(u,v) be differentiable up to second order. Both the point (u,v) €
2 and its image 7 (u, v) on the surface P will be called regular if the vector product
Py X Ty 18 not equal to zero, where we use the shortened notations

_or . _or 9*r

Ty = Ty = 7= Tuy = .
ou’ ov’ Judv

In the opposite case we will say that points are singular. We suppose that the
surface has only a finite number of the singular points.

The curve 7 (u,vg) or 7 (ug,v) on the surface P will be called the parametric
u—curve going through a point 7 (ug,vo) on P. We are interested in surfaces of
lines wich are determined by the tangent vectors of the certain parametric curves
(for example of the v—curves) at the points of a parametric curve of the other type
an u—curve). Their equations are as follows

(2) R(u,t,v0) =7 (u,v0) +tFy (u,v0) or
(3) R(v,t,ug) = 7(ug,v) + try(ug, v).
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The surface (2) will be called the tangential v = surface along the u—curve for
v = vg. Analogously we will say that the surface (3) is the tangential u—surface
along the v—curve for u = ug. We introduce some applications of the tangential
v—surfaces:

a) R(u,t,vg),t €< —a,a >C R is the so-called tangential v—belt. Tt can be
used as a grafic information about the surface P along the u—curve for v = vy.

b) The map (u,v) — 7 (u,v) determines a two-parametric mouvment in Ej.
Then the mouvments given by the parametric curves can be called ”basic mou-
vments”. Then R(u,t,vg),t €< 0,1 >, is the surface of v—velocities along the
u—curve v = vg.

c) R(u,t,vg), t €< 0,a > ort €< —a,0 >, will be called the tangential v—
prolongation of the surface P along the u—curve for v = vg. Its technical application
is clear from the definition.

Analogously it can be said in the case of u—surfaces.

The main goal of the paper is the classification of the parametric nets on surfaces
in E'3 based on the tangential v— or u— surfaces.

CLASSIFICATION OF THE PARAMETRIC NETS ON SURFACES IN F3

The tangential v— or u— surfaces which we have introduced are line surfaces.
These ones can by classify as developable (surfaces of tangents of curves, cone -
surface of one-parameter family of lines with a steady vertex, cylindre-surface of
one-parameter family of parallel lines) and as undevelopable.

Proposition 1. The tangential v— surface along an u—curve is developable if and
only if 7y, = arg + B7, at every point of the u—curve.

Proof. Arbitrary line surface ¥ = a(u) + tb(u) is developable if and only if the
tangential planes at points of any line are identified, i.e if and only if b, - (bx @, ) = 0.
Considering our v— surface in the form (2), i.e. a(u) = r(u,vo), b = 1, (u, vo), we
inmediately get that r,, = ar, + 87, is the necessary and sufficient condition for
the surface R(u,t,vg) to be developable.

Let (2) be the developable tangential v—surface, ry, = ary+ fr,. Then its curve

(4) R*(u) = 7 (u, vo) + g(u)7y (u, vo)

is its edge of regression, i.e. the surface R (u,t,vg) is the surface of the tangents of
this curve, if and only if R}, = kry (u, vo),t.e.if f

(5) l+ga=0,9u+906=k.

It immediately gives 1.) If & = 0 then the tangent v—surface is a cylinder surface.



2) If @« # 0, (then ¢ = —1/«), and k& = 0, ({.e.c,, = Pex), then the tangent
v—surface is a cone surface.

3) fa#0,(g=—-1/a) and o, # Pa then the tangent v—surface is the surface
of all tangents of the curve (4). The analogous assertions are right for the tangent
u—surfaces.

We obtain the following classification of parametric nets of surfaces in Ej:

I. Tangent v— and u— surfaces are developable, i.e. 7y, = ary, + 57, .

a) « =0, 8=0,i€,7u = 0. Then 7 (u,v) = i (u) + 72 (v) ,i.e. the surface P
can be created by the translation of a parametric curve along the other one. Both
tangent v—and u— surface are cylinder surfaces.

b) a # 0, § = 0. The tangential u—surfaces along v—curves are cylinder surfaces.
If «, = 0 then the tangent v—surfaces along u—curves are cones. If o, # 0 then
the tangent v—surfaces along u—curves are surfaces of tangents of curves.

c) a =0, 8 #0. Analogously the tangent v—surfaces along the u—curves are of
cylinder types. If 8, = 0 then the tangent u— surfaces along the v— curves are of
cone types. In the case when 3, # 0 the tangent u—surfaces are determined by the
tangents of a curve.

Remark. The relation 7y, = ar, is a partial differential equation for the unknown
coordinate functions z(u, v), y(u,v), z (u,v). If we limite ourselves on the separable
product form of these functions we get the class of surfaces Py, with the coordinate
expression:

() 7 (u,v) = (fi(w)g (v), f2 (w)g(v), 93 (v)), @ = gu/g.

These surfaces can be created from a plane curve (f; (u), fo (u)) by homotheties
with the coefficient g (v) and with the center in the origin and by translations
93 (v)k, where k is the unit vector of the third axis.

As an example we introduce the sphere S 7 (u, v) = (r cos u cos v, rsin u cos v, 7 sin v)
d) Fyy = aFy + PPy, a- B3 #0.

If o, = P or ay # P then the tangent v—surface along an u—curve is a cone
surface or a surface of all tangents of a curve respectively.

If B, = fa or By # Pa then the tangent u—surface along an v—curve is a cone
surface or a surface of all tangent of a curve respectively.

If we limite ourselves on the separable product form of coordinate functions of
surfaces satisfying the linear partial diferential equation #,, = ar, + 57, of second
order we get the following example



F(uv) = (am (— / %du) expAr / as (v)dv,
- <f | / %w) cxpha / ax(v)dy,
e ([ 201 g, [ ),

where ¢1, ¢a, ¢3A1, A, Az are arbitrary constants and S(u), a1 (u), aa(v) are arbitrary
functions.

Remark 2. Every line surface P can be parametrized by the equation

(6) 7 (u,v) = a(u) + vb (u),

where @ (u) is the so-called determining curve and b (u) is the vector of the surface
line going cross the point @(u). This parametric net we will called natural. Let
us recall that this parametrization does not to be suitable from the point of the
picture of this surface but can be useful from the applicability point of wiew. It 1s
clear that the tangent v—surfaces are identified with P. The tangent u—surfaces of
the surface (6) are presented by the equation

R(v,t,ug) = @ (ug) + vb(ug) +1 (du (ug) + vb, (uo)) .
They are developable iff the tangent v—surfaces are developable, i.e. iff the surface
(6) is developable, i.e. iff by (@, xb) = 0. In this case Py = by, Py = @y +0by, 7 = b.
There are two cases:

a) b = c(u)ay, i.e. the surface (6) is the surface of tangents of the curve a(u).
Then

bu = Cyly + Chyy = ; (au + U(Cuau + cauu)) - 5 Cy,

: _ 1 4_ _1 _ 1 :
ie. a=4,0=—=. Then §, = -z # fa, i.e. the tangent u—surfaces are also

surfaces of tangents of curves.

b) b+ ¢ (u) @y. Then by = cray+cab = Hfﬁ (&u +v(c1Gy + 625)) +co- ﬁ) b,

.. e - 1
). o= 1+vey? B =2 1+ver ”

We are looking for a such function g (u), the curve R (u) = @ (u) + g (u)b(u) to
be the edge of regression of the surface (6). 1t satisfies

Qy, +gui)+gi)u:d;7 i.€. au+gulg+g(clau+02i)):d§~

It is true iff
I1+ga=0 , gutge=c



If ¢; = 0 then the surface (6) is a cylinder. Then 3 = ¢3. If ¢; = 0, i.e. if by =0
then the tangent u—surfaces are also cylinders. If ¢o (u) # 0 then 3, = ¢2, = 0 and
so the tangent u—surfaces are cones.

If ¢; # 0 and ¢ = 0 then the surface (6) is a cone. In this case
1 ¢

/
c
— _ U _ lu
g=—- , Co = 7ﬁ_
c1 c1 c1 1+wvey

! Uy “lu
P = C(14vep)? 05(1_1_061)2-

We get. If ¢) = 0 then the tangent u—surface is a cylinder. If ¢f # O then the
tangent u—surface is a surface of tangents of a curve.

If ¢1 - ¢ # 0 then the surface (6) is a surface of tangents of a curve. Then af # (3,
and so the tangent u—surfaces are also surfaces of tangents of curves.

IT. If 7y, 74, 7y are linearly independent then both the tangent v— and u— sur-
faces of the surface P are undevelopable. If the surface P is a line surface then it
has this property if and only if is undevelopable.

Remark 3. (About graphs of the functions z = f(z,y) of two variable.) Let
7 (u,v) = (u,0, f(u,0))

be the natural parametrization of the surface given by a function z = f(z,y). In
this case 7y, = (0,0, fuu), 7u = (1,0, fu), 7o = (0,1, f). Therefore both the tangent
u— and v— surfaces along those parametric curves are developable iff f,, = 0. In
this case &« = 0 = 3 and both the tangent u— and v—surfaces are cylinders. If
fuv # 0 then the tangent surfaces are undevelopable.

PARAMETRIZATION OF THE SURFACES GIVEN BY AN EQUATION F(z,y,z) =0

Let a surface P is given by an equation F(z,y,z) =0 and let 7 (u,v) =
(z(u,v), y (u,v), z (u,v)) be its parametric representation, i.e. let the equation

(7) F(x (u,v), y(u,v), 2z (u,v)) =0

is the identity for (u,v) € Q. Derivating the identity (7) with respect to u and v
we get

(8) Fowy+ Fyyy + Fozy =0, Fpry + Fyyy + Fazy = 0.
Then the derivative of the first part of (8) with respect to v gives

Fro®u®y + Foy(Tuy +Tuu) + Froz(Tu 2o + 2o2u) + Fyyu o + Fyz (Yuzv + 2u40) +
() +foz 2z + Fottus + Fyyuo + Fozuy = 0.

The equation (8) and (9) can by shortly rewrite in the forms
dF (7y) = 0,dF (¥,) = 0, d*F (¥4, 7)) + dF (fu) = 0.



Proposition 2. Let 7 (u,v) be a parametric representation of the surface P given
by the equation F(x,y,z) = 0. Then the tangent v— and u— surfaces are devel-
opable iff d*F (7, 7,) = 0, i.e. iff the tangent vector ry, 7, at any point of P vanish
the differential d*F of second order.

Proof. If 7 (u,v) is a parametric representation of P then the equation (8) and
(9) are satisfied. Let d?F (7y,7,) = 0. Then the relation (9) gives dF (Fyy,) = 0,
l.e. Tyy 18 a tangent vector of the surface P, i.e. ryy = ar, + G7,. Conversaly if
Puy = QFy + BF, then dF (7y,) = 0 and then the relation (9) completes our proof.

Remark 4. It is easy to see that a parametric representation of the sphere z2 4y +
2?2 = r? has the tangent v— and u— surfaces which are developable if and only if it

is orthogonal.

Proposition 3. Let a surface P is given by the equation F(z,y, z) = 0. Then there
exists a such parametric representation of the surface P that its tangent v— and u—
surfaces are developable if and only if there exist such two vector fields X1, X which
at points of P satisfy the equations dF(X1) = 0, dF(X3) =0, d*F(X1,X2) =0
and [X1, X5]=0, where [ X1, X»] is the Lie bracket of the vector fields X1, X5.

Proof. The necessary condition is clear. It is well known that if [ X7, X5] = 0 then
there exists a such parametric representation 7 = 7 (u, v) that 7, = X1, 7y = X, see
[3]. If dF (X1) = 0, dF (X32) = 0 then 7 = 7 (u,v) is a parametric representation
of P. If d?F (X;,X5) = 0 then by Proposition 2 the tangent of v—surfaces are
developable.

Remark 5. From the graphic point of view the most suitable are the parametric
representation the tangent v— and u— surfaces of which are cylinders or cones. So
we prefer the parametric representations of the classes la, Ib, Ic.

Example. Consider the sphere 22 4+ y? 4+ 22 = r2. Look for a parametric repre-
sentation of the type (*) from the class /b, 7 (u,v) = (f1 (v)g (v), f2 (u)g (v), g3 (v)).
Using the relations (8) and (9) it is easy to infer the following conditions for the
functions fi (u), f2 (u), g(v), g3 (v): fZ+ f2=%k%> ,  kisconstant

k%g% + g2 = 2.

Ford=r>0,fi =rcosu, fo = rsinu, ¢ = cosv, g3 = rsinv we get the spherical
representation of the consider sphere which is a global parametric representation
with two singular isolated points.
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THE LATTICE OF VARIETIES OF GRAPHS

ALFONZ HAVIAR

ABSTRACT. In the paper we investigate classes of graphs closed under isomorphic
images, subgraph identifications and contractions and we study the lattice of these
classes.

0. INTRODUCTION

By a graph G = (V, E) we mean an undirected connected finite graph without
loops and multiple edges. We denote the set of all vertices of a graph G by V(G) and
the set of all edges by E(G). An edge {u, v} is briefly denoted by uv. We denote the
complete n-vertices graph by K, and the n-vertices circle (in which every vertex is
of degree two) by C,.

A class of all graphs closed under isomorphic images is called a property of graphs
(for example in [1]) or a variety of graphs (in [5]). To put considerations in the
right context within set theory, we will assume that the vertex sets of all considered
graphs are subsets of a fixed countable infinite set W, and we talk about graphs
over W.

The set of all varieties of graphs for which vertex sets are subsets of W with set
inclusion as the partial ordering is a complete lattice isomorphic to the Boolean
lattice P(W) of all subsets of the set 1. The atoms of this lattice are the varieties
which are generated generated by only one graph. In theory of graphs we are inter-
ested in varieties of graphs closed under more closed operators, for example varieties
closed under induced subgraphs [11], varieties closed under induced subgraphs and
identifications [5], varieties closed under generalized hereditary operators [1], [2],
[9], etc.

One of the most important operators in theory of graphs is the operator of
contraction (of edges). It produces "smaller” graphs. A natural operator producing
”bigger” graphs is the operator of identification in (connected) induced subgraphs.
In this paper we pay attention to varieties of graphs closed under identifications
and contractions.

A set of all varieties of graphs closed under given closure operators with set
inclusion as the partial ordering is a complete lattice ([3], Theorem 5.2, p. 18]).
The smallest variety containing a set K of graphs is denoted by V(K) and we
call it the variety generated by K. If K = {G;,...,G,} we simply denote it by
V(Gr,...,Gn).

2000 Mathematics Subject Classification. 05C99.
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1. PRELIMINARY RESULTS.

Our aim in this paper is to investigate varieties of graphs closed under sub-
orgraph identifications and contractions. The following operation of a subgraph
tdentification of graphs in a connected induced subgraph generalizes the operation
of the union of graphs and was introduced in [5].

Definition 1.1. Let G; = (V1,E;) and Gy = (Va, E3)  be disjoint graphs.
Let Gy = (V/,E{) and G = (V4,E5) be connected induced subgraphs of
G1, Ga, respectively and let  f: G} — G4  be an isomorphism. The subgraph
identification of G; with G, under f is the graph G = G; U/ Gy = (V, E),
where

V=1u(h-1]),
E={uv|uv€eV and wvé€ ELUEsor f(u)v € Eqx}.

If graphs G1 and G» are not disjoint we may take instead of the graph G, a graph
Gs isomorphic with G5 and disjoint with Gy (for details see [5]). When no confusion
can arise we will simply talk about the subgraph identification under the induced
subgraph G{ or about gluing in the induced subgraph G1.

The fact that f : G} — G% is an isomorphism of the connected induced
subgraph G] C G; onto the connected induced subgraph G’ C G, will be denoted
by f Gy — Gs.

It is easy to see that Gy U Gy = G, U™ G, and if f is an authomorphism of
a graph G then G U’ G = G. Clearly, a subgraph identification of connected graphs
is again a connected graph.

Lemma 1.1 (see [5]). Let G = (V,E) be a connected graph, which is neither a
complete graph nor a circle. Then there are two nonadjacent vertices u,v € V(G)
such that G — {u,v} Is a connected graph.

Corollary 1.2. IfG is a graph which is neither a circle nor a complete graph, then
G contains proper connected induced subgraphs Gi, G2 such that G = Gy uf G,
where f: G — Go.

Definition 1.2 ([4]). We say that a graph G» is a contraction of a graph G if there
exists a one-to-one correspondence between V(('3) and the elements of a partition
of V(G1) such that each element of the partition induces a connected subgraph of
G1, and two vertices of G5 are adjacent if and only if the subgraph induced by the
union of the corresponding subsets is connected.

If adjacent vertices u, v € V(G1) belong to the same block of the partition of the
set V((G1) we will say that the vertices u, v have been identifying by the contraction.
If a graph G is a contraction of a graph G, we write G, < G;.

Let K be a family of graphs. Denote
YK) ={G1 U Go; G1,G2 €K, f:G1 — Ga},
C(K) = {G : G G’ for some graph G’ € K},

12



I(K) — the set of all isomorphic images of graphs in K.

Since GUYG=G and G<4G we have
KCy(K) C»¥*(K) C-- Cy"(K) C...,
KCCO(K) CCHK) C o C OB C ...

for any set K of graphs. Note that O"(K) = O"~}(O(K)), for each n > 1.

Definition 1.3. A set K of graphs over W is said to be a variety of graphs closed
under subgraph identifications and contractions if

IK)CK & K CK & C(KCK

It is obvious that the operators C' and ~ are closure operators on the system of
all sets of graphs over W. Thus, the next statement holds.

Proposition 1.3. The set of all varieties of graphs over W closed under subgraph
identifications and contractions with the set inclusion as the partial ordering is a
complete lattice.

Let K be a set of graphs. Define the operator o by
o(K) = (C)(K) U (Cy)*(K) U-- - = UL, (C)"(K),
where  (C7)(i) = C(+())  and  (C)"(I) = CH((C)" () i n> 1.

Theorem 1.4. For every set K of graphs

V(K) = o(K).

Proof. Let G1,G> € o(K) and let f : Gy — (5. Then there exist m, n such
that G; € (Cy)"(K) and G, € (Cy)™(K). We see at once that n < m implies
G1,G2 € (Cy)™(K) and so G U/ Gy € (Cy)" ! (K). Similarly, G € (Cy)"(K) and
G1 <2 @G yields G; € (Cv)"*'(K). Thus, we have shown that o(K) is a variety of
graphs closed under subgraph identification and contraction and it contains the set
K. Consequently V(K) C o(K). The opposite inclusion is obvious. O

2. THE LATTICE OF VARIETIES OF GRAPHS

In this section we investigate the lattice of all varieties of graphs closed under
identifications and contractions. This lattice is denoted by L.

Clearly, the least element of the lattice £ is the vatiety V(K1), where Ky is a
one-vertex graph. We will denote it by 0.

Proposition 2.1. The variety V(K;) generated by the two-vertex graph is the
variety of all trees. Moreover, it is the only atom of the lattice L.

Proof. Let V # 0 be an element of the lattice £ and let G € V, G # Ky. It is
easy to see that the graph Ks is a contraction of G and so Ky € V|, which implies
V(K;) C V. Using an induction on a number of vertices we see that every tree
belongs to V(K3z). On the other hand, no graph G in V(K3) contains a circle (a
contraction of a tree is again a tree and a subgraph identification of trees is a tree,
t00).

13



Lemma 2.2. The only variety covering the variety of all trees in L is the variety

V(Cs).

Proof. Let V be an element of £ for which V(K3) < V. The variety V contains a
graph G containing a circle C,. This clearly forces C3 € V. (It is obvious that Cs is
a contraction of the circle C, and so C3<1§.) Therefore V(C3) CV. O

Lemma 2.3. Let G be a graph belonging to a variety V > V (Cs). If the set E(G)
contains edges uv and uw but it does not contain the edge vw then the variety V
also contains the graph G given by

V(G)=V(G) and FE(G)=EG)U{vw}.
Proof. By Lemmas 2.1 and 2.2 the variety V contains the graph Cs, hence it contains
the identification #H of two copies of C3, where V(H) = {v'.v/,w’, 2} and E(H) =
{u'v, v/, v'e,v'w W'z} (see Fig. 1). Let f: G — H be given by

flu) =4, f(v) = and f(w) = =.

Fig. 1

Now, the graph G is obtained by contraction of the edge ww’ of the graph GUT .
This yields G € V.

Corollary 2.4. The variety V(C3) contains all complete graphs.

Definition 2.1. We will say that a graph G is a triangular cover of a graph G if G
can be obtained from G by adding edges as in Lemma 2.3.

Theorem 2.5. If a circle Cy, is a contraction of an identification Gy Ul Gy then C,,
is a contraction of a graph G, or G», where G; is a suitable triangular cover of the
graph G;, i € {1,2}.

Proof. Let Cp 4Gy U Gy, and let {A;, Az, ..., Ay} be a partition of the set V(G Uf
Gs) corresponding to the above contraction of Gy Uf Gy to Gy

a) Let there exist a block A; disjoint with the set V(G1) and let A; C V(Gy). Let
ANVG)#D, AnV(G)#£0, 1<j<i<k<m and A,NV(G) =0
for each ¢ € {j +1,...,k — 1} (recall that the graphs are glued in the subgraph
G"). For vertices w1 € A; NV(G}), we € Ay NV(G1), there is a path
(P1) W1 = Vo, V1,...,Up = W2
in the subgraph G}, therefore 4, NV(G}) # 0 for each p € {1,...,5,k,...,m}.
There exist also a path
(p2) w2 = o, u1,...,us = w1
in the graph G; disjoint with (p1), i.e. there exists a circle C in the graph G; for
which V(C) N A, # 0 for each ¢ € {1,..., m}. Denote

14



By =ANV(G), ..., Bn=A,NV(G).
If the subgraphs of the graph G; induced by the sets By, ..., By, are connected
then C,, < Gy.

Let there exist (for example) vertices # € By, y € By NV(C) for which there is
no path from z to y in the subgraph of G, induced by B;. Denote by

T = 20,21, .--,2t =Y
a path from z to y in the graph G,. If the distance of vertices zp,24 or z,,v,
p,g € {0,1,...,t}, v € V(C) is two and these vertices belong to the same block
By, 1 €{1,...,m}, or belong to adjacent blocks B, Biy1,1 € {1,...m — 1}, then
we can add the edge 2,2, and z,v to a vertex set obtained from F(G;) (by Lemma
2.3). After finitely many steps we obtain a graph GF such that in the subgraph of
G7 induced by the set By there is a path from z to y. Repeating this proces we can
obtain a triangular cover (jl of the graph G; such that the subgraphs of g] induced
by the sets By, ..., By, are connected and so C,, 4 g].

b) Let A, NV (G]) # 0 for each ¢ € {1,...,m} and let

v € A1NV(GY), -, vm € Ay, NV(G]).
There exists a path from v; to vi4;1 in the graph Gi for each I € {1,...,m} (we
compute modulo m). Hence there exists a circle C of the graph Gy or of the graph
induced by the set V(G}) U (V(G2) — V(GY%)) (the natural copy of the graph G5) in
the graph G; U/ G, for which V(C) N A, # 0 for each ¢ € {1,...,m}. Thus, the
next part of the proof runs in the same way as the above corresponding part of the
proof.

Theorem 2.6. If a graph G belongs to V (Cp,) then with each circle C of G contains
a plane subgraph with the exterior face C and regions C,, 3 < n <m.

Proof. Let G € V(Cp,).

a) The statement holds if G = C,,.

b) Let graphs Gi,Ga € V(Cy,) contain with each circle C also a plane subgraph
with the exterior C and regions C,, 3 <n < m and let C = v1vy...v,v1 be acircle of
GLUf Gy T Cisa subgraph of Gy or G5 then Gy or G5 and so also G contains a plane
subgraph with the exterior C and regions C,,, 3 <n < m. Let C = vyvy...v,v1 be a
subgraph neither G1 nor Go. Let vj, viy1, ..., viy; € V(C); we will say that v; ~ vy;
isajumpin G if v; € V(G1)—V(G1), Vig1, .-, vigj—1 € V(G), vig; € V(G2)—V(GY)
or 15 € V(Ga) = V(GH), vitts--stinjor € VI(G1), viay € V(G1) - V(G)) (see Fig.
2).

Fig. 2

15



We proceed by induction on the number of jumps of the circle C. Firstly, we suppose
that there are only two jumps in Gy UT Ga, v; ~ Viy; and v, ™ Upig, < p. Since
G1 U7 Gy is the subgraph identification under a connected subgraph G/, there exists

apath w11, wy, we, ..., wg, vpye—1 in G If this path is disjoint with the circle
C, we get a circle CV) of the graph G; and a circle C(?) of the graph Go which
both contain the path  (vj41,ws,wa, ..., Wk, Vppq—1) O its part (see Fig. 2).

By assumptions there exist plane subgraphs with exteriors faces €Y and €® and
regions C,, 3 < n < m. If the mentioned path is not disjoint with the circle C we

get circles C(lr. ..,C%") guch that there exist plane subgraphs with exteriors faces
cW .. ¢®) and regions Cp, 3 < n < m, each of them belongs to either G; or G,
and each of them contains a part of the path  (vi41, w1, wa, ..., wgk, vpyq—1) (see
Fig. 3).
g1 j G2
Fig. 3
Since one can get the circle C by successive gluing the circles cY, . ¢t

there exists plane subgraph with exterior face C and regions C,, 3 < n < m, too.
Assuming the statement for circles with less than 27 jumps, we will prove it for
2r jumps. Without loss of generality we can assume that v; ™ viy;, vp ™ Vpyg
are jumps and that for each jump vk ™ vgys of the circle C, ¢ < k& < p holds.
Analogously as in the case of two jumps we can get circles 1), ... C*) having
less than 27 jumps. By assumption there exist plane subgraphs with exteriors faces
cW, . ¢® and regions C,, 3 < n < m, therefore there exists plane subgraph
with exterior face C and regions C,,, 3 < n < m, too.

c) Let G aG', G' € V(Cp) and let C = v1v2...vpv1 be a circle of G. Let
A1, As, ..., As be a partition of V(G') corresponding to the contraction of G’ to G.
Without loss of generality we can assume that

v €Ay, ..., vn € Ay
For any blocks A;, A;11, 1 < ¢ < n (we compute modulo n) there are vertices
w; € A; and wipy € Ajpq for which wjwiy1 € E(G'). The subgraphs induced by
sets A; and A;41 are connected, hence there exists a path from v; to v;41 in G'. Tt
implies that there exists (in G’) a circle ¢’ with vertices from A, ... , A, having
a contraction the circle C. By assumption there is a plane subgraph of G’ with
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exterior face C' and regions C,,, 3 < n < m. and by contracting edges we can get
from it the plane subgraph with exterior face C and regions C), 3 <n < m.

Corollary 2.7. The lattice £ contains the infinite chain
0<V(Ky) <V(Cs) < V(Cy) < -<V(Cr) << 1
where the variety 1 is generated by the set of all circles.

Proof. By Theorem 2.6 we have C,11 ¢ V(C,) for each n > 3. It follows from
Corollary 1.2 that the variety 1 is the greatest element of L.

Theorem 2.8. The variety V (C4) does not cover the variety V(Cs) and the variety
V(Cs) does not cover the variety V (Ca)

Proof. Let us denote by Gs_4 the graph in Fig. 4
1 6

Fig. 4

It is obvious that V(C3) < V(Gz_4) < V(Cs). We can check that a plane sub-
graph of Gz_4 with the exterior face C' = (1,2, 3,6) and regions C3 does not exist,
therefore Gz_4 ¢ V(C3). On the other hand it can be checked that
a) if we add any edge to E(Gs_4) or
b) make any contraction of the graph Gs_,
we obtain a graph belonging to the variety V(Cs). Hence Cs ¢ V(G3_4). It implies
V(C3) < V(Ga—a) < V(Ca).

We can analogously prove that V/(Cs4) < V(Ga—s5) < V(Cs), where Gy_5 is the
graph in Fig. Ha.

4 3

Fig. 5a Fig. 5b

Note that the graph depicted in Fig. 5a is depicted in Fig. bb, too.
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The graphs in Fig. 4 and 5 indicate that the structure of the lattice of varieties
is not trivial. We will give some problems referring to the lattice £ of varieties.

1. What is the width of the lattice £7 (By results of Robertson and Seymour
[10], £ does not contain an infinite antichain.)

2. How many varieties cover the variety V(C3) ?

3. What is the length of the interval [V(C3), V(C4)] ?

4. Assume H is the graph in Fig. 6. Is the variety V() noncomparable with
the variety V(Cs) ?

Fig. 6
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FUZZY DIVERGENCE MEASURES

INEs Couso, VLADIMIR JANIS, SUSANA MONTES

ABSTRACT. A divergence measure is a tool than can be used to measure how two
fuzzy sets differ from each other. Particularly it can be used to estimate the fuzziness
measure of a fuzzy set. The existing concepts of a divergence measure do not reflect
on what membership values the given fuzzy sets are different. We use a divergence
measure whose output is not a real number but a fuzzy quantity and show that
this quantity is able to distinguish those pairs of fuzzy sets, for which the classical
divergence measure gives identical results.

In recent years several attempts to compare pairs of fuzzy sets have been done
either measuring their similarity ([2], [9], [11]) or difference between them ([1]). In
relation with the latter paper, Montes et. al ([8]) introduced the definition of a
divergence measure. This concept generalizes, except for the symmetry property
(that could be excluded from the set of axiom in some particular cases) the concept
of dissimilarity measures proposed by Bouchon-Meunier et al. in [1].

Assigning a real number as the value of the difference between two fuzzy subsets
allows us to define fuzziness measures by comparing a fuzzy subset with its com-
plement, with the closest (in some sense) crisp set or with the equilibrium ([6]).
However, this restriction to the set of real numbers can lead to the loss of some
important information about this difference, namely it does not distinguish whether
differences occur in low or high membership degrees.

For the reader’s convenience we introduce some basic definitions.

Definition 1. By a fuzzy subset A of the universe  we understand a mapping
A:Q—[0;1].

If no confusion can arise, we speak simply of fuzzy sets rather than fuzzy subsets
of a given universe. The set of all fuzzy subsets of @ will be denoted by F(€).
We say that a fuzzy set A is a subset of a fuzzy set B if for these functions the
inequality A < B holds. In the usual way we understand the a-cuts of sets in F'(2),
i.e. if a € (0;1], then the a-cut of a fuzzy set A is the (crisp) set

Ao ={2 € Q; A(z) > a}.

2000 Mathematics Subject Classification. 04AT72.

Key words and phrases. Fuzzy set, divergence measure, fuzzy divergence measure.
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If we assume some kind of topology on €2, then the zero cut of A is the set

Ap = cl{x € Q; A(z) > 0},

where ¢l is the closure operator.

The intersection and union of fuzzy sets can be defined using an arbitrary tri-
angular norm. Nevertheless, we will work only with the minimum triangular norm
here, that means, by the intersection of fuzzy sets A and B we will understand the
fuzzy set AN B = min{A, B}, and by their union the fuzzy set AUB = max{A, B}.

In several previous papers ([5], [7], [8]) we have introduced and studied a way to
quantify the degree of difference between two fuzzy sets by a real function called a
divergence measure, which has as its particular cases the usual distances between
fuzzy sets already known and used ([4]).

The measure of difference between two fuzzy sets was defined on the basis of the
following natural properties:

1) It should be a nonnegative and symmetric function of two fuzzy sets,
2) it should become zero if the two sets coincide,
3) it should decrease if the two sets become more similar in some sense.

While it is easy to formulate analytically the first and the second condition,
the third one depends on the formalization of the similarity concept. A possible
approach is based on the fact that if a fuzzy set C is added (in the sense of a union)
to both A and B, two sets which are closer to each other are obtained; the same
should hold for the intersection.

Definition 2. Let  be a universe. A mapping D : F(2)? — R is called a
divergence measure if for each A, B, C' € F(Q) there is:

D(A,B) = D(B, A), D(A, A) = 0

and

max{D(AUC,BUC),D(ANC,BNC)} < D(A, B).

It 1s also possible that a divergence measure is not defined on the whole set
F(Q)?, but just on some subset of this product.

The nonnegativity of D follows from the second and the third property, where
for the fuzzy set C' we put the empty set, i.e. C(z) = 0 for each = € Q.

A natural candidate for the divergence measure in case of a finite universe (or in
case we work only with finite fuzzy sets) is the Hamming distance defined by the

formula
D(A,B) = Z |A(z) — B(z)].
TEQ

If (€2, i) is a measurable space, than another example of a divergence measure
which works with integrable fuzzy sets is

D(A. B) :/ A~ Bldp.
Q
A common disadvantage of this approach is that the divergence between fuzzy
sets is expressed by a single real number not accounting on which level the difference

between given fuzzy sets is realized.
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Example 1. Let Q = {z;y}, let A, B and C be the following fuzzy subsets of Q:
A(z) =0,A(y) =1, B(z) =

Using the Hamming distance we obtain

D(A, B) = D(A,C) = %

The divergence between A and B in the previous example is the same as the
one between A and C. On the other hand, the a-cuts of A and B for a > % (i.e.
the ”important” a-cuts) are the same, which is not true for the fuzzy sets A and
C'. From this point of view we can require that the divergence between A and B
should be smaller than between A and C'.

We try to introduce a fuzzy quantity that would reflect the above mentioned
difference as well as fulfill properties analogous to those from Definition 2.

Let A be a fuzzy set, let a € [0;1]. By the symbol A% we will denote the fuzzy

set
{ A(z) ifxe A,
0 otherwise,

A%(z) =

where A, is the a-cut of A. Note that A = A°.
We will also need the definition of a pseudoinverse to a non-increasing function
defined on the unit interval.

Definition 3. Let f be a nonnegative non-increasing real function defined on the
interval [0;1]. Its pseudoinverse is the function f(=1) : [0;00) — [0;1] for which
FED (@) = sup{r; f(r) > x}, with the convention sup § = 0.

"The notion of pseudoinverse can be defined in much more general context (see
[10]). For our purpose this definition will be sufficient.

Let now D be an arbitrary divergence measure, let A, B be fuzzy sets such that
D(A®, B*) exists for each o € [0;1]. For these sets we can construct the function
®4,B in the following way:

va p(a) =sup{D(A”, B*);w > o}

Obviously the function ¢4 p depends also on the chosen divergence measure D
and this should be reflected in the notation. As we work with a fixed divergence
measure, to keep the notation simple we allow this small inaccuracy.

Proposition 1. For any fuzzy sets A and B the function g4 p is non-increasing.
Proof. If o < 3, then evidently
{D(AY, B*);w > o} D {D(A", B¥);w > f},

and the least upper bounds of these sets are therefore in the same order. This yields
the required inequality @4 p(a) > ¢a,5(8). O

So we can apply the operation of a pseudoinverse to this function.
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Definition 4. The fuzzy set A(A, B) = 5054_;) will be called the fuzzy divergence
measure between A and B,

This function can be considered as a fuzzy quantity @ corresponding to the
linguistic construction “a number not much greater than a”. Applying the trans-
formation 7(A(A, B)) = 1 — A(A, B) we obtain exactly the well-known statistical
representation of a positive fuzzy number (see e.g. [3]).

In the following we will show that A has similar properties to those of a (crisp)
divergence measure from Definition 2, Therefore it can be considered as its gener-
alization. In the following we suppose that all the fuzzy sets we work with admit
their mutual fuzzy divergence measure.

Proposition 2. For all A, B € F(R2) there is A(A, B) = A(B, A).

This statement is a direct consequence of the symmetry from the definition of a
divergence measure. Therefore also ¢4 p = ¢p, 4 holds.

The following property expresses the fact that the fuzzy divergence of two sets
that coincide is a fuzzy quantity corresponding to the representation of zero.

Proposition 3. For any A € F(Q) there is A(A, A)(0) = 1, A(A, A)(z) = 0 for all
x> 0.

Proof. As D(AY, A%) = 0 for all w € [0;1] we have @4 a(a) = 0 for all a € [0;1].
Then
A(4, 4)(0) = #573(0) = supfa € [0; 1) pa,a(0) > 0} = 1.
If z > 0, then
{ospaa(a) > 2} =10,
and hence A(A4, A)(z)=0. O
Proposition 4. For all A, B,C € F(Q) there is
max{A(ANC,BNC),A(AUC,BUC)} C A(A, B).

Proof. As the pseudoinverse for a non-increasing function is an order-preserving
operation, it is sufficient to show that there is

vanc,Bnc <pa,p and pauc,Buc < PA,B-

If w € [0;1] and x € Q, then clearly (AN B)(x) = min{ A(x), B(x)} > w if and only
if both A(x) > w and B(z) > w. Hence (AN B)¥ = AY N BY.
This means that for any « € [0;1] we have

Yanc,nc () =sup{D((ANC),(BNC)*);w> a} =
= sup{D(A“ N C¥, B 1 C*);w > a}.
As D is a divergence measure, due to its properties the last term is less or equal to
sup{D(A*, B*);w > a} = pa,p(a).

Thus the first required inequality 1s shown. The other can be proved the same way,
using the property (AU B)¥ = AYUB“. O

Now we will return to Example 1 and show that a fuzzy divergence measure
provides us with more information comparing to the crisp one.
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Example 2. Let Q@ = {z;y}, let A, B and C have the same meaning as in Exam-
ple 1. We will find A(A4, B) and A(A4, C) with A based on the Hamming distance.
It is easy to verify that the functions ¢4 ¢, ¥B,c are the following:

wac(a) =1 forall o€][0;1],

L ifac(0:d]

enclo) = { if a € (1;1].

<o

Then using the pseudoinverses of these functions we have

o= 0 if € [1;00),

if z € 0; 5)
0 if € [1;00).

We see that while the divergence measure based on the Hamming distance is

the

same (Example 1), their fuzzy divergence measures are different. Moreover,

A(B,C) < A(A,C), what reflects the fact, that the differences between A and '
are on higher membership degree, i.e. in most applications should be considered as
more remarkable.
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STRICT ORDER-BETWEENNESSES

JUDITA LIHOVA

ABSTRACT. In this note necessary and sufficient conditions for a strick ternary rela-
tion to be a strict order—betweenness are given. As an application, a characterization
of lattices of convex subsets of posets is obtained.

INTRODUCTION

In every poset, we can introduce a ternary relation r called order—betweenness
in the following way:

(a,b,¢) erifandonlyifa<b<corc<b<a.

G. Birkloff proposed (cf. the 2nd edition of his Lattice theory, 1948, Problem 1) to
search for axioms for a ternary relation to be an order - betweenness. Such system
of axioms was found by M. Altwegg [1], M. Sholander [2] gave an alternative system
of axioms.

In certain cases, it is more convenient to handle with strict ternary relations, as
sets of triples of different elements. E.g., if we define a ternary relation 7’ in a poset
A = (A, <) to be a strict order - betweenness provided that

(a,b,e) €' ifand only ifa < b<corec<b<a,
the convexity of a subset X of A means that

(a,b,e) €' a,c€ X imply b € X.

In this note we give necessary and sufficient conditions for a strict ternary relation
to be a strict order—betweenness. As a consequence, a characterization of lattices of

convex subsets of posets 1s obtained. An alternative characterization can be found
in [4].

1. STRICT ORDER-BETWEENNESSES

M. Altwegg proved the following theorem (cf. [1]):

1.1. Theorem. Let M be a nonempty set, ( a ternary relation in M. Then there
exists a partial order < in M with

(a,bye)eCiffa<b<cora>b>c
if and only if  satisfies:

(Z1) (x,2,2) € ( for each z € M,

2000 Mathematics Subject Classification. 06A06, 06B99.
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(Z2) (z,y,z) € ¢ implies (z,y,z) € (,

(Z3) (%,y,2) € ¢ implies (x,2,y) € ,

(Z4) (z,y,2) € 1mp11es T =y,

(Z5) (x,9,2),(y,2,u) € (,y # = imply (2, y,u) €,

(Zs) if xq, 21, J:,,, Tpy1 = Lo, Tnya = ¥ Is a sequence of elements of M such

that (xl_l,xz_l,xl) € ¢ and (wj—1, 2, 2i41) € ¢ for each i € {1,...,n+ 1}
(with a positive integer n), then n is odd.

Let M be a nonempty set, & a ternary relation in M. We will refer to € as a
strict ternary relation, if it contains only triples of different elements.
Consider the following conditions concerning a strict ternary relation &:

() (x,y,2) € 5 implies (z,y,z) € &,

z) €&, (y,z,u) € £ imply (x,y,u) €,

y,z) €& (x,z,t) € L imply (y, 2,1) €,

x;yaz)ef ($ y,z)E«Eimply(x,y,z’)Egor(w,y,x’)Ef,
y,z) €&
y,z) €

(F ,Z (y,u,v) € & imply (z,y,u) €€ or (z,y,u) € ¢,

(C) (z,y,2) €&, (y,u,v) €& imply (v,y,z) €& or (z,y,u) €EE,

(1) (x,y,z) € £ implies (z, z,y) ¢ &,

(0) if (ag,y1,a1), (a1,y2,a2), ..., (@n—1,YUn,an) is a sequence of elements of &

such that (a;_1,a;,a;41) ¢ & for each i € {1,....n— 1} and (ag,y1,01) =
(@n-1,Yn, an), then n is odd.

1.2. Definition. By a strict order—betweenness in a set M a strict ternary relation
¢ in M satisfying
(a,b,c)eiffa<b<cora>b>c

for a partial order < in M, will be meant.
We will prove the following theorem.

1.3. Theorem. Let & be a strict ternary relation in a nonempty set M. The
following conditions are equivalent:

(1) € is a strict order—betweenness,
(2) ¢ satisfies (S), (1), (X), (¥) and (O),
(3) ¢ satisfies (5), (X)), (C) and (O).

First we want to clear the relations between the conditions (S) — (O). The
following statements are easy to prove for any strict ternary relation &.

1.4. Lemma. If{ satisfies (R), then it satisfies (I).

1.5. Lemma. If¢ satisfies (5), (F'), (1), then it satisfies also (R).
1.6. Lemma. If¢ satisfies (5), (C), then it satisfies (R), (¥'), (1), too.
1.7. Lemma. If¢ satisfies (5), (T), (F), then it satisfies also (C').

1.8. Corollary. The following assertions are equivalent:
(a) & satisfies (S) and (C),
(b) & satisfies (S), (1) and (F),
(c) & satisfies (S), (1), (R), (F),(C), (I).

28



In the following two lemmas we suppose that £ is a strict ternary relation in a
set M satisfying all conditions (S) — (O). Let us define a ternary relation { by

C=¢U{(v,u,u):ue M}U{(uy,v,w):u=vFworuzv=uw
and u,w € {x,y, 2z} for some (x,y,z) € £}.
The aim is to show that ¢ fulfils (7).

1.9. Lemma. Let g, 1, ...,2x € M (k is a prositive integer) and (x;_1, zi—1, 2;) €
¢ foreachi € {1,... .k}, (zi—1,2;,2,41) @ ( foreachi € {1,....k—1}, 20 # x1. Then
there exist (ag,y1,a1), (a1, Y2, a2), ..., (ak -1k, ax) € & such that (a;_1,a;, a;41) & &
for each i € {1, ...,k — 1}, further either g = ag,x1 € {y1,a1} or xo = y1, 21 = a1
and simultaneously either xj_1 = ap_1, 25 € {yk, ar} or vx—1 = yg, Tx = ai holds.

Proof. We will proceed by induction on k. If £ = 1, the assertion is evident. Let us
remark that we need here the assumption xg # 1. If K > 1, then the relation zy #
z1 is implied by (2o, 1, 22) € (. Suppose that the assertion is true for a positive
integer k. We will prove it for k+1. So let g, z1, ..., &g, xx+1 € M satisty the above
assumptions and let (ag,y1,a1), ..., (ak—1, Yk, ax) be a sequence corresponding to
Zg, Z1, ..., & by induction hypothesis. We have the following possibilities:

1) &p_1 = ag—1, 25 = Y,

2) Tkt = ap_1, Tk = ag,

3) Tp—1=Yr, Tk = Q.
Further, since (zg, g, x41) € ¢ and @ # wg41, because (wp_1, Tg, TK41) ¢ ¢, there
exists t € M with

I) (zg,t,2541) €& o1

II) (¢, 2k, 2p41) € € or

III) (t7 Tht1, lk) S f

We proceed combining the cases 1) - 3) with I) - III). Let us suppose that 1)
and I) occur. The relations (xg_1, 2k, ar) = (ax—1,Ys, %) € &, (2k, t,241) € &
imply (ax,zk,t) € & by (C). Then using (1) we obtain (ax, 2k, zx41) € €. If
we show that (ax_1,ak, 2x41) ¢ &, then adding (ag,zy, zx41) to the sequence
(ao,y1,@1), ..., (@g—1, Y, ax) we obtain such a sequence as we need. If it were
(ak—1,ax, zx+1) € &, we would have (xg,ak,zx+1) = (Ys, an, vr41) € & by (R),
contrary to the above proved (aj, zg, 2x4+1) € §&. Combining 1) with II) or III), we
can proceed analogously. It is easy to verify that if I) and any of the cases 2), 3) oc-
cur, we can add (@x, %, £x41), while if ITI) and simultaneously 2) or 3) occur, we can
add (zg, xg41,1) to the sequence (ag,y1,a1), ..., (ag—1, yx, ax). Now let us suppose
that II) and 2) occur. Since (xx_1, %k, ¥x+1) € &, we have also (yx, zk, ¥k4+1) ¢
&, by (T). Using (C) we obtain (ax—_1,2x,t) € & Now consider the sequence
(a0, y1,a1), -, (@h—2,Yr-1, ap—1),
(ak—1,25,1), (t, 25, xx41) of elements of . We will show that (ag_o,ax_1,1) ¢ &,
(ak—1,t,241) & €. The first relation follows from (ax—2,ax—1,ar) ¢ & by (R).
If it were (ag_1,t,2541) € &, we would have (ay_1,t,25) € & by (R), contrary to
(ak—1,2,t) € &. Let us notice that in this case we change the last member of the se-
quence (a0, y1,a1), ...,
(ak—1, Yk, ax) and add a new one. If k = 2, we have (g, z1,1), (¢, 21, 22), as we
need. The remaining case, if II) and 3) occur, can be analysed analogously.
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1.10 Lemma. The relation ¢ fulfils (Z5).

Proof. Let zg,z1,...,Zpn, Tnt1 = To, Tpt2 = 1 be a sequence of elements of M
such that (z;—1, @;—1, #;) € ¢ and (#;_1, ©;, 2;41) ¢ ¢ foreach i € {1,...,n}. The
previous lemma ensures the existence of a sequence (ap, y1,a1), ..., (an, Yn41, Ant1)
of elements of & such that (a;_1,a;,a;41) ¢ € for each i € {1,...,n} and one of the
following conditions a), b), ¢) is satisfied and simultancously one of the possibilities
«), 3),7), occurs:

a) xo = ag, T1 =y,

b) rg = dap, T = dy,
C) Lo = Y1, 1 = ay,
)
)

Q) Ty = Ap, To = Yn+1,

B) Tn = an, To = Any1,

’Y) Tn = Yn41, Lo = Up41-
In each of the cases a) and ), a) and ), b) and 3), b) and ~), we take the sequence
(@0, Y1, @1)y oy (Any Yt 15 Gnt1)s (@nt1,¥1,a1) = (a0, ¥1,a1). In the cases @) and
«), b) and «) we take the sequence (ao,y1,a1), ..., (@n, Yn41,an41), (@nt1, a0, a1),

(a1,y1,a0), (a0, y1,a1). If ¢) and B) or ¢) and %) occur, we take (ag,y1,a1), ...,
(@n—1,Yn,an), (@n,ant1,a0), (o, y1,a1). Finally, if ¢) and a) occur, we take the
sequence (ao,Y1,a1), ..y (Gn-1,Yn, @n), (n, Ynt1, a0), (a0, y1,a1). Each of these se-
quences satisfies the assumptions of the condition (0O). We will show it, e.g., in
the last case. We have (an, Ynt1, ant1) € &, (@n, Yng1,a1) = (a0, y1,a1) € &, so that
(@n, Ynt1,a0) € Eby (X), because (an, Ynt1, @1) = (Tn, 2o, 1) = (Tn, Tnt1, Tnt2) &
&. Further we will show (a,—1, an, ap) € &, (an,ap,a1) ¢ £ If it were (an, ap,a1) €
¢, we would have (yny1,a0,a1) € & by (R), which contradicts (ao, Ynt1,e1) =
(@0, y1,a1) € & Let us suppose that (an—1,an,a0) € . Using (@n, Yn+1,an41) €&
we obtain (ag, an, Yn4+1) by (C), because (apy1, apn, tn—1) ¢ . But this is a contra-
diction, as we have proved (an, Ynt1, o) € €. Now using (O) we conclude that n is

odd.

Proof of theorem 1.3. 1t is easy to see that (1) implies (2). Further, (2) implies
(3) by 1.8. Now let ¢ satisfy (5), (X), (C) and (O). Then ¢ satisfies all conditions
(S) — (0), again by 1.8. Let ¢ be defined as before 1.9. It is easy to verify that
¢ satisfies (Z1) — (Z5). By lemma 1.10 it satisfies (Z6), too. Theorem 1.1 ensures
the existence of a partial order < in M such that (a,b,c) € ¢ if and only if either
a<b<cora>b>cholds. Obviously (a,b,c) € £ is equivalent to a < b < ¢ or
a > b > ¢, so that € is a strict order—betweenness.

The following examples show that the system of conditions given in (2) of 1.3
and (3) of 1.3, respectively, is independent. In each of these examples we point out,
which of the conditions () — (O) are not satisfied.

1.11 Example. Let M = {a,b,c}, € ={(a,b,c)}. Then & doesn’t satisfy (.5).

1.12 Example. Let M = {a,b,¢}, £ = {(a,b,¢),(a,c,b),(c,b,a),(b,c,a)}. Then &
doesn’t satisfy (1), (R), (C), (1).

1.13 Example. Let M = {a,b,c,d,e}, & = {(b,¢,d),(a,c,e),(d, ¢, b), (e, c,a)}.
Then £ doesn’t satisfy (X).
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1.14 Example. Let M = {a,b,c,d, e}, & = {(a,b,¢),(b,d,e), (¢, b,a),(e d,b)}.
Then & doesn’t satisty (F') and (C).

1.15 Example. Let M = {a,b,c,d,e, f}, & = {(a,b,¢),(c,d,e), (e, f.a), (¢, b,a),
(e,d,c), (a, f,e)}. Then £ doesn’t satisfy (O).

2. CHARACTERIZATION OF CONV A

Theorem 1.3 enables us to give a characterization of lattices of convex subsets of
partially ordered sets. For a partially ordered set A = (A, <) let Conv A denote the
system of all convex subsets of A. It is easy to see that (Conv A, C) is a complete
atomistic lattice (atomisticity means that every element is a join of atoms).

2.1 Theorem. Let IL = (L,A,V, <) be a complete atomistic lattice, card L > 1.
Further, let M be the set of all atoms of 1., & the ternary relation in M defined by

(a,b,c)el<=b<aVe b#a, b#c.

The following conditions are equivalent:

(I) L is isomorphic to Conv A for a partially ordered set A;
(1) & satisfies (1), (X), (¥),(O) and

(K)a<supX, X CM, ae M — X imply (z1,a,x2) € £ for some x1,22 € X;

(111) & satisfies (X), (C), (0) and (K).

Proof. Since the relation £ is evidently symmetric, the conditions (I1), (/1) are
equivalent by 1.8. To prove (I) = (II), let ¢ be an isomorphism of L. onto Conv
A for a partially ordered set A = (A4, <*). As atoms of the lattice Conv A are just
the one-element subsets of A, the mapping ¢’ : M — A defined by

¢'(x) = a <= p(x) = {a}

is a bijection of M onto A. Evidently (z,y,2) € £ means that either ¢'(z) <*
o' (y) <* ¢'(2) or ¢'(z) <* ¢'(y) <* ¢'(x) holds. Consider the partial order <’ in
M defined in such a way that ¢’ is an isomorphism of (M, <’) onto A. Then we have
(z,y,2) € Eifand only if & <’ y <’ z or z <’ y <’  holds, so that £ is a strict order

betweeenness. Using theorem 1.3 we obtain that & satisfics (7'), (X), (F') and (O).
It remains to show that (K) is satisfied. So let ¢ <supX, X C M, a € M — X.
Then ¢'(a) belongs to the convex hull of {¢/(z) : & € X} in A. Consequently
there exist w1, 29 € X with ¢/(21) <* ¢'(a) <* ¢'(22). Since ¢ ¢ X, we have
21 <" a <’ zy and hence (21, a,z2) € . We are going to prove (II) — (I). So let &
satisty (1), (X), (#),(0) and (K). Since £ is also symmetric, we have (a,b,¢c) € &
if and only if @ <* b <* ¢ or ¢ <* b <* a for a partial order <* in M, by 1.3. We
will show that L is isomorphic to Conv (M, <*). Notice that a subset X of M is
convex if and only if (z1,a,22) € &, z1,22 € X implya € X. If a € L, let M,
denote the set {p € M : p < a}. To verify that the set M, is convex in (M, <*), let
(u,z,v) €€, u,v € My. But then 2 < vV v < a, hence € M,. Obviously a < b
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implies M, C M,. Since a = sup M,, the converse implication holds, too. Finally,
let X be any subset of M, convex in (M,<*) and let a = sup X. We will prove
M, = X. The inclusion X C M, is evident. Let us suppose that there exists an
element p € M, — X. The condition (K) ensures the existence of z1, 2, € X with
(z1,p,22) € €. In view of the fact that X is convex we have p € X, a contradiction.
The proof is complete.

To show that no of the conditions given in (/1) and (I1I), respectively, can be
omitted, consider the following examples.

2.2 Example. Let IL be as in Fig. 1. Then evidently ¢ = {(a, b, ¢), (¢, b, a)} and it
satisfies all conditions (S)—(O), but it doesn’t satisfy (X). Namely a < sup{b, ¢, d},
while (b,a,¢), (b,a,d), (c,a,d) &¢.

Fig. 1 Fig. 2

2.3 Example. Let I be as in Fig. 2. Then evidently & is that of example 1.12.
Hence it satisfies (X), (F),(O) and also (K), while (T), (R), (C) and (I) are not
satisfied.

2.4 Example. Let £ be the system of all subsets X of the set {a,b, ¢, d, e} satis-
fying
bde X ora,e€e X = c€e X.

Then (£, C) is an atomistic lattice and the relation £ corresponds to that of example

1.13. So it satisfies (K) and all (S) — (O), besides (X).
2.5 Example. Let £ be the system of all subsets X of {a,b, ¢, u,v} with

a,ceEX=>beX,

vEXand (be€XorceX)=>ueX.

Then (£, C) is an atomisticlattice, § = {({a}, {b}, {c}), ({c}, {b}, {a}), ({0}, {u}, {v}),
({v}, {u}, {b}), ({c}, {u}, {v}), ({v}, {u}, {c})}. It can be seen easily that from among
the conditions (S) — (O) and (K), just (F) and (C') are not satisfied.

2.6 Example. Let £ be the system of all subsets X of the set {a,b,¢,d e, f}
satisfying
a,ce X =>be X,

ceeX=>deX,
e,ace X = feX.
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Then (£, C) is an atomistic lattice. The relation £ corresponds to that of example
1.15, hence it satisfies all conditions (S) — (I) and it doesn’t satisfy (O). Evidently
(K) holds, too.

Another characterization of lattices of convex subsets of partially ordered sets is
given in [4]. We refer to such lattices as c-lattices there. It is also proved that each
c-lattice 1s a direct product of directly irreducible ¢-lattices and directly irreducible
c-lattices are described. The construction of all partially ordered sets B with Conv
B isomorphic to Conv A for any given partially ordered set A can be found in [3].
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EXTREMUM CONDITIONS FOR A
DEGENERATED CRITICAL POINT

PETER MALIGKY

ABSTRACT. For a degenerated critical point of a function of two variables are given
necessary and sufficient conditions for a local extremum.

It is well known that a type of a critical point (point of minimum, maximum
or saddle point) for a function f of two variables may be determined using partial
derivatives of the second order whenever the hessian is nonzero. The case of the
zero hessian is considered as complicated and using of derivatives of higher order is
recommended. The present paper shows how to use the derivatives of higher order.
It was motivated by paper [1] which contains some necessary condition.

For the simplicity we shall assume that the origin (0, 0) is a critical point of the
function f and we write

3i+jf
We have
(1) aip = ap1 = 0.

We assume the zero hessian
2 —a?, =0
(2) 2002 — a1 = V.

We first consider the case, when one of the derivatives of the second order is nonzero.
So, we have

asp ;é 0 or apn2 # 0.
For the simplicity we assume
(3) azo > 0

and we are interested in conditions under which the origin (0,0) is a point of local
minimum of f (maximum is impossible). Let the function f has continuous partial
derivatives to the fourth order in a neighbourhood of (0, 0). Put

P
g(x,y) = fz + pry+ fyz,y)

2000 Mathematics Subject Classification. 26B05, 26B10.
Key words and phrases. Critical point, hessian.
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Functions f and g have a local minimum at the point (0, 0) simultaneously, because
the maps

P2
D (z,y) = (¢ +pry+ 51/2,1/)

and

P
W (2,y) = (2 —pry — ;yz,y)

are mutually inverse homeomorphisms which preserve the origin. We denote
oiti g
Ox' Oyl

Then we have

4
5
6
7
8
9

bio=aip=20

bao = azo >0

bo1r = ap1 + aop1 =0

bor = ag2 + 2a11p1 + as0p; + aropa = aga + 2a11p1 + azep?
bos = ao3 + 3aiap1 + 3axip] + azopt + 3a11ps + 3asopipo

(4)
(5)
(6)
(7)
(8)
(9) bos = apa + 4aispr + 6a22p% + 4a3]P? + Cl401011 + 6aqapa+
+ 12as1p1ps + 6asopips + 3asops
(10) bi1 = a1y + axop:
(11) b1y = a12 + 2as1p1 + azopi + asopo

Choose p; and py such that

(12) biy =0
(13) bio=0
It means

aiy
14 —_zt
(14) p=—

-1

(15) P2 = a—%(au + 2as1p1 + asopi)

Put Hz = bosz and H4 = bga, where p1 and py are defined by (14) and (15). Then

(8), (9), (10), (11), (14) and (15) imply
(16) Hsz = aps + 3ai2p1 + 3as1 + azopi
(17) Hy = ags + 4ayspr + 6az9p] + 4az1pi + asop] — 3azops

By (7), (14) and (2) we have

2

arl aiy ap20d20 ap20d20

boz = aga — 2a11— + azo—— = ap2 — 2 +asg—5— = apa — 2ap2+ap2 = 0.
@20 a5q @20 a5y
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Theorem 1. Let f be a function of two variables which has continuous partial
derivatives to the fourth order in some neighbourhood of the origin which is a
degenerated critical point of f. Let

a20>0.

Conditions Hz = 0 and Hy > 0 (resp. Hs = 0 and H4 > 0) are necessary (resp.
sufficient) for a local minimum of f at the origin.

Proof. Let f has a local minimum at the point (0, 0). Define

e(y) =9(0,y)
or equivalently
_ D2 2
py) = fmy+ 59" 0) -

Then ¢ has a local minimum at 0. We have

©*)(0) = ak—g(o 0) = boy for k=1,2,3,4.

ayk, bl bl bl 3

By (6) and (16)
#'(0) =¢"(0)=0.

Therefore conditions

Hg = b03 = QO///(O) =0
and

Ha =bos = g0(4)(0) >0
are necessary. Now, we prove sufficiency. By Taylor’s formula we have

by i
g(z,y) = ¢(0,0) + E —_"?'x v + ra(z,y), where
iy

1<i4j<4

which implies
T4 ($‘, y)
20ty

bi; ;. .
The sum E —_'Z‘?' z'y’ does not contain the terms z,y, y%, zy,y> and zy? | be-
— gl
1<i4j5<4

cause the corresponding b;; are zero. The inequality

x2+y4
l2”| = lylvVa2y* < [yl 5 < lyl(z® + y*)
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shows that the term zy® is negligible with respect to (z + y*). Since
22 < 22 + y*, terms 23, 2%y, 2%y%, 23y and z* are also negligible with respect to
(2 4+ y*). Therefore,

b b
g(z.y) = g(0,0) + ?rz + %y‘* + s(z, y),

where
fim 22Y) _

z—0 x2 4
y—0 + y

It proves sufficiency.

Erample 1. Put

filz,y) = 2 + dzy + 4y° + 62y® + 9y

fo(z,y) = 2% + 4wy 4+ 4y* + 62y” + 12y° — 62y° — 2"

fa(z,y) = 22 + 4oy + 4y* + 6y + 1295 + 8y*
In all cases py = —2, ps = —6 . We have H3 = =72 for f1 , H3 =0 and Hy = 24
for fo and Hs3 = 0 and Hy = —24 for f3 . So, only the function f; has a local

minimum at (0, 0).
Of course, it may happen that Hs = H4 = 0.

Example 2. Put

fa(z,y) = 2 + day + 4y + 122y” + 24y° + 2xy® + 409" + 13y° +¢°
Fs(x,y) = o + day + 4y° + 122y* + 24y° + 22> + 40y* + 12° + 24/°
Jol(x,y) = 2 + day + 4y + 122y% + 24y° + 229 + 40y* + 12¢°

Then p1 = —2, po = —12 and H3 = H4 = 0 in all cases. Put

gi(z,y) = fi(x — 2y — 6y°,y) for i =4,5,6.

Then
ga(z,y) =2* + 22 + " +° = (e +°)° +¢°
gs(z,y) = 2%+ 2z + 2% = (z + y3)2 +4°
gs(z,y) = 2 + 2209° = (x + 4°)? =
Now, define
hi(z,y) = gi(e — yg,y) fori=456.
Then

ha(z,y) = 2° + ¢°
hs(x,y) = 2>+ 3°



So, only f5 has a local minimum at the origin.

If H3 = H4 = 0, then the previous example indicates that a type of a critical
point may be determined by the function h defined by

P p P
h(z,y) = g(z + €y3, y) = f(z +p1y+ %yz + gys, y).

In fact, in this case it is possible to define characteristics Hs and Hg (if the function
f is six times continuously differentiable in some neighbourhood of the origin) and
an analog of Theorem 1 in terms of Hs and Hg may be proved. However, we omit
the details, because Hs and Hg contain 16 and 23 terms respectively.

Ezxample 3. Put

902—1—6_1/Lz for 0
falw,y) =9 7, v 7
xz® fory =0

<

x2—{—e_L2 for y > 0
fs(z,y) =19 22— ¢

2% for y =10

@
t\:l"‘

for y <0

Functions f7 and fs have the same partial derivatives (of all orders) at the origin,
but only f7 has a local minimum at the origin. It shows that values of partial
derivatives of all orders at a critical point need not determine its type.

Now, assume that

_ 0 2
agy = azo = 0 = agza20 — ai;

Then also
aj;] = 0.
Put
Ps(z,y) = azox® + 3a21x2y + 3a12=’L‘y2 + a03y3 .
and

Py(z,y) = asor® + daz 2%y + 6azsr’y? + darzry® + agay® .

Theorem 2. Let f be a function of two variables which has continuous partial
derivatives to the fourth order in some neighbourhood of the origin which is a
critical point of f. Let

agy = ago = ay; =0 .

Conditions

azgp = az1 = a3 = agz =0

and
Py(z,y) > 0 (resp. Pa(x,y) >0 whenever 2> +y* #0)

39



are necessary (resp. sufficient) for a local minimum of f at the origin.

Proof. Let the origin be a point of local minimum of f. For arbitrary reals a and

3 define
o(t) = flat, pt) .

Then

Since the function ¢ has a local minimum at 0, we have
©""(0) = azoa® + 3az10” B + 3a120f” + apsfB® = Ps(a,5) =0

and
¢ W(0) = Py(a, 8) > 0.
So, the polynomial Ps is identically zero. Therefore, all its partial derivatives (of

all orders) are identically zero. Particularly, all coefficients of Ps are zero. It proves
necessity. Now, we prove sufficiency. By Taylor’s formula we have

f(z,y) = £(0,0) + %P;;(w, y) + ra(z,y),

4
where
. 7”4(]}7 U)
lm ———— =0
§38 (22 + y2)?
Put
c= min Py(z,y).
w2 4y?=1
Clearly,
c>0
and

Py(x,y) > c(2? + y*)? whenever 2% +¢* = 1.

Since Py(z,y) and (2?4 y?)? are homogeneous polynomials of the same degree, the
last inequality holds for all # and y. It means

ra(z,y) _

Therefore, ra(z,y) is negligible with respect to P4(x,y) and f has a local minimum
at the origin.
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GENERIC CHAOS IN METRIC SPACES

ELENA MURINOVA

ABSTRACT. A dynamical system given by a continuous map f from a metric space
X into itself is called generically e-chaotic if the set of Li-Yorke pairs, i.e., the set
of points [r,y] € X2 for which liminf,_ e o(f™x, f?y) = 0 and simultaneously
limsup,,_, o, o(f™x, f"y) > ¢ is residual in X2 If e = 0, f is called generically
chaotic. It is shown that the characterization of generically e-chaotic maps given by
L. Snoha in the interval case can be extended to a large class of metric spaces. While
on the interval generic chaos implies generic e-chaos for some ¢ > 0, in the paper an
example of a convex continuum in the plane is given on which generic chaos does not
imply generic e-chaos for any € > 0.

1. Introduction.

We will study a dynamical system (X;f) given by a metric space (X, ¢) and
a continuous map f : X — X (in written f € C(X)). Usually when studying
chaoticity of such systems the authors assume that X is compact. Instead, we will
only assume that X is complete (even less, see below).

The notion of chaos in connection with a map was first used by Li and Yorke [LY]
without giving any formal definition. Since then many definitions of chaos appeared,
most of them being surveyed in [KS]. Each of them reflects some aspects of the
dynamics of those systems which are generally considered to be really ‘chaotic’.

The notion of generic chaos was introduced by A. Lasota (see [P]). A sys-
tem (X; f) is generically chaotic if the set of so called Li-Yorke pairs of points,
i.e., the set of points [z,y] € X? for which liminf,_ ., o(f*z, fy) = 0 and
limsup,,_, ., o(f"x, f*y) > 0is residual in X? (i.e., its complement is a first category
set in X?).

J. Pidrek [P] in 1985 found examples of generically chaotic interval maps, so it
became clear that maps satisfying such a strong definition of chaoticity exist.

. Snoha [S1] in 1990 gave a full characterization of generically chaotic self-maps
of a real compact interval I in terms of behaviour of subintervals of I as well as
in terms of topological transitivity. He also introduced the notion of dense chaos
by requiring that the set of Li-Yorke pairs be dense instead of residual. In [S2] he
found a full characterization of densely chaotic interval maps and proved that in
the class of piecewise monotone maps with finite number of pieces of monotonicity

2000 Mathematics Subject Classification. 37B05, 564H20.

Key words and phrases. Generic chaos, dense chaos, Li-Yorke pair, Baire space, complete
metric space, triangular map.
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the notion of generic chaos and that of dense chaos coincide. Finally, in [S3] he
generalized some results from [S1] to what he called two-parameter chaos.

The inspiration for the present paper was a concluding remark of IJ. Snoha from
[S2] saying that ”Some results concerning the generic chaos can be carried over to
the case of continuous self-maps of the compact metric spaces. For example, if for
every two balls By and B, liminf,_, dist(f" (B1), f*(B2)) = 0 and if there is an
a > 0 such that for every ball B, limsup,, _, ., diam f*(B) > a, then f is generically
chaotic.” The main aim of the present paper is to develop this idea of L. Snoha and
to check to what extent his characterization of generically chaotic maps from [S1]
and that of generically (o, #)-chaotic maps from [S3] can be carried over from the
interval to metric spaces.

Before going further we need to discuss the question which metric spaces will be
appropriate for us to work with.

First of all, note that the definition of generic chaos has a good sense only if the
space X2 is of second category (i.e., not of first category) in itself because only then
a residual set in the space X? can reasonably be considered to form a ‘majority’
of it (usually, in spaces of first category the residuality is not being defined at all).
Still, a residual set in a space of second category need not be dense in the space
(e.g., take the space [0, 1]U (Q N [2, 3]) with the metric inherited from the real line
and the set [0, 1]). But in the definition of generic chaos the residual set of Li-Yorke
pairs should be required to be automatically dense, we believe.

Therefore we will require that X? be a Baire space — then X? is of second
category in itself and any residual set in X? is automatically dense. (Recall that a
space Y is Baire if every open set in Y is of second category in Y or, equivalently,
in itself. This is equivalent with the property that the intersection of any countable
collection of open dense sets is dense in Y. Another equivalent definition is that
any residual set in Y is dense in Y. See, e.g., [HMcC]).)

Of course, it could seem more reasonable to assume something on the space X
itself rather than on X2. First, we should realize that a necessary condition for X2
to be Baire is that X be Baire. Unfortunately, this is not a sufficient condition —
the square of a metric Baire space need not be Baire (see [Kr] or [HMcC]).

The question therefore is what assumptions on X ensure that X? be Baire. Here
we wish to mention at least that, among others, any one of the following three
conditions is sufficient for X2 to be Baire (see [HMcC, Theorem 2.4, Proposition
1.23, Theorem 5.1]):

(A1) X is a complete metric space.
(A2) X is a G5 set in a complete metric space.
(A3) X is Baire and separable metric space.

We thus finish our discussion about the assumptions on X: we will assume that
X 1s a metric space whose square 1s Baire. In particular, 1t is sufficient to assume
that X satisfies any one of the above three conditions.

Now let us go to our results. But first recall some definitions. Consider a

'He brought the attention of the author of the present paper to a misprint in [S1, Theo-
rem 1.2] — the condition ”(h-1) f has a unique ...” should read as " (h-1) f is not constant in any
subinterval of I and has a unique ...”.
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dynamical system (X; f) and € > 0 and denote

n—o0

C(n) = {Irs] € X7 timint o, 79) = 0 and Timsupe (772, 7) > 0}

C(f,¢) :{[:p)y] € Xx? :li,minfg(f";c)f"y) =0 and limsupg (f*z, f"y) > E} .

n—00 n—o0

We say that f is generically or densely chaotic if the set C(f) is residual or dense
in X2, respectively. Similarly, f is generically or densely e-chaotic if the set C(f, )
is residual or dense in X2, respectively.
In [S1] it is among others proved that if f € C(I) where I is a real compact
interval then the following are equivalent:
(a) f is generically chaotic,
(b) for some € > 0, f is generically e-chaotic,
(c) for some e > 0, f is densely e-chaotic,
(d) the following two conditions are fulfilled simultaneously:
(d1) for every two intervals Jq, Jo, liminf, o o(f" (J1), f*(J2)) =0,
(d2) there is e > 0 such that for every interval J, lim sup,_, ., diam f*(.J) > «.

(Moreover, the equivalences (b) < (¢) < (d) hold with the same ¢. Further, any
generically chaotic function is densely chaotic but not conversely.)

We show that this result can be extended to metric spaces, though not completely
(the implication (¢) = (@) in the next theorem does not hold with the same e,
contrary to the interval case).

Theorem A. Let (X, ) be a metric space whose square X? is a Baire space and
let f € C(X). Then the following three conditions are equivalent:

(a) for some e > 0, f is generically e-chaotic,
(b) for some e > 0, f is densely e-chaotic,
(c) the following two conditions are fulfilled simultaneously:
(cl) for every two balls By, By, liminf, o, o(f" (B1), f*(B2)) =0,
(c2) there exists some € > ( such that for every ball B,
limsup,,_, ., diam " (B) > ¢.
Moreover, the implications (a) = (b) = (c¢) hold with the same ¢. The implication
(¢) = (a) does not hold with the same ¢, in general. Nevertheless, one can claim
that the condition (c¢) implies that f is generically £*-chaotic for any €* < /2.

We also show that, contrary to the interval case, in metric spaces generic chaos
does not imply generic e-chaos. Recall that a metric space is called a continuum if
it is compact and connected.

Theorem B. There is a continuum X in the euclidean plane and a map f € C(X)
such that f is generically chaotic but is not generically e-chaotic for any € > 0. The
continuum X can even be taken to be convex.

Acknowledgements. The author thank L. Snoha for many stimulating and very
helpful discussions as well as for his enormous help with preparation of this paper.
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2. Proof of Theorem A and a generalization.

Being inspired by [S3] we are going to prove a result which is more general than
Theorem A.

For a dynamical system (X; f) and real numbers «, 3 define the following subsets
of the square X?2:

Cr(f,0) ={[e,9) € X* i liminfo (f'z, f'y) < af,

@Uﬁﬁ{wﬂex%mmwuﬂaﬁw>ﬁ}

n—0o0

C (faaab)) = (Jl (fa Oé) N (‘VQ (f7 b)) .

Since we speak on chaos, it would be reasonable to consider only 0 < a < 8 <
diam X (in particular, Ci (f,a) = @ for a < 0 and C5 (f,3) = 0 for > diam X).
Nevertheless, the results will work for any «, § and therefore we will not assume
any restrictions on them.

According to [S3] a map f € C(X) is called generically or densely (o, 3)-chaotic
if the set C(f, «, 3) is residual or dense in X2, respectively.

Ifa =0o0r a=0=0 we sometimes omit them. More precisely, instead of
generic or dense (0,¢)-chaos we also shortly speak on generic or dense e-chaos,
respectively and instead of generic or dense (0, 0)-chaos we simply speak on generic
or dense chaos, respectively. Thus, this terminology is in accordance with the
fact that for above defined sets C'(f) and C(f,e) we have C(f) = C(f,0,0) and
C(f,&) = C(f,0,€)~

The following lemma is a direct analogue of [S3, Lemma 2] and so we give the
proof only for completeness.

Lemma 2.1. Let (X, ) be a metric space whose square X? is a Baire space. Let
f € C(X) and o € R. Then the following three conditions are equivalent:
(i) Ci(f,«) is residual in X?,
(i) Ci(f, ) is dense in X2,
(ii) for every two balls B, Ba, liminf, o o(f"(B1), f*(B2)) < o

Proof. The implications (i) = (#i) = (¢i¢) are obvious. We are going to prove
(#13) = (i). So let (i1i) be fulfilled. We have Cy(f,a) = (,_; L(n,a + L) where

L (n,a—l— l) = {[x,y] e X% inf o(ffe, ffy) <a+ l} .
n k2n n

For every n, L(n, o + %) is obviously an open set in X?. To show that C1(f, «) is
residual it is thus sufficient to prove that for every n, L(n,a + %) is dense in X2.
So fix n and balls By, By. We prove that L(n,a + 1) N (By x By) # §. From (iii)
it follows that there exists & > n with o(f*(B1), f¥(B2)) < a + i. This implies
the existence of points * € By, y € B> such that g(fkr,fky) < o+ % Hence
[z,y] € L(n,a+ ;—) and the proof i1s complete. O

Next lemma shows that in case of the set Ca(f, #) the situation in metric spaces
is more complicated than the one on the interval and one can get only a weaker
result than that from [S1, Lemma 4.16].
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Lemma 2.2. Let (X, 0) be a metric space whose square X* is a Baire space. Let
f € C(X) and g € R. Consider the following conditions:
(1) Ca(f,P) is residual,
(i) Ca(f, B) is dense,
(iii) for every ball B, limsup,, _, ., diam f*(B) > §3,
(iv) Ca(f,B*) is residual for every * < %

Then (i) = (ii) = (iii) = (iv).

Proof. The implications (i) = (#i) = (4¢i¢) are obvious. We are going to prove
(iii) = (iv). So let (iii) be fulfilled. Fix * < £. Put

Cy (f,n,§> = {[:c,y] € X?: supo(ffa, ffy) > g} .

k>n

=z

Then (), C> (f, n, %) C Co(f,5%). For any n, Cy (f7 n, %) is open. Therefore to
get (iv), it is sufficient to prove that for any n, the set C'y (f, n, %) is dense in X?. To
this end, fix n and balls By, Bs. We need to show that Cs (f, n, %) N(B1 X By) # 0.

Distinguish two cases.

Case 1. For some 7, f"(By) C f"(Ba). Since limsup,_, ., diam f/(By) > 3 we
can take k > max{r,n} with diam f*(By) > . Since f*(By) C f¥(B2) there are
x € By, y € By with o(f*z, f*y) > 3 whence [z,y] € Cy(f, n, 8) C Ca(f, n, %)

Case 2. For every r, f7(B1)\ f"(Bz2) # 0. Now take k > n with diam f*(Bs) > 3
and a point u € f*(B;) \ f*(Bz). Then there is a point v € f*(B3) such that
o(u,v) > %, since otherwise for any two points vy, v2 € f*(Bz) we would have
o(v1,v2) < o(vi,u) + o(u,v2) < B and hence diam(Bz2) < 8, a contradiction. Now
take f-preimages « € By and y € Bs of u and v, respectively. Then Q(fkl‘, fky) >

% and again [z,y] € C4 (f,n, %) O

From Lemma 2.1 and Lemma 2.2 we get

Theorem 2.3. Let (X, g) be a metric space whose square X2 is a Baire space. Let
f€C(X) and a, B € R. Consider the following four conditions:
(a) f is generically («, 3)-chaotic,
(b) f is densely («, B)-chaotic,
(c) the following two conditions are fulfilled simultaneously:
(c1) for every two balls By, By, liminf, . o(f" (B1), f*(B2)) < a,
(c2) for every ball B, limsup,_, ., diam f*(B) > £,
: : : 5
(d) f is generically («, 3*)-chaotic for every 3* < 5.
Then (a) = (1) = (¢) = (d).
Now we are ready to prove Theorem A.

Proof of Theorem A. By putting @« = 0 and § = ¢ in Theorem 2.3, we get Theo-
rem A except for the claim that, in general, the condition (c) from Theorem A does
not imply the generic e-chaoticity of the map f.
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To prove this claim fix € > 0 and a > 0 and consider the following seven points
in the euclidean plane: V' =1[0,0], A = [§ 4+ a,0], B = [-§ — ,0], C = [0, —aq],
Cy=1[0,—-%], C2=1[0,-%], C3 =0, —ga]. Let X be the subspace of the euclidean
plane defined as the union of the straight line segments AB and VC (i.e., X has
the form of the letter T). Define a map f : X — X as follows. Let f(V) = f(Cs) =
F(C) =V, f(C) = A, f(C3) = B, f(A) = f(B) = C and let f be affine on
each of the straight line segments VC'y, C1Cy, C2Cs, C3C, VA, VB. Then f is
continuous, f(AB) = VC, f(VC) = AB and for every ball G in X there is some n
with f*(G) D AB. Then f"*(G) > VC, f**?(G) D AB, etc. Hence the condition
(c) from Theorem A is fulfilled.

On the other hand, repeat that f(VC) = AB and f(AB) = VC and notice that

2
L:=max{g(r,y): v € VC,y € AB} = /a* + (%-i-a) :

Thus limsup,, , ., o(f*z, f*y) < L whenever # € VC and y € AB. For sufficiently
small @ we get L < ¢ and in such a case (VC x AB) N Cs(f,¢) = 0. Consequently,
f 18 not generically e-chaotic. O

Remark 2.4. Since in the proof of Theorem A we have lim,_,o L = 5, the constant
€

5 at the very end of Theorem A cannot be replaced by any larger number — such
a ‘universal’ (i.e., depending only on ¢ and not on the space under consideration)
‘constant’ larger than 5 does not exist. Nevertheless, for a particular space X it
can happen that the constant 3 can be replaced by a larger number (and, even, a
question is whether there is a space where this does not happen). For instance, in
case of our ‘letter T’ space with fixed a we can replace § by any number smaller than
$ + a. Moreover, using the idea from the proof of [S1, Lemma 4.15] one can even
prove that this is the case when X is any finite graph. Still, our ‘letter T’ spaces
show that there is no number larger than 3 which could serve as the mentioned
‘universal’ (depending only on ¢) ‘constant’ for the class of all finite graphs.

3. Proof of Theorem B.

By AABC we will denote the triangle with vertices A, B, C' (here we think of a
triangle as a convex subset of the plane).

Recall that a map f € C(X) is called ezact if for any ball B in X there exists
n € N with f*(B) = X. An example of such a map is the standard tent map
T(x) =1 — |22 — 1| defined on the unit interval 7 = [0, 1].

A continuous map F € C(I?) is called triangular if it is of the form F(z,y) =
(f(2),9(x,y)). Instead of g(x,y) we also write g(y). Here {gs, x € I} is a family
of continuous maps from C'(I) depending continuously on = € I.

The following lemmas are intuitively obvious but for completeness we give proofs.

Lemma 3.1. There is a triangular map F(z,y) = (f(¢), 9-(y)) in C(I?) such that
F is exact, g and g1 are the identity maps I — I and the set I x {0} is F-invariant.

Proof. Put f = 7, g9 = g1 = id. For every = € [%, %} let g, be the map such that
92(0) = 92(3) =0, g (3) = 9-(1) = 1 and g, is linear on each of the intervals [0, L],
[3,2] and [2,1]. Further, for = € [0, 1] let g, be the map uniquely determined by

the following conditions:
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e ¢, is piecewise linear with three pieces of linearity,

o the slope of g, in a right neighbourhood of 0 as well as that in a left neigh-
bourhood of 1 is 82 4+ 1 and the slope of g, in a neighbourhood of % 18
-3.

Finally, for every x € (%, 1] put gx = g1-s-

Obviously, F is well defined, continuous and the set I x {0} is F-invariant. Notice
that for any z and any interval J C I, diam g,(J) > £ diam J.

We are going to prove that F' is exact. So, take nondegenerate intervals Ji, Jo C
I. We need to show that there exists N with F¥(Jy x Jo) = I?.

First take n with 77 (J;) = I and denote S, = {y € I : [z,y] € F*(J1 x Jo)}. If
we denote § = (%)" diam J; then one can see that for every z and every component
sy of Sp we have diams; > 46 > 0.

Now take k such that for every interval J C I whose length is at least §,

(gg)k(J) = [. This together with the facts that the point % is fixed for 7 and

for all # sufficiently close to % we have g, = gz, imply that F¥ (£ (1 x J2)) D
[2—¢c, 2+¢] x I for some e > 0.
Finally, take r with 7" ([2 —¢, 2 +¢]) = I. Since all the maps g,, « € I are onto,

it is sufficient toput N =n+k+r. O

Lemma 3.2. Given a triangle T = AABC, there is an exact map f € C(T') such
that all the points from AB U AC are fixed points of f.

Proof. By Lemma 3.1 there is an exact triangular map F(p,7) = (7(¢),9.(7)),
¢ €1, r € I such that go = g1 = id. Since the set I x {0} is F-invariant, we can
think of ¢ and r as of polar coordinates. In such a way F' becomes a continuous
map from a disc sector {[¢,7] : ¢ € [0,1],7 € [0,1]} into itself. Obviously, F is
exact and all the points of the form [0, 7] and [1,7], r € [0, 1] are fixed points of F.
Using the topological conjugacy via an appropriate homeomorphism from the disc
sector onto 7" we get a map f € C(7') with all the required properties. O

Now we are ready to prove Theorem B.

Proof of Theorem B. In the plane take the points given in polar coordinates ¢, r
by V =1[0,0] and 4, = [#%,5=],n = 1,2,... . Consider the set X =J;_, VA,
i.e. a union of straight line segments, endowed with the metric inherited from the
euclidean plane. Obviously, X is a continuum.

Define f € C(X) as follows. Let f(V) =V and for any n, let f|ya, be topolo-
gically conjugate to the tent map.

Since f(VA,) = VA, and the set VA, \ {V} is open in X, the fact that
diam(V A,) — 0 when n — oo shows that the condition (c2) from Theorem A
is not fulfilled for any ¢ > 0. Hence f is not generically e-chaotic for any € > 0.

We are going to show that f is generically chaotic. To this end denote X =
U]:L:1 V' An, k € N and realize that the exactness of the tent map gives the exactness
of flv a, for every n. This implies that for any ball B in X, f"(B) D V A, for some
r and s. Hence, by Theorem A, for any fixed k the map f|x, is generically e-
chaotic for some ¢, > 0. Therefore the set My of points from X,f which are not
Li-Yorke pairs, is of first category in X7 and hence of first category in X?. Since

any point from X? belongs to X,? for some k, we then get that the set of points
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from X? which are not Li-Yorke pairs is the first category set | J—, M. Thus f is
generically chaotic.

Now we are going to modify the described example in order that the space be
convex.

Denote 7, = AVA,Apy1, n = 1,2,... . Then Y = Uzozl T, 1s a convex
continuum in the plane. By Lemma 3.2, for every n there is an exact map g, €
C(T,) such that every point from VA, UV A, is a fixed point of g,,. Let g be a
self-map of Y defined as follows. For y € Y put ¢(y) = gx(y) where k is such that
y € Ti. It is easy to see that g is well defined and continuous. To prove that ¢
is generically chaotic but not generically e-chaotic for any € > 0, repeat the above
proof that the map f has these properties (just replace VA, by 7, and Xi by
v, =U'_, T,). O

n=1""n

Added wn proof. After submitting the paper the author learned about the recent
preprint [HY] which is written in the setting of compact metric spaces and surjective
maps and which partially overlaps with the present paper (cf. our Theorem A and
the equivalence of (2), (3) and (4) in the ‘sensitive’ case of Theorem 3.5 from [HY]).
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ON RELATIONS SATISFYING SOME HORN FORMULAS

BRANIMIR SESETJA AND ANDREJA TEPAVEEVIC

ABSTRACT. A general approach to relations usually considered on a set is presented.
Relations are supposed to satisfy particular Horn formulas. It is proved that this
approach is equivalent to the particular framework developed for investigation of
compatible relations on algebras. Collections of such relations are algebraic lattices
under inclusion, with an ideal being isomorphic with the power set of A. Conditions
are presented under which such a lattice consists of all relations which are reflexive
on subsets of A. These conditions turn out to be closely connected with lattice
properties of the diagonal relation on A.

1 INTRODUCTION

It is known that an algebra A determines particular lattices of A-compatible
binary relations, such as congruence and tolerance lattices, not only on A, but also
on each subalgebra of A. In [2], a framework for the generation of such lattices was
introduced.

In the present paper, another approach to these algebraic lattices is developed,
and some new results are proved. Starting with a set A, we consider all binary
relations on A which satisfy a set of particular Horn formulas. We prove that
relations satisfying these Horn formulas on a set are precisely those which are
introduced in [2] for algebras. Conditions which should be satisfied by the Horn
formulas, in order that diagonal relations and also some other connected relations
belong to the collection are given. Further, there is a Horn formula whose presence
provides the existence of a congruence on the lattice of relations, such that its
blocks consist of reflexive relations on subsets of A. We prove that properties of
the diagonal relation yield some structural properties of the corresponding lattice.

2 REsULTS

Let £ be a first order language with only one relational symbol a which is binary,
and with no functional symbols. Let S be a set of universal formulas of the type £
over a set of variables X, such that each ¢ € § is as follows:

(1) o= (Yar) ... (Vap) (P& .. . &Fp = Gr& ... &Gh),

2000 Mathematics Subject Classification. 04A05, 08A05.
Key words and phrases. Relation on a set, tolerance, quasi-order, equivalence relation, weak
reflexivity, algebraic lattice.
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where F;, G, ¢ = 1,...,n,j = 1,...,m are atomic formulas (i.e., of the form
alzp,zq), p.g € {1,...,k}) and the set of variables occurring in Gy,...,Gp, is a
subset of the set of variables occurring in Fy, ... F,.

If S is a foregoing set of formulas and A a nonempty set, then denote by R4 the
set of all relations p on A, such that (4,p) = S.

Let ¥ = {(04,0}) : i € I} where [ is an index set and for each ¢ € I both ¢; and

o} are relations on the same set V;, satisfying:

(2) {z:=zoly or yoix, for some y € V;} C {z : zo;y or yo;x, for some y € V;}.
Denote by R4 the set of all relations p such that for all i € [

(3) Hom(o;, p) C Hom(a}, p),

(where Hom (7, d) is the set of all relational homomorphisms from a relation ¥ on
C into a relation § on D; i.e., maps f : C' — D such that from avb it follows that
f(a)df(b)).

Theorem 1. Let A be a set. If R§ is the collection of relations described as
above, where |o;| < R, then there is a set of Horn formulas S, such that the set
Rg coincides with RE. Conversely, if S is a set of Horn formulas described at the
beginning, then there are sets V; and ¥ defined above, such that the collection R4
coincides with R4.

Proof. From the condition |o;| < Ng, it follows that || < Ry (by (2)). We can also
assume that each V; is finite. To every ordered pair (o5, 0%) of relations on a set
Vi, for |Vi| < Ng there corresponds a Horn formula, as described in the sequel, such
that a relation p on the set A satisfies that formula if and only if it satisfies (3).

Let h be a bijection between V; and a set of variables X = {x1,20,..., 25}
Further, for each pair (a;,b;) € 03, j € J = {1,...,n} consider atomic formula
F; = a(h(a;), h(b;)). Similarly, for each pair (¢, d;) € o}, | € K = {1,...,m},
consider atomic formula Gy = a(h(¢), h(d)).

Now, let A be a set and p C A? a relation which satisfies condition (3). If
f:Vi — A, and (a;,b;) € o; implies that (f(a;), f(b;)) € p, then for the same f,
from (aj, bj) € o} it follows that (f(a;), f(b;)) € p. The mappingV = h=' o f maps
X to Ai.e. itis avaluation. Thus, every mapping f corresponds to a valuation. On
the other hand, if V : X —» A is a valuation, then f = h oV is the corresponding
mapping from V; to A. From the previous consideration it follows that every f
from Hom(o;, p) also belongs to Hom(c?, p) if and only if the Horn formula that
corresponds to (3) for o = p, is true in every valuation.

Further, observe a Horn formula ¢ as in (1), where V' is a set of variables ap-
pearing in it. Let ¢ and ¢’ be relations on V' defined by:

(z,y) € o if and only if there is an atomic formula F; = a(x, y) in the antecedent
of ¢ and

(z,y) € ¢’ if and only if there is an atomic formula G; = a(z, y) in the consequent

of .
By the consideration as above we conclude that the relations on A satisfying the
formula ¢ and the corresponding inclusion (3) coincide. O
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Corollary 1. The set RS is an algebraic lattice under inclusion.

Proof. Consider a trivial algebra A = (A, f) (f(z) = «) on A # 0. Then, RE
contains compatible relations. Since the corresponding (according to Theorem 1)
collection of relations Ré is an algebraic lattice under inclusion by Proposition 2
in [2] (because it coincides with RE), R4 is also an algebraic lattice. O

In the sequel, we consider a set of Horn formulas § such that the diagonal relation
on a given set satisfies each of them.

Let S be a set of Horn formulas of the type (1), such that
(4) (A4, A4) S

holds for a nonempty set A (A4, or A is the diagonal relation on A).

Next we describe Horn formulas which satisfy (4).

Observe that every formula defined by (1) over a set of variables X is equivalent
to the finite conjunction of formulas ¢ being of the form

(5) ¢ = (Var,.. ., op)(a(z,, 2,)& .. .&a(;r,'p_l , sz) = a(z, 1)),

where {&;,,...,2;,} = Xg ={a1,..., 2} CX.

Denote by Ty the set of atomic formulas figuring in the antecedent of ¢:

To = {ali, xiy), .. ale,_,,2,)}

Further on, for every 2 € X, we define Uy(z), as follows:

y € Ug(z) if and only if there are n € N and ug,...,u, € Xy, such that
a(uj,ujy1) € Ty or a(ujyr,u;) € Ty, for j=0,...,n—1 and & = ug, y = uy.

A part of the following proposition is a consequence of Lemma 2 in [2], but we
provide another proof.

Proposition 1. Let A be a set, such that |A| > 1 and ¢ a Horn formula defined
by (5) over a set of variables X. Then, Ag |= ¢  for all } # B C A if and only if

Ug(1) N Ug(22) # 0.

Proof. Suppose that Ug(x1) N Ug(x2) = B. Then, let B be a nonempty subset of
A and a,b € B, a # b. Consider the valuation V : Xy — A, such that V(u) =«
for every u € Ug(x1), and V(v) = b for every v € Ug(x1). Then obviously Ap
is not a model for ¢, since all atomic formulas from 7y in this interpretation are
associated to ordered pairs with equal coordinates ((a, a) or (b, b)) belonging to Ap,
and a(z1, z2) is interpreted by (a,b) € Ap.

Conversely, let Uy (21) NUg(22) # B. Then the diagonal relation of any nonempty
subset B of A is a model of ¢. Indeed, for any valuation V : Xy — A which assigns
different values a,b € B to x1 and x5, both antecedent and consequent of ¢ are
false if « is interpreted by Apg, hence ¢ is satisfied. Obviously, ¢ is satisfied also in
the case when the same value from B is assigned to 1 and x». Thus, Ag = ¢.

Observe that the empty set trivially satisfies any set of Horn formulas of this
type, hence 0§ € Ré, for every nonempty set A. a
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Proposition 2. Let A, S and R§ be as above. Then, the principal ideal Al in
Rg’ is isomorphic with the power set of A.

Proof. By the condition (4), diagonal relations of all subsets of A belong to R4.
Hence, the mapping f : Agp — B, B C A (with Ay = §}) is obviously the required
isomorphism. a

Proposition 3. If B is a nonempty subset of A, then (i) B? and (ii) B> U A are
relations from R4

Proof. Let ¢ € S, as described by (5):

o= (Var, ... ap) oz, 2,)& . &ale;,_,xi,) = oz, 22)).

(i) If the antecedent of ¢ is satisfied by B2, then obviously the consequent also
holds. Indeed, by the assumption the variables 27 and x5 appear also in the an-
tecedent of ¢. Therefore, B? is a model of ¢.

(i1) Suppose that for any valuation, B? U A satisfies the antecedent of ¢, i.e.,
that the interpretation of a(x;,,, #i,,,,) is either (a,a) € A, a € A, or (b,c) € B2
b,c € B. If the interpretation of a(z1,z2) is an ordered pair (d,e) from B?, then
B2 UA k= ¢. If one of these coordinates, e.g. d, is not an element from B, then,
since A € R4, by Proposition 1 it follows that d = e. Thus again B2 U A = 4.

Hence, B2U A € R4. O

In the sequel, A is supposed to belong to RSA, for every A. We discuss particular
cases of such lattices, examples of which are well known.
If a relation p C A? satisfies the formula

(6) ¢ = (Va)(Vy)(a(z,y) = a(z, z)&a(y, y)),

then it is called a weakly reflexive relation on A.

Some particular known cases are as follows. Let A be a nonempty set and Rw A
the set of all weakly reflexive relations on A; Qw A the set of all relations on A
which are reflexive and transitive on subsets of A (weak quasi-orders on A); Tw A
the set of all relations on A which are reflexive and symmetric on subsets of A
(weak tolerances on A); Fw A the set of all relations on A which are symmetric
and transitive on subsets of A (weak equivalences on A). Obviously, all these
relations satisfy the formula (6).

It is easy to see that all the mentioned sets are algebraic lattices of the form
Ré, for a suitable set of Horn formulas §. Hence, in all these lattices the principal
ideal A generated by the diagonal relation A on A is isomorphic with the power
set P(A) of A. However, these lattices have some additional properties, as follows.
The filter At (i.e., the interval-sublattice [A, A?%]) is the lattice of the corresponding
reflexive relations on the whole set A. Each of these is a disjoint union of interval
lattices [Ag, B*], B C A.

Next we give conditions under which Ré has the foregoing properties.

Recall that @ € L is said to be codistributive if for all z,y € L, a A (z Vy) =
(a Ax)V (aAy). Such element induces a homomorphism n, of L onto al, defined
by n4(z) =z Aa.

Observe that in an algebraic lattice every codistributive element is infinitely
codistributive ([5]). In this case, the congruence classes induced by n, have maximal
elements.
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In all algebraic lattices listed above, the diagonal relation A is an (infinitely)
codistributive element. Moreover, maximal elements of the congruence classes in-
duced by na are squares of subsets of A.

Theorem 2. Let S, A and R§ be as above. The following are equivalent:

(i) A is a codistributive element in (R4, C), and maximal elements of the con-
gruence classes induced by na are squares of subsets of A;

(ii) S = ®, where ® is given by (6);

(iii) R4 is a disjoint union of lattices consisting of reflexive relations on subsets
of A, which satisfy S.

Proof. (i) = (i) follows by Proposition 3 in [2].

(i) = (i1) Suppose that there is a relation p € RS which does not satisfy (ii),
i.e., such that for some a,b € A
(a,b) € p and at most one of two pairs (a, a), (b,b) is in p.

Take (a,b) € p and (a,a) & p, and let B={z € A | (z,z) € p}.

Now, if A is a codistributive element in R?, then, since p A A = Apg, it follows
that p belongs to the same class of the congruence induced by na as B%. However,
p £ B? and B? is not the greatest element of the class.

(ii) = (iii) Suppose that every p € R4 satisfies the formula ®, i.e., that

(z,y) € p implies (z,2) € p and (y,y) € p.
Then, for B = {z | (z,z) € p}, Ap € R4, and B? € RZ. In addition,
(7) Ap<p< B

fe., RE = U(lAp, B7] | B C A).
(ii1) = (i) If p,0 € RA, then there are B,C C A, such that p € [Ap, BY],
¢ € [Ac,C?. Now,

pV o€ [Apuc, (BUC)Y

(since Ap VAc < pVO<B?Vv(C?<(BUC)?).
Hence, (pVO) NA=Apye = AV Ac = (pANA)V (0 AA), which proves that
A is a codistributive element of (RZ, C).

By (7), B? is the greatest element of the class to which p belongs, since p A A =
B AA = Ap. O

From now on, we assume that formula ® given by (6) (describing the weak
reflexivity) is a consequence of formulas in S.

Proposition 4. If p € R2, then also pUA € R2.

Proof. Let p € R§ and pNA = Ag, B C A. By Theorem 2, p < B?. We have
to prove that pV A = pUA in RZ. Observe that pV A < B2V A = BZUA,
by Proposition 3. Now, if pUA ¢ Ré, then there is a formula (5), which is not
satisfied by p U A, i.e., there is a valuation V such that the antecedent is true,
while the consequent is false. Let V(z;) = b, and V(z2) = ¢, in this valuation.
Now, b,c € B, b # c and (b,¢) € p. Since A € R%, by Proposition 1, we have
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that Up(z1) NUg(z2) # 0. In other words, in this valuation all elements from
Ug(z1) and Uy (x2) have values from B. Now, starting with V', we consider another
valuation V' on B, as follows. Values of all variables which in V' are elements from
B remain the same while all other variables take the same value (from B). In this
valuation p does not satisfy the formula, which gives a contradiction.

Hence, pU A € RE, whenever p € R%. a

Next we prove that some properties of A enable structural decomposition of the
lattice Rg.

As it is known, an element a of a bounded lattice L is neutral if the mappings
z— zAaand 2 — zVa are homomorphisms on L, and z — (z Aa,z Va) is an
embedding from L into al x at.

Theorem 3. A lattice identity holds on the lattice R£ if and only if it holds on
its sublattice At of all reflexive relations from R2.

Proof. Tn every lattice R4, A is a neutral element. This is an easy consequence of
Proposition 4. The proof of the Theorem is now straightforward, by the definition
of a neutral element, and by the fact that Al="P(A). d

If A= (A, F) is an algebra, then R% is the set of all relations from RZ which
are compatible with all fundamental operations on A.
The following are almost immediate consequences of the above results.

Corollary 2. Let A = (A, F) be an algebra and S a set of formulas as previously
defined. Let also Rjé be the set of all compatible relations on A which satisfy S.
Then Ré is an algebraic lattice under inclusion whose ideal Al is isomorphic with
the lattice SubA. O

Corollary 3. If A, S and 'Ré are as in Corollary 2, then the following are equiv-
alent:

(i) A is a codistributive element of the lattice R4 and the maximal elements of
congruence classes induced by na are squares of subalgebras;

(ii) every p € RE is weakly reflexive;

(iii) R? is a digjoint union of lattices consisting of reflexive, compatible relations
on subalgebras of A, which satisfy S. a
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