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THE LATTICE OF VARIETIES OF GRAPHS

ALFONZ HAVIAR

ABSTRACT. In the paper we investigate classes of graphs closed under isomorphic
images, subgraph identifications and contractions and we study the lattice of these
classes.

0. INTRODUCTION

By a graph G = (V, E) we mean an undirected connected finite graph without
loops and multiple edges. We denote the set of all vertices of a graph G by V(G) and
the set of all edges by E(G). An edge {u, v} is briefly denoted by uv. We denote the
complete n-vertices graph by K, and the n-vertices circle (in which every vertex is
of degree two) by C,.

A class of all graphs closed under isomorphic images is called a property of graphs
(for example in [1]) or a variety of graphs (in [5]). To put considerations in the
right context within set theory, we will assume that the vertex sets of all considered
graphs are subsets of a fixed countable infinite set W, and we talk about graphs
over W.

The set of all varieties of graphs for which vertex sets are subsets of W with set
inclusion as the partial ordering is a complete lattice isomorphic to the Boolean
lattice P(W) of all subsets of the set 1. The atoms of this lattice are the varieties
which are generated generated by only one graph. In theory of graphs we are inter-
ested in varieties of graphs closed under more closed operators, for example varieties
closed under induced subgraphs [11], varieties closed under induced subgraphs and
identifications [5], varieties closed under generalized hereditary operators [1], [2],
[9], etc.

One of the most important operators in theory of graphs is the operator of
contraction (of edges). It produces "smaller” graphs. A natural operator producing
”bigger” graphs is the operator of identification in (connected) induced subgraphs.
In this paper we pay attention to varieties of graphs closed under identifications
and contractions.

A set of all varieties of graphs closed under given closure operators with set
inclusion as the partial ordering is a complete lattice ([3], Theorem 5.2, p. 18]).
The smallest variety containing a set K of graphs is denoted by V(K) and we
call it the variety generated by K. If K = {G;,...,G,} we simply denote it by
V(Gr,...,Gn).
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1. PRELIMINARY RESULTS.

Our aim in this paper is to investigate varieties of graphs closed under sub-
orgraph identifications and contractions. The following operation of a subgraph
tdentification of graphs in a connected induced subgraph generalizes the operation
of the union of graphs and was introduced in [5].

Definition 1.1. Let G; = (V1,E;) and Gy = (Va, E3)  be disjoint graphs.
Let Gy = (V/,E{) and G = (V4,E5) be connected induced subgraphs of
G1, Ga, respectively and let  f: G} — G4  be an isomorphism. The subgraph
identification of G; with G, under f is the graph G = G; U/ Gy = (V, E),
where

V=1u(h-1]),
E={uv|uv€eV and wvé€ ELUEsor f(u)v € Eqx}.

If graphs G1 and G» are not disjoint we may take instead of the graph G, a graph
Gs isomorphic with G5 and disjoint with Gy (for details see [5]). When no confusion
can arise we will simply talk about the subgraph identification under the induced
subgraph G{ or about gluing in the induced subgraph G1.

The fact that f : G} — G% is an isomorphism of the connected induced
subgraph G] C G; onto the connected induced subgraph G’ C G, will be denoted
by f Gy — Gs.

It is easy to see that Gy U Gy = G, U™ G, and if f is an authomorphism of
a graph G then G U’ G = G. Clearly, a subgraph identification of connected graphs
is again a connected graph.

Lemma 1.1 (see [5]). Let G = (V,E) be a connected graph, which is neither a
complete graph nor a circle. Then there are two nonadjacent vertices u,v € V(G)
such that G — {u,v} Is a connected graph.

Corollary 1.2. IfG is a graph which is neither a circle nor a complete graph, then
G contains proper connected induced subgraphs Gi, G2 such that G = Gy uf G,
where f: G — Go.

Definition 1.2 ([4]). We say that a graph G» is a contraction of a graph G if there
exists a one-to-one correspondence between V(('3) and the elements of a partition
of V(G1) such that each element of the partition induces a connected subgraph of
G1, and two vertices of G5 are adjacent if and only if the subgraph induced by the
union of the corresponding subsets is connected.

If adjacent vertices u, v € V(G1) belong to the same block of the partition of the
set V((G1) we will say that the vertices u, v have been identifying by the contraction.
If a graph G is a contraction of a graph G, we write G, < G;.

Let K be a family of graphs. Denote
YK) ={G1 U Go; G1,G2 €K, f:G1 — Ga},
C(K) = {G : G G’ for some graph G’ € K},
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I(K) — the set of all isomorphic images of graphs in K.

Since GUYG=G and G<4G we have
KCy(K) C»¥*(K) C-- Cy"(K) C...,
KCCO(K) CCHK) C o C OB C ...

for any set K of graphs. Note that O"(K) = O"~}(O(K)), for each n > 1.

Definition 1.3. A set K of graphs over W is said to be a variety of graphs closed
under subgraph identifications and contractions if

IK)CK & K CK & C(KCK

It is obvious that the operators C' and ~ are closure operators on the system of
all sets of graphs over W. Thus, the next statement holds.

Proposition 1.3. The set of all varieties of graphs over W closed under subgraph
identifications and contractions with the set inclusion as the partial ordering is a
complete lattice.

Let K be a set of graphs. Define the operator o by
o(K) = (C)(K) U (Cy)*(K) U-- - = UL, (C)"(K),
where  (C7)(i) = C(+())  and  (C)"(I) = CH((C)" () i n> 1.

Theorem 1.4. For every set K of graphs

V(K) = o(K).

Proof. Let G1,G> € o(K) and let f : Gy — (5. Then there exist m, n such
that G; € (Cy)"(K) and G, € (Cy)™(K). We see at once that n < m implies
G1,G2 € (Cy)™(K) and so G U/ Gy € (Cy)" ! (K). Similarly, G € (Cy)"(K) and
G1 <2 @G yields G; € (Cv)"*'(K). Thus, we have shown that o(K) is a variety of
graphs closed under subgraph identification and contraction and it contains the set
K. Consequently V(K) C o(K). The opposite inclusion is obvious. O

2. THE LATTICE OF VARIETIES OF GRAPHS

In this section we investigate the lattice of all varieties of graphs closed under
identifications and contractions. This lattice is denoted by L.

Clearly, the least element of the lattice £ is the vatiety V(K1), where Ky is a
one-vertex graph. We will denote it by 0.

Proposition 2.1. The variety V(K;) generated by the two-vertex graph is the
variety of all trees. Moreover, it is the only atom of the lattice L.

Proof. Let V # 0 be an element of the lattice £ and let G € V, G # Ky. It is
easy to see that the graph Ks is a contraction of G and so Ky € V|, which implies
V(K;) C V. Using an induction on a number of vertices we see that every tree
belongs to V(K3z). On the other hand, no graph G in V(K3) contains a circle (a
contraction of a tree is again a tree and a subgraph identification of trees is a tree,
t00).
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Lemma 2.2. The only variety covering the variety of all trees in L is the variety

V(Cs).

Proof. Let V be an element of £ for which V(K3) < V. The variety V contains a
graph G containing a circle C,. This clearly forces C3 € V. (It is obvious that Cs is
a contraction of the circle C, and so C3<1§.) Therefore V(C3) CV. O

Lemma 2.3. Let G be a graph belonging to a variety V > V (Cs). If the set E(G)
contains edges uv and uw but it does not contain the edge vw then the variety V
also contains the graph G given by

V(G)=V(G) and FE(G)=EG)U{vw}.
Proof. By Lemmas 2.1 and 2.2 the variety V contains the graph Cs, hence it contains
the identification #H of two copies of C3, where V(H) = {v'.v/,w’, 2} and E(H) =
{u'v, v/, v'e,v'w W'z} (see Fig. 1). Let f: G — H be given by

flu) =4, f(v) = and f(w) = =.

Fig. 1

Now, the graph G is obtained by contraction of the edge ww’ of the graph GUT .
This yields G € V.

Corollary 2.4. The variety V(C3) contains all complete graphs.

Definition 2.1. We will say that a graph G is a triangular cover of a graph G if G
can be obtained from G by adding edges as in Lemma 2.3.

Theorem 2.5. If a circle Cy, is a contraction of an identification Gy Ul Gy then C,,
is a contraction of a graph G, or G», where G; is a suitable triangular cover of the
graph G;, i € {1,2}.

Proof. Let Cp 4Gy U Gy, and let {A;, Az, ..., Ay} be a partition of the set V(G Uf
Gs) corresponding to the above contraction of Gy Uf Gy to Gy

a) Let there exist a block A; disjoint with the set V(G1) and let A; C V(Gy). Let
ANVG)#D, AnV(G)#£0, 1<j<i<k<m and A,NV(G) =0
for each ¢ € {j +1,...,k — 1} (recall that the graphs are glued in the subgraph
G"). For vertices w1 € A; NV(G}), we € Ay NV(G1), there is a path
(P1) W1 = Vo, V1,...,Up = W2
in the subgraph G}, therefore 4, NV(G}) # 0 for each p € {1,...,5,k,...,m}.
There exist also a path
(p2) w2 = o, u1,...,us = w1
in the graph G; disjoint with (p1), i.e. there exists a circle C in the graph G; for
which V(C) N A, # 0 for each ¢ € {1,..., m}. Denote
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By =ANV(G), ..., Bn=A,NV(G).
If the subgraphs of the graph G; induced by the sets By, ..., By, are connected
then C,, < Gy.

Let there exist (for example) vertices # € By, y € By NV(C) for which there is
no path from z to y in the subgraph of G, induced by B;. Denote by

T = 20,21, .--,2t =Y
a path from z to y in the graph G,. If the distance of vertices zp,24 or z,,v,
p,g € {0,1,...,t}, v € V(C) is two and these vertices belong to the same block
By, 1 €{1,...,m}, or belong to adjacent blocks B, Biy1,1 € {1,...m — 1}, then
we can add the edge 2,2, and z,v to a vertex set obtained from F(G;) (by Lemma
2.3). After finitely many steps we obtain a graph GF such that in the subgraph of
G7 induced by the set By there is a path from z to y. Repeating this proces we can
obtain a triangular cover (jl of the graph G; such that the subgraphs of g] induced
by the sets By, ..., By, are connected and so C,, 4 g].

b) Let A, NV (G]) # 0 for each ¢ € {1,...,m} and let

v € A1NV(GY), -, vm € Ay, NV(G]).
There exists a path from v; to vi4;1 in the graph Gi for each I € {1,...,m} (we
compute modulo m). Hence there exists a circle C of the graph Gy or of the graph
induced by the set V(G}) U (V(G2) — V(GY%)) (the natural copy of the graph G5) in
the graph G; U/ G, for which V(C) N A, # 0 for each ¢ € {1,...,m}. Thus, the
next part of the proof runs in the same way as the above corresponding part of the
proof.

Theorem 2.6. If a graph G belongs to V (Cp,) then with each circle C of G contains
a plane subgraph with the exterior face C and regions C,, 3 < n <m.

Proof. Let G € V(Cp,).

a) The statement holds if G = C,,.

b) Let graphs Gi,Ga € V(Cy,) contain with each circle C also a plane subgraph
with the exterior C and regions C,, 3 <n < m and let C = v1vy...v,v1 be acircle of
GLUf Gy T Cisa subgraph of Gy or G5 then Gy or G5 and so also G contains a plane
subgraph with the exterior C and regions C,,, 3 <n < m. Let C = vyvy...v,v1 be a
subgraph neither G1 nor Go. Let vj, viy1, ..., viy; € V(C); we will say that v; ~ vy;
isajumpin G if v; € V(G1)—V(G1), Vig1, .-, vigj—1 € V(G), vig; € V(G2)—V(GY)
or 15 € V(Ga) = V(GH), vitts--stinjor € VI(G1), viay € V(G1) - V(G)) (see Fig.
2).

Fig. 2
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We proceed by induction on the number of jumps of the circle C. Firstly, we suppose
that there are only two jumps in Gy UT Ga, v; ~ Viy; and v, ™ Upig, < p. Since
G1 U7 Gy is the subgraph identification under a connected subgraph G/, there exists

apath w11, wy, we, ..., wg, vpye—1 in G If this path is disjoint with the circle
C, we get a circle CV) of the graph G; and a circle C(?) of the graph Go which
both contain the path  (vj41,ws,wa, ..., Wk, Vppq—1) O its part (see Fig. 2).

By assumptions there exist plane subgraphs with exteriors faces €Y and €® and
regions C,, 3 < n < m. If the mentioned path is not disjoint with the circle C we

get circles C(lr. ..,C%") guch that there exist plane subgraphs with exteriors faces
cW .. ¢®) and regions Cp, 3 < n < m, each of them belongs to either G; or G,
and each of them contains a part of the path  (vi41, w1, wa, ..., wgk, vpyq—1) (see
Fig. 3).
g1 j G2
Fig. 3
Since one can get the circle C by successive gluing the circles cY, . ¢t

there exists plane subgraph with exterior face C and regions C,, 3 < n < m, too.
Assuming the statement for circles with less than 27 jumps, we will prove it for
2r jumps. Without loss of generality we can assume that v; ™ viy;, vp ™ Vpyg
are jumps and that for each jump vk ™ vgys of the circle C, ¢ < k& < p holds.
Analogously as in the case of two jumps we can get circles 1), ... C*) having
less than 27 jumps. By assumption there exist plane subgraphs with exteriors faces
cW, . ¢® and regions C,, 3 < n < m, therefore there exists plane subgraph
with exterior face C and regions C,,, 3 < n < m, too.

c) Let G aG', G' € V(Cp) and let C = v1v2...vpv1 be a circle of G. Let
A1, As, ..., As be a partition of V(G') corresponding to the contraction of G’ to G.
Without loss of generality we can assume that

v €Ay, ..., vn € Ay
For any blocks A;, A;11, 1 < ¢ < n (we compute modulo n) there are vertices
w; € A; and wipy € Ajpq for which wjwiy1 € E(G'). The subgraphs induced by
sets A; and A;41 are connected, hence there exists a path from v; to v;41 in G'. Tt
implies that there exists (in G’) a circle ¢’ with vertices from A, ... , A, having
a contraction the circle C. By assumption there is a plane subgraph of G’ with
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exterior face C' and regions C,,, 3 < n < m. and by contracting edges we can get
from it the plane subgraph with exterior face C and regions C), 3 <n < m.

Corollary 2.7. The lattice £ contains the infinite chain
0<V(Ky) <V(Cs) < V(Cy) < -<V(Cr) << 1
where the variety 1 is generated by the set of all circles.

Proof. By Theorem 2.6 we have C,11 ¢ V(C,) for each n > 3. It follows from
Corollary 1.2 that the variety 1 is the greatest element of L.

Theorem 2.8. The variety V (C4) does not cover the variety V(Cs) and the variety
V(Cs) does not cover the variety V (Ca)

Proof. Let us denote by Gs_4 the graph in Fig. 4
1 6

Fig. 4

It is obvious that V(C3) < V(Gz_4) < V(Cs). We can check that a plane sub-
graph of Gz_4 with the exterior face C' = (1,2, 3,6) and regions C3 does not exist,
therefore Gz_4 ¢ V(C3). On the other hand it can be checked that
a) if we add any edge to E(Gs_4) or
b) make any contraction of the graph Gs_,
we obtain a graph belonging to the variety V(Cs). Hence Cs ¢ V(G3_4). It implies
V(C3) < V(Ga—a) < V(Ca).

We can analogously prove that V/(Cs4) < V(Ga—s5) < V(Cs), where Gy_5 is the
graph in Fig. Ha.

4 3

Fig. 5a Fig. 5b

Note that the graph depicted in Fig. 5a is depicted in Fig. bb, too.
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The graphs in Fig. 4 and 5 indicate that the structure of the lattice of varieties
is not trivial. We will give some problems referring to the lattice £ of varieties.

1. What is the width of the lattice £7 (By results of Robertson and Seymour
[10], £ does not contain an infinite antichain.)

2. How many varieties cover the variety V(C3) ?

3. What is the length of the interval [V(C3), V(C4)] ?

4. Assume H is the graph in Fig. 6. Is the variety V() noncomparable with
the variety V(Cs) ?

Fig. 6
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