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STRICT ORDER-BETWEENNESSES

JUDITA LIHOVA

ABSTRACT. In this note necessary and sufficient conditions for a strick ternary rela-
tion to be a strict order—betweenness are given. As an application, a characterization
of lattices of convex subsets of posets is obtained.

INTRODUCTION

In every poset, we can introduce a ternary relation r called order—betweenness
in the following way:

(a,b,¢) erifandonlyifa<b<corc<b<a.

G. Birkloff proposed (cf. the 2nd edition of his Lattice theory, 1948, Problem 1) to
search for axioms for a ternary relation to be an order - betweenness. Such system
of axioms was found by M. Altwegg [1], M. Sholander [2] gave an alternative system
of axioms.

In certain cases, it is more convenient to handle with strict ternary relations, as
sets of triples of different elements. E.g., if we define a ternary relation 7’ in a poset
A = (A, <) to be a strict order - betweenness provided that

(a,b,e) €' ifand only ifa < b<corec<b<a,
the convexity of a subset X of A means that

(a,b,e) €' a,c€ X imply b € X.

In this note we give necessary and sufficient conditions for a strict ternary relation
to be a strict order—betweenness. As a consequence, a characterization of lattices of

convex subsets of posets 1s obtained. An alternative characterization can be found
in [4].

1. STRICT ORDER-BETWEENNESSES

M. Altwegg proved the following theorem (cf. [1]):

1.1. Theorem. Let M be a nonempty set, ( a ternary relation in M. Then there
exists a partial order < in M with

(a,bye)eCiffa<b<cora>b>c
if and only if  satisfies:

(Z1) (x,2,2) € ( for each z € M,
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(Z2) (z,y,z) € ¢ implies (z,y,z) € (,

(Z3) (%,y,2) € ¢ implies (x,2,y) € ,

(Z4) (z,y,2) € 1mp11es T =y,

(Z5) (x,9,2),(y,2,u) € (,y # = imply (2, y,u) €,

(Zs) if xq, 21, J:,,, Tpy1 = Lo, Tnya = ¥ Is a sequence of elements of M such

that (xl_l,xz_l,xl) € ¢ and (wj—1, 2, 2i41) € ¢ for each i € {1,...,n+ 1}
(with a positive integer n), then n is odd.

Let M be a nonempty set, & a ternary relation in M. We will refer to € as a
strict ternary relation, if it contains only triples of different elements.
Consider the following conditions concerning a strict ternary relation &:

() (x,y,2) € 5 implies (z,y,z) € &,

z) €&, (y,z,u) € £ imply (x,y,u) €,

y,z) €& (x,z,t) € L imply (y, 2,1) €,

x;yaz)ef ($ y,z)E«Eimply(x,y,z’)Egor(w,y,x’)Ef,
y,z) €&
y,z) €

(F ,Z (y,u,v) € & imply (z,y,u) €€ or (z,y,u) € ¢,

(C) (z,y,2) €&, (y,u,v) €& imply (v,y,z) €& or (z,y,u) €EE,

(1) (x,y,z) € £ implies (z, z,y) ¢ &,

(0) if (ag,y1,a1), (a1,y2,a2), ..., (@n—1,YUn,an) is a sequence of elements of &

such that (a;_1,a;,a;41) ¢ & for each i € {1,....n— 1} and (ag,y1,01) =
(@n-1,Yn, an), then n is odd.

1.2. Definition. By a strict order—betweenness in a set M a strict ternary relation
¢ in M satisfying
(a,b,c)eiffa<b<cora>b>c

for a partial order < in M, will be meant.
We will prove the following theorem.

1.3. Theorem. Let & be a strict ternary relation in a nonempty set M. The
following conditions are equivalent:

(1) € is a strict order—betweenness,
(2) ¢ satisfies (S), (1), (X), (¥) and (O),
(3) ¢ satisfies (5), (X)), (C) and (O).

First we want to clear the relations between the conditions (S) — (O). The
following statements are easy to prove for any strict ternary relation &.

1.4. Lemma. If{ satisfies (R), then it satisfies (I).

1.5. Lemma. If¢ satisfies (5), (F'), (1), then it satisfies also (R).
1.6. Lemma. If¢ satisfies (5), (C), then it satisfies (R), (¥'), (1), too.
1.7. Lemma. If¢ satisfies (5), (T), (F), then it satisfies also (C').

1.8. Corollary. The following assertions are equivalent:
(a) & satisfies (S) and (C),
(b) & satisfies (S), (1) and (F),
(c) & satisfies (S), (1), (R), (F),(C), (I).
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In the following two lemmas we suppose that £ is a strict ternary relation in a
set M satisfying all conditions (S) — (O). Let us define a ternary relation { by

C=¢U{(v,u,u):ue M}U{(uy,v,w):u=vFworuzv=uw
and u,w € {x,y, 2z} for some (x,y,z) € £}.
The aim is to show that ¢ fulfils (7).

1.9. Lemma. Let g, 1, ...,2x € M (k is a prositive integer) and (x;_1, zi—1, 2;) €
¢ foreachi € {1,... .k}, (zi—1,2;,2,41) @ ( foreachi € {1,....k—1}, 20 # x1. Then
there exist (ag,y1,a1), (a1, Y2, a2), ..., (ak -1k, ax) € & such that (a;_1,a;, a;41) & &
for each i € {1, ...,k — 1}, further either g = ag,x1 € {y1,a1} or xo = y1, 21 = a1
and simultaneously either xj_1 = ap_1, 25 € {yk, ar} or vx—1 = yg, Tx = ai holds.

Proof. We will proceed by induction on k. If £ = 1, the assertion is evident. Let us
remark that we need here the assumption xg # 1. If K > 1, then the relation zy #
z1 is implied by (2o, 1, 22) € (. Suppose that the assertion is true for a positive
integer k. We will prove it for k+1. So let g, z1, ..., &g, xx+1 € M satisty the above
assumptions and let (ag,y1,a1), ..., (ak—1, Yk, ax) be a sequence corresponding to
Zg, Z1, ..., & by induction hypothesis. We have the following possibilities:

1) &p_1 = ag—1, 25 = Y,

2) Tkt = ap_1, Tk = ag,

3) Tp—1=Yr, Tk = Q.
Further, since (zg, g, x41) € ¢ and @ # wg41, because (wp_1, Tg, TK41) ¢ ¢, there
exists t € M with

I) (zg,t,2541) €& o1

II) (¢, 2k, 2p41) € € or

III) (t7 Tht1, lk) S f

We proceed combining the cases 1) - 3) with I) - III). Let us suppose that 1)
and I) occur. The relations (xg_1, 2k, ar) = (ax—1,Ys, %) € &, (2k, t,241) € &
imply (ax,zk,t) € & by (C). Then using (1) we obtain (ax, 2k, zx41) € €. If
we show that (ax_1,ak, 2x41) ¢ &, then adding (ag,zy, zx41) to the sequence
(ao,y1,@1), ..., (@g—1, Y, ax) we obtain such a sequence as we need. If it were
(ak—1,ax, zx+1) € &, we would have (xg,ak,zx+1) = (Ys, an, vr41) € & by (R),
contrary to the above proved (aj, zg, 2x4+1) € §&. Combining 1) with II) or III), we
can proceed analogously. It is easy to verify that if I) and any of the cases 2), 3) oc-
cur, we can add (@x, %, £x41), while if ITI) and simultaneously 2) or 3) occur, we can
add (zg, xg41,1) to the sequence (ag,y1,a1), ..., (ag—1, yx, ax). Now let us suppose
that II) and 2) occur. Since (xx_1, %k, ¥x+1) € &, we have also (yx, zk, ¥k4+1) ¢
&, by (T). Using (C) we obtain (ax—_1,2x,t) € & Now consider the sequence
(a0, y1,a1), -, (@h—2,Yr-1, ap—1),
(ak—1,25,1), (t, 25, xx41) of elements of . We will show that (ag_o,ax_1,1) ¢ &,
(ak—1,t,241) & €. The first relation follows from (ax—2,ax—1,ar) ¢ & by (R).
If it were (ag_1,t,2541) € &, we would have (ay_1,t,25) € & by (R), contrary to
(ak—1,2,t) € &. Let us notice that in this case we change the last member of the se-
quence (a0, y1,a1), ...,
(ak—1, Yk, ax) and add a new one. If k = 2, we have (g, z1,1), (¢, 21, 22), as we
need. The remaining case, if II) and 3) occur, can be analysed analogously.
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1.10 Lemma. The relation ¢ fulfils (Z5).

Proof. Let zg,z1,...,Zpn, Tnt1 = To, Tpt2 = 1 be a sequence of elements of M
such that (z;—1, @;—1, #;) € ¢ and (#;_1, ©;, 2;41) ¢ ¢ foreach i € {1,...,n}. The
previous lemma ensures the existence of a sequence (ap, y1,a1), ..., (an, Yn41, Ant1)
of elements of & such that (a;_1,a;,a;41) ¢ € for each i € {1,...,n} and one of the
following conditions a), b), ¢) is satisfied and simultancously one of the possibilities
«), 3),7), occurs:

a) xo = ag, T1 =y,

b) rg = dap, T = dy,
C) Lo = Y1, 1 = ay,
)
)

Q) Ty = Ap, To = Yn+1,

B) Tn = an, To = Any1,

’Y) Tn = Yn41, Lo = Up41-
In each of the cases a) and ), a) and ), b) and 3), b) and ~), we take the sequence
(@0, Y1, @1)y oy (Any Yt 15 Gnt1)s (@nt1,¥1,a1) = (a0, ¥1,a1). In the cases @) and
«), b) and «) we take the sequence (ao,y1,a1), ..., (@n, Yn41,an41), (@nt1, a0, a1),

(a1,y1,a0), (a0, y1,a1). If ¢) and B) or ¢) and %) occur, we take (ag,y1,a1), ...,
(@n—1,Yn,an), (@n,ant1,a0), (o, y1,a1). Finally, if ¢) and a) occur, we take the
sequence (ao,Y1,a1), ..y (Gn-1,Yn, @n), (n, Ynt1, a0), (a0, y1,a1). Each of these se-
quences satisfies the assumptions of the condition (0O). We will show it, e.g., in
the last case. We have (an, Ynt1, ant1) € &, (@n, Yng1,a1) = (a0, y1,a1) € &, so that
(@n, Ynt1,a0) € Eby (X), because (an, Ynt1, @1) = (Tn, 2o, 1) = (Tn, Tnt1, Tnt2) &
&. Further we will show (a,—1, an, ap) € &, (an,ap,a1) ¢ £ If it were (an, ap,a1) €
¢, we would have (yny1,a0,a1) € & by (R), which contradicts (ao, Ynt1,e1) =
(@0, y1,a1) € & Let us suppose that (an—1,an,a0) € . Using (@n, Yn+1,an41) €&
we obtain (ag, an, Yn4+1) by (C), because (apy1, apn, tn—1) ¢ . But this is a contra-
diction, as we have proved (an, Ynt1, o) € €. Now using (O) we conclude that n is

odd.

Proof of theorem 1.3. 1t is easy to see that (1) implies (2). Further, (2) implies
(3) by 1.8. Now let ¢ satisfy (5), (X), (C) and (O). Then ¢ satisfies all conditions
(S) — (0), again by 1.8. Let ¢ be defined as before 1.9. It is easy to verify that
¢ satisfies (Z1) — (Z5). By lemma 1.10 it satisfies (Z6), too. Theorem 1.1 ensures
the existence of a partial order < in M such that (a,b,c) € ¢ if and only if either
a<b<cora>b>cholds. Obviously (a,b,c) € £ is equivalent to a < b < ¢ or
a > b > ¢, so that € is a strict order—betweenness.

The following examples show that the system of conditions given in (2) of 1.3
and (3) of 1.3, respectively, is independent. In each of these examples we point out,
which of the conditions () — (O) are not satisfied.

1.11 Example. Let M = {a,b,c}, € ={(a,b,c)}. Then & doesn’t satisfy (.5).

1.12 Example. Let M = {a,b,¢}, £ = {(a,b,¢),(a,c,b),(c,b,a),(b,c,a)}. Then &
doesn’t satisfy (1), (R), (C), (1).

1.13 Example. Let M = {a,b,c,d,e}, & = {(b,¢,d),(a,c,e),(d, ¢, b), (e, c,a)}.
Then £ doesn’t satisfy (X).
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1.14 Example. Let M = {a,b,c,d, e}, & = {(a,b,¢),(b,d,e), (¢, b,a),(e d,b)}.
Then & doesn’t satisty (F') and (C).

1.15 Example. Let M = {a,b,c,d,e, f}, & = {(a,b,¢),(c,d,e), (e, f.a), (¢, b,a),
(e,d,c), (a, f,e)}. Then £ doesn’t satisfy (O).

2. CHARACTERIZATION OF CONV A

Theorem 1.3 enables us to give a characterization of lattices of convex subsets of
partially ordered sets. For a partially ordered set A = (A, <) let Conv A denote the
system of all convex subsets of A. It is easy to see that (Conv A, C) is a complete
atomistic lattice (atomisticity means that every element is a join of atoms).

2.1 Theorem. Let IL = (L,A,V, <) be a complete atomistic lattice, card L > 1.
Further, let M be the set of all atoms of 1., & the ternary relation in M defined by

(a,b,c)el<=b<aVe b#a, b#c.

The following conditions are equivalent:

(I) L is isomorphic to Conv A for a partially ordered set A;
(1) & satisfies (1), (X), (¥),(O) and

(K)a<supX, X CM, ae M — X imply (z1,a,x2) € £ for some x1,22 € X;

(111) & satisfies (X), (C), (0) and (K).

Proof. Since the relation £ is evidently symmetric, the conditions (I1), (/1) are
equivalent by 1.8. To prove (I) = (II), let ¢ be an isomorphism of L. onto Conv
A for a partially ordered set A = (A4, <*). As atoms of the lattice Conv A are just
the one-element subsets of A, the mapping ¢’ : M — A defined by

¢'(x) = a <= p(x) = {a}

is a bijection of M onto A. Evidently (z,y,2) € £ means that either ¢'(z) <*
o' (y) <* ¢'(2) or ¢'(z) <* ¢'(y) <* ¢'(x) holds. Consider the partial order <’ in
M defined in such a way that ¢’ is an isomorphism of (M, <’) onto A. Then we have
(z,y,2) € Eifand only if & <’ y <’ z or z <’ y <’  holds, so that £ is a strict order

betweeenness. Using theorem 1.3 we obtain that & satisfics (7'), (X), (F') and (O).
It remains to show that (K) is satisfied. So let ¢ <supX, X C M, a € M — X.
Then ¢'(a) belongs to the convex hull of {¢/(z) : & € X} in A. Consequently
there exist w1, 29 € X with ¢/(21) <* ¢'(a) <* ¢'(22). Since ¢ ¢ X, we have
21 <" a <’ zy and hence (21, a,z2) € . We are going to prove (II) — (I). So let &
satisty (1), (X), (#),(0) and (K). Since £ is also symmetric, we have (a,b,¢c) € &
if and only if @ <* b <* ¢ or ¢ <* b <* a for a partial order <* in M, by 1.3. We
will show that L is isomorphic to Conv (M, <*). Notice that a subset X of M is
convex if and only if (z1,a,22) € &, z1,22 € X implya € X. If a € L, let M,
denote the set {p € M : p < a}. To verify that the set M, is convex in (M, <*), let
(u,z,v) €€, u,v € My. But then 2 < vV v < a, hence € M,. Obviously a < b
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implies M, C M,. Since a = sup M,, the converse implication holds, too. Finally,
let X be any subset of M, convex in (M,<*) and let a = sup X. We will prove
M, = X. The inclusion X C M, is evident. Let us suppose that there exists an
element p € M, — X. The condition (K) ensures the existence of z1, 2, € X with
(z1,p,22) € €. In view of the fact that X is convex we have p € X, a contradiction.
The proof is complete.

To show that no of the conditions given in (/1) and (I1I), respectively, can be
omitted, consider the following examples.

2.2 Example. Let IL be as in Fig. 1. Then evidently ¢ = {(a, b, ¢), (¢, b, a)} and it
satisfies all conditions (S)—(O), but it doesn’t satisfy (X). Namely a < sup{b, ¢, d},
while (b,a,¢), (b,a,d), (c,a,d) &¢.

Fig. 1 Fig. 2

2.3 Example. Let I be as in Fig. 2. Then evidently & is that of example 1.12.
Hence it satisfies (X), (F),(O) and also (K), while (T), (R), (C) and (I) are not
satisfied.

2.4 Example. Let £ be the system of all subsets X of the set {a,b, ¢, d, e} satis-
fying
bde X ora,e€e X = c€e X.

Then (£, C) is an atomistic lattice and the relation £ corresponds to that of example

1.13. So it satisfies (K) and all (S) — (O), besides (X).
2.5 Example. Let £ be the system of all subsets X of {a,b, ¢, u,v} with

a,ceEX=>beX,

vEXand (be€XorceX)=>ueX.

Then (£, C) is an atomisticlattice, § = {({a}, {b}, {c}), ({c}, {b}, {a}), ({0}, {u}, {v}),
({v}, {u}, {b}), ({c}, {u}, {v}), ({v}, {u}, {c})}. It can be seen easily that from among
the conditions (S) — (O) and (K), just (F) and (C') are not satisfied.

2.6 Example. Let £ be the system of all subsets X of the set {a,b,¢,d e, f}
satisfying
a,ce X =>be X,

ceeX=>deX,
e,ace X = feX.
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Then (£, C) is an atomistic lattice. The relation £ corresponds to that of example
1.15, hence it satisfies all conditions (S) — (I) and it doesn’t satisfy (O). Evidently
(K) holds, too.

Another characterization of lattices of convex subsets of partially ordered sets is
given in [4]. We refer to such lattices as c-lattices there. It is also proved that each
c-lattice 1s a direct product of directly irreducible ¢-lattices and directly irreducible
c-lattices are described. The construction of all partially ordered sets B with Conv
B isomorphic to Conv A for any given partially ordered set A can be found in [3].
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