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GENERIC CHAOS IN METRIC SPACES

ELENA MURINOVA

ABSTRACT. A dynamical system given by a continuous map f from a metric space
X into itself is called generically e-chaotic if the set of Li-Yorke pairs, i.e., the set
of points [r,y] € X2 for which liminf,_ e o(f™x, f?y) = 0 and simultaneously
limsup,,_, o, o(f™x, f"y) > ¢ is residual in X2 If e = 0, f is called generically
chaotic. It is shown that the characterization of generically e-chaotic maps given by
L. Snoha in the interval case can be extended to a large class of metric spaces. While
on the interval generic chaos implies generic e-chaos for some ¢ > 0, in the paper an
example of a convex continuum in the plane is given on which generic chaos does not
imply generic e-chaos for any € > 0.

1. Introduction.

We will study a dynamical system (X;f) given by a metric space (X, ¢) and
a continuous map f : X — X (in written f € C(X)). Usually when studying
chaoticity of such systems the authors assume that X is compact. Instead, we will
only assume that X is complete (even less, see below).

The notion of chaos in connection with a map was first used by Li and Yorke [LY]
without giving any formal definition. Since then many definitions of chaos appeared,
most of them being surveyed in [KS]. Each of them reflects some aspects of the
dynamics of those systems which are generally considered to be really ‘chaotic’.

The notion of generic chaos was introduced by A. Lasota (see [P]). A sys-
tem (X; f) is generically chaotic if the set of so called Li-Yorke pairs of points,
i.e., the set of points [z,y] € X? for which liminf,_ ., o(f*z, fy) = 0 and
limsup,,_, ., o(f"x, f*y) > 0is residual in X? (i.e., its complement is a first category
set in X?).

J. Pidrek [P] in 1985 found examples of generically chaotic interval maps, so it
became clear that maps satisfying such a strong definition of chaoticity exist.

. Snoha [S1] in 1990 gave a full characterization of generically chaotic self-maps
of a real compact interval I in terms of behaviour of subintervals of I as well as
in terms of topological transitivity. He also introduced the notion of dense chaos
by requiring that the set of Li-Yorke pairs be dense instead of residual. In [S2] he
found a full characterization of densely chaotic interval maps and proved that in
the class of piecewise monotone maps with finite number of pieces of monotonicity
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the notion of generic chaos and that of dense chaos coincide. Finally, in [S3] he
generalized some results from [S1] to what he called two-parameter chaos.

The inspiration for the present paper was a concluding remark of IJ. Snoha from
[S2] saying that ”Some results concerning the generic chaos can be carried over to
the case of continuous self-maps of the compact metric spaces. For example, if for
every two balls By and B, liminf,_, dist(f" (B1), f*(B2)) = 0 and if there is an
a > 0 such that for every ball B, limsup,, _, ., diam f*(B) > a, then f is generically
chaotic.” The main aim of the present paper is to develop this idea of L. Snoha and
to check to what extent his characterization of generically chaotic maps from [S1]
and that of generically (o, #)-chaotic maps from [S3] can be carried over from the
interval to metric spaces.

Before going further we need to discuss the question which metric spaces will be
appropriate for us to work with.

First of all, note that the definition of generic chaos has a good sense only if the
space X2 is of second category (i.e., not of first category) in itself because only then
a residual set in the space X? can reasonably be considered to form a ‘majority’
of it (usually, in spaces of first category the residuality is not being defined at all).
Still, a residual set in a space of second category need not be dense in the space
(e.g., take the space [0, 1]U (Q N [2, 3]) with the metric inherited from the real line
and the set [0, 1]). But in the definition of generic chaos the residual set of Li-Yorke
pairs should be required to be automatically dense, we believe.

Therefore we will require that X? be a Baire space — then X? is of second
category in itself and any residual set in X? is automatically dense. (Recall that a
space Y is Baire if every open set in Y is of second category in Y or, equivalently,
in itself. This is equivalent with the property that the intersection of any countable
collection of open dense sets is dense in Y. Another equivalent definition is that
any residual set in Y is dense in Y. See, e.g., [HMcC]).)

Of course, it could seem more reasonable to assume something on the space X
itself rather than on X2. First, we should realize that a necessary condition for X2
to be Baire is that X be Baire. Unfortunately, this is not a sufficient condition —
the square of a metric Baire space need not be Baire (see [Kr] or [HMcC]).

The question therefore is what assumptions on X ensure that X? be Baire. Here
we wish to mention at least that, among others, any one of the following three
conditions is sufficient for X2 to be Baire (see [HMcC, Theorem 2.4, Proposition
1.23, Theorem 5.1]):

(A1) X is a complete metric space.
(A2) X is a G5 set in a complete metric space.
(A3) X is Baire and separable metric space.

We thus finish our discussion about the assumptions on X: we will assume that
X 1s a metric space whose square 1s Baire. In particular, 1t is sufficient to assume
that X satisfies any one of the above three conditions.

Now let us go to our results. But first recall some definitions. Consider a

'He brought the attention of the author of the present paper to a misprint in [S1, Theo-
rem 1.2] — the condition ”(h-1) f has a unique ...” should read as " (h-1) f is not constant in any
subinterval of I and has a unique ...”.
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dynamical system (X; f) and € > 0 and denote

n—o0

C(n) = {Irs] € X7 timint o, 79) = 0 and Timsupe (772, 7) > 0}

C(f,¢) :{[:p)y] € Xx? :li,minfg(f";c)f"y) =0 and limsupg (f*z, f"y) > E} .

n—00 n—o0

We say that f is generically or densely chaotic if the set C(f) is residual or dense
in X2, respectively. Similarly, f is generically or densely e-chaotic if the set C(f, )
is residual or dense in X2, respectively.
In [S1] it is among others proved that if f € C(I) where I is a real compact
interval then the following are equivalent:
(a) f is generically chaotic,
(b) for some € > 0, f is generically e-chaotic,
(c) for some e > 0, f is densely e-chaotic,
(d) the following two conditions are fulfilled simultaneously:
(d1) for every two intervals Jq, Jo, liminf, o o(f" (J1), f*(J2)) =0,
(d2) there is e > 0 such that for every interval J, lim sup,_, ., diam f*(.J) > «.

(Moreover, the equivalences (b) < (¢) < (d) hold with the same ¢. Further, any
generically chaotic function is densely chaotic but not conversely.)

We show that this result can be extended to metric spaces, though not completely
(the implication (¢) = (@) in the next theorem does not hold with the same e,
contrary to the interval case).

Theorem A. Let (X, ) be a metric space whose square X? is a Baire space and
let f € C(X). Then the following three conditions are equivalent:

(a) for some e > 0, f is generically e-chaotic,
(b) for some e > 0, f is densely e-chaotic,
(c) the following two conditions are fulfilled simultaneously:
(cl) for every two balls By, By, liminf, o, o(f" (B1), f*(B2)) =0,
(c2) there exists some € > ( such that for every ball B,
limsup,,_, ., diam " (B) > ¢.
Moreover, the implications (a) = (b) = (c¢) hold with the same ¢. The implication
(¢) = (a) does not hold with the same ¢, in general. Nevertheless, one can claim
that the condition (c¢) implies that f is generically £*-chaotic for any €* < /2.

We also show that, contrary to the interval case, in metric spaces generic chaos
does not imply generic e-chaos. Recall that a metric space is called a continuum if
it is compact and connected.

Theorem B. There is a continuum X in the euclidean plane and a map f € C(X)
such that f is generically chaotic but is not generically e-chaotic for any € > 0. The
continuum X can even be taken to be convex.

Acknowledgements. The author thank L. Snoha for many stimulating and very
helpful discussions as well as for his enormous help with preparation of this paper.
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2. Proof of Theorem A and a generalization.

Being inspired by [S3] we are going to prove a result which is more general than
Theorem A.

For a dynamical system (X; f) and real numbers «, 3 define the following subsets
of the square X?2:

Cr(f,0) ={[e,9) € X* i liminfo (f'z, f'y) < af,

@Uﬁﬁ{wﬂex%mmwuﬂaﬁw>ﬁ}

n—0o0

C (faaab)) = (Jl (fa Oé) N (‘VQ (f7 b)) .

Since we speak on chaos, it would be reasonable to consider only 0 < a < 8 <
diam X (in particular, Ci (f,a) = @ for a < 0 and C5 (f,3) = 0 for > diam X).
Nevertheless, the results will work for any «, § and therefore we will not assume
any restrictions on them.

According to [S3] a map f € C(X) is called generically or densely (o, 3)-chaotic
if the set C(f, «, 3) is residual or dense in X2, respectively.

Ifa =0o0r a=0=0 we sometimes omit them. More precisely, instead of
generic or dense (0,¢)-chaos we also shortly speak on generic or dense e-chaos,
respectively and instead of generic or dense (0, 0)-chaos we simply speak on generic
or dense chaos, respectively. Thus, this terminology is in accordance with the
fact that for above defined sets C'(f) and C(f,e) we have C(f) = C(f,0,0) and
C(f,&) = C(f,0,€)~

The following lemma is a direct analogue of [S3, Lemma 2] and so we give the
proof only for completeness.

Lemma 2.1. Let (X, ) be a metric space whose square X? is a Baire space. Let
f € C(X) and o € R. Then the following three conditions are equivalent:
(i) Ci(f,«) is residual in X?,
(i) Ci(f, ) is dense in X2,
(ii) for every two balls B, Ba, liminf, o o(f"(B1), f*(B2)) < o

Proof. The implications (i) = (#i) = (¢i¢) are obvious. We are going to prove
(#13) = (i). So let (i1i) be fulfilled. We have Cy(f,a) = (,_; L(n,a + L) where

L (n,a—l— l) = {[x,y] e X% inf o(ffe, ffy) <a+ l} .
n k2n n

For every n, L(n, o + %) is obviously an open set in X?. To show that C1(f, «) is
residual it is thus sufficient to prove that for every n, L(n,a + %) is dense in X2.
So fix n and balls By, By. We prove that L(n,a + 1) N (By x By) # §. From (iii)
it follows that there exists & > n with o(f*(B1), f¥(B2)) < a + i. This implies
the existence of points * € By, y € B> such that g(fkr,fky) < o+ % Hence
[z,y] € L(n,a+ ;—) and the proof i1s complete. O

Next lemma shows that in case of the set Ca(f, #) the situation in metric spaces
is more complicated than the one on the interval and one can get only a weaker
result than that from [S1, Lemma 4.16].
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Lemma 2.2. Let (X, 0) be a metric space whose square X* is a Baire space. Let
f € C(X) and g € R. Consider the following conditions:
(1) Ca(f,P) is residual,
(i) Ca(f, B) is dense,
(iii) for every ball B, limsup,, _, ., diam f*(B) > §3,
(iv) Ca(f,B*) is residual for every * < %

Then (i) = (ii) = (iii) = (iv).

Proof. The implications (i) = (#i) = (4¢i¢) are obvious. We are going to prove
(iii) = (iv). So let (iii) be fulfilled. Fix * < £. Put

Cy (f,n,§> = {[:c,y] € X?: supo(ffa, ffy) > g} .

k>n

=z

Then (), C> (f, n, %) C Co(f,5%). For any n, Cy (f7 n, %) is open. Therefore to
get (iv), it is sufficient to prove that for any n, the set C'y (f, n, %) is dense in X?. To
this end, fix n and balls By, Bs. We need to show that Cs (f, n, %) N(B1 X By) # 0.

Distinguish two cases.

Case 1. For some 7, f"(By) C f"(Ba). Since limsup,_, ., diam f/(By) > 3 we
can take k > max{r,n} with diam f*(By) > . Since f*(By) C f¥(B2) there are
x € By, y € By with o(f*z, f*y) > 3 whence [z,y] € Cy(f, n, 8) C Ca(f, n, %)

Case 2. For every r, f7(B1)\ f"(Bz2) # 0. Now take k > n with diam f*(Bs) > 3
and a point u € f*(B;) \ f*(Bz). Then there is a point v € f*(B3) such that
o(u,v) > %, since otherwise for any two points vy, v2 € f*(Bz) we would have
o(v1,v2) < o(vi,u) + o(u,v2) < B and hence diam(Bz2) < 8, a contradiction. Now
take f-preimages « € By and y € Bs of u and v, respectively. Then Q(fkl‘, fky) >

% and again [z,y] € C4 (f,n, %) O

From Lemma 2.1 and Lemma 2.2 we get

Theorem 2.3. Let (X, g) be a metric space whose square X2 is a Baire space. Let
f€C(X) and a, B € R. Consider the following four conditions:
(a) f is generically («, 3)-chaotic,
(b) f is densely («, B)-chaotic,
(c) the following two conditions are fulfilled simultaneously:
(c1) for every two balls By, By, liminf, . o(f" (B1), f*(B2)) < a,
(c2) for every ball B, limsup,_, ., diam f*(B) > £,
: : : 5
(d) f is generically («, 3*)-chaotic for every 3* < 5.
Then (a) = (1) = (¢) = (d).
Now we are ready to prove Theorem A.

Proof of Theorem A. By putting @« = 0 and § = ¢ in Theorem 2.3, we get Theo-
rem A except for the claim that, in general, the condition (c) from Theorem A does
not imply the generic e-chaoticity of the map f.
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To prove this claim fix € > 0 and a > 0 and consider the following seven points
in the euclidean plane: V' =1[0,0], A = [§ 4+ a,0], B = [-§ — ,0], C = [0, —aq],
Cy=1[0,—-%], C2=1[0,-%], C3 =0, —ga]. Let X be the subspace of the euclidean
plane defined as the union of the straight line segments AB and VC (i.e., X has
the form of the letter T). Define a map f : X — X as follows. Let f(V) = f(Cs) =
F(C) =V, f(C) = A, f(C3) = B, f(A) = f(B) = C and let f be affine on
each of the straight line segments VC'y, C1Cy, C2Cs, C3C, VA, VB. Then f is
continuous, f(AB) = VC, f(VC) = AB and for every ball G in X there is some n
with f*(G) D AB. Then f"*(G) > VC, f**?(G) D AB, etc. Hence the condition
(c) from Theorem A is fulfilled.

On the other hand, repeat that f(VC) = AB and f(AB) = VC and notice that

2
L:=max{g(r,y): v € VC,y € AB} = /a* + (%-i-a) :

Thus limsup,, , ., o(f*z, f*y) < L whenever # € VC and y € AB. For sufficiently
small @ we get L < ¢ and in such a case (VC x AB) N Cs(f,¢) = 0. Consequently,
f 18 not generically e-chaotic. O

Remark 2.4. Since in the proof of Theorem A we have lim,_,o L = 5, the constant
€

5 at the very end of Theorem A cannot be replaced by any larger number — such
a ‘universal’ (i.e., depending only on ¢ and not on the space under consideration)
‘constant’ larger than 5 does not exist. Nevertheless, for a particular space X it
can happen that the constant 3 can be replaced by a larger number (and, even, a
question is whether there is a space where this does not happen). For instance, in
case of our ‘letter T’ space with fixed a we can replace § by any number smaller than
$ + a. Moreover, using the idea from the proof of [S1, Lemma 4.15] one can even
prove that this is the case when X is any finite graph. Still, our ‘letter T’ spaces
show that there is no number larger than 3 which could serve as the mentioned
‘universal’ (depending only on ¢) ‘constant’ for the class of all finite graphs.

3. Proof of Theorem B.

By AABC we will denote the triangle with vertices A, B, C' (here we think of a
triangle as a convex subset of the plane).

Recall that a map f € C(X) is called ezact if for any ball B in X there exists
n € N with f*(B) = X. An example of such a map is the standard tent map
T(x) =1 — |22 — 1| defined on the unit interval 7 = [0, 1].

A continuous map F € C(I?) is called triangular if it is of the form F(z,y) =
(f(2),9(x,y)). Instead of g(x,y) we also write g(y). Here {gs, x € I} is a family
of continuous maps from C'(I) depending continuously on = € I.

The following lemmas are intuitively obvious but for completeness we give proofs.

Lemma 3.1. There is a triangular map F(z,y) = (f(¢), 9-(y)) in C(I?) such that
F is exact, g and g1 are the identity maps I — I and the set I x {0} is F-invariant.

Proof. Put f = 7, g9 = g1 = id. For every = € [%, %} let g, be the map such that
92(0) = 92(3) =0, g (3) = 9-(1) = 1 and g, is linear on each of the intervals [0, L],
[3,2] and [2,1]. Further, for = € [0, 1] let g, be the map uniquely determined by

the following conditions:
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e ¢, is piecewise linear with three pieces of linearity,

o the slope of g, in a right neighbourhood of 0 as well as that in a left neigh-
bourhood of 1 is 82 4+ 1 and the slope of g, in a neighbourhood of % 18
-3.

Finally, for every x € (%, 1] put gx = g1-s-

Obviously, F is well defined, continuous and the set I x {0} is F-invariant. Notice
that for any z and any interval J C I, diam g,(J) > £ diam J.

We are going to prove that F' is exact. So, take nondegenerate intervals Ji, Jo C
I. We need to show that there exists N with F¥(Jy x Jo) = I?.

First take n with 77 (J;) = I and denote S, = {y € I : [z,y] € F*(J1 x Jo)}. If
we denote § = (%)" diam J; then one can see that for every z and every component
sy of Sp we have diams; > 46 > 0.

Now take k such that for every interval J C I whose length is at least §,

(gg)k(J) = [. This together with the facts that the point % is fixed for 7 and

for all # sufficiently close to % we have g, = gz, imply that F¥ (£ (1 x J2)) D
[2—¢c, 2+¢] x I for some e > 0.
Finally, take r with 7" ([2 —¢, 2 +¢]) = I. Since all the maps g,, « € I are onto,

it is sufficient toput N =n+k+r. O

Lemma 3.2. Given a triangle T = AABC, there is an exact map f € C(T') such
that all the points from AB U AC are fixed points of f.

Proof. By Lemma 3.1 there is an exact triangular map F(p,7) = (7(¢),9.(7)),
¢ €1, r € I such that go = g1 = id. Since the set I x {0} is F-invariant, we can
think of ¢ and r as of polar coordinates. In such a way F' becomes a continuous
map from a disc sector {[¢,7] : ¢ € [0,1],7 € [0,1]} into itself. Obviously, F is
exact and all the points of the form [0, 7] and [1,7], r € [0, 1] are fixed points of F.
Using the topological conjugacy via an appropriate homeomorphism from the disc
sector onto 7" we get a map f € C(7') with all the required properties. O

Now we are ready to prove Theorem B.

Proof of Theorem B. In the plane take the points given in polar coordinates ¢, r
by V =1[0,0] and 4, = [#%,5=],n = 1,2,... . Consider the set X =J;_, VA,
i.e. a union of straight line segments, endowed with the metric inherited from the
euclidean plane. Obviously, X is a continuum.

Define f € C(X) as follows. Let f(V) =V and for any n, let f|ya, be topolo-
gically conjugate to the tent map.

Since f(VA,) = VA, and the set VA, \ {V} is open in X, the fact that
diam(V A,) — 0 when n — oo shows that the condition (c2) from Theorem A
is not fulfilled for any ¢ > 0. Hence f is not generically e-chaotic for any € > 0.

We are going to show that f is generically chaotic. To this end denote X =
U]:L:1 V' An, k € N and realize that the exactness of the tent map gives the exactness
of flv a, for every n. This implies that for any ball B in X, f"(B) D V A, for some
r and s. Hence, by Theorem A, for any fixed k the map f|x, is generically e-
chaotic for some ¢, > 0. Therefore the set My of points from X,f which are not
Li-Yorke pairs, is of first category in X7 and hence of first category in X?. Since

any point from X? belongs to X,? for some k, we then get that the set of points
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from X? which are not Li-Yorke pairs is the first category set | J—, M. Thus f is
generically chaotic.

Now we are going to modify the described example in order that the space be
convex.

Denote 7, = AVA,Apy1, n = 1,2,... . Then Y = Uzozl T, 1s a convex
continuum in the plane. By Lemma 3.2, for every n there is an exact map g, €
C(T,) such that every point from VA, UV A, is a fixed point of g,,. Let g be a
self-map of Y defined as follows. For y € Y put ¢(y) = gx(y) where k is such that
y € Ti. It is easy to see that g is well defined and continuous. To prove that ¢
is generically chaotic but not generically e-chaotic for any € > 0, repeat the above
proof that the map f has these properties (just replace VA, by 7, and Xi by
v, =U'_, T,). O

n=1""n

Added wn proof. After submitting the paper the author learned about the recent
preprint [HY] which is written in the setting of compact metric spaces and surjective
maps and which partially overlaps with the present paper (cf. our Theorem A and
the equivalence of (2), (3) and (4) in the ‘sensitive’ case of Theorem 3.5 from [HY]).
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