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ON RELATIONS SATISFYING SOME HORN FORMULAS

BRANIMIR SESETJA AND ANDREJA TEPAVEEVIC

ABSTRACT. A general approach to relations usually considered on a set is presented.
Relations are supposed to satisfy particular Horn formulas. It is proved that this
approach is equivalent to the particular framework developed for investigation of
compatible relations on algebras. Collections of such relations are algebraic lattices
under inclusion, with an ideal being isomorphic with the power set of A. Conditions
are presented under which such a lattice consists of all relations which are reflexive
on subsets of A. These conditions turn out to be closely connected with lattice
properties of the diagonal relation on A.

1 INTRODUCTION

It is known that an algebra A determines particular lattices of A-compatible
binary relations, such as congruence and tolerance lattices, not only on A, but also
on each subalgebra of A. In [2], a framework for the generation of such lattices was
introduced.

In the present paper, another approach to these algebraic lattices is developed,
and some new results are proved. Starting with a set A, we consider all binary
relations on A which satisfy a set of particular Horn formulas. We prove that
relations satisfying these Horn formulas on a set are precisely those which are
introduced in [2] for algebras. Conditions which should be satisfied by the Horn
formulas, in order that diagonal relations and also some other connected relations
belong to the collection are given. Further, there is a Horn formula whose presence
provides the existence of a congruence on the lattice of relations, such that its
blocks consist of reflexive relations on subsets of A. We prove that properties of
the diagonal relation yield some structural properties of the corresponding lattice.

2 REsULTS

Let £ be a first order language with only one relational symbol a which is binary,
and with no functional symbols. Let S be a set of universal formulas of the type £
over a set of variables X, such that each ¢ € § is as follows:

(1) o= (Yar) ... (Vap) (P& .. . &Fp = Gr& ... &Gh),
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where F;, G, ¢ = 1,...,n,j = 1,...,m are atomic formulas (i.e., of the form
alzp,zq), p.g € {1,...,k}) and the set of variables occurring in Gy,...,Gp, is a
subset of the set of variables occurring in Fy, ... F,.

If S is a foregoing set of formulas and A a nonempty set, then denote by R4 the
set of all relations p on A, such that (4,p) = S.

Let ¥ = {(04,0}) : i € I} where [ is an index set and for each ¢ € I both ¢; and

o} are relations on the same set V;, satisfying:

(2) {z:=zoly or yoix, for some y € V;} C {z : zo;y or yo;x, for some y € V;}.
Denote by R4 the set of all relations p such that for all i € [

(3) Hom(o;, p) C Hom(a}, p),

(where Hom (7, d) is the set of all relational homomorphisms from a relation ¥ on
C into a relation § on D; i.e., maps f : C' — D such that from avb it follows that
f(a)df(b)).

Theorem 1. Let A be a set. If R§ is the collection of relations described as
above, where |o;| < R, then there is a set of Horn formulas S, such that the set
Rg coincides with RE. Conversely, if S is a set of Horn formulas described at the
beginning, then there are sets V; and ¥ defined above, such that the collection R4
coincides with R4.

Proof. From the condition |o;| < Ng, it follows that || < Ry (by (2)). We can also
assume that each V; is finite. To every ordered pair (o5, 0%) of relations on a set
Vi, for |Vi| < Ng there corresponds a Horn formula, as described in the sequel, such
that a relation p on the set A satisfies that formula if and only if it satisfies (3).

Let h be a bijection between V; and a set of variables X = {x1,20,..., 25}
Further, for each pair (a;,b;) € 03, j € J = {1,...,n} consider atomic formula
F; = a(h(a;), h(b;)). Similarly, for each pair (¢, d;) € o}, | € K = {1,...,m},
consider atomic formula Gy = a(h(¢), h(d)).

Now, let A be a set and p C A? a relation which satisfies condition (3). If
f:Vi — A, and (a;,b;) € o; implies that (f(a;), f(b;)) € p, then for the same f,
from (aj, bj) € o} it follows that (f(a;), f(b;)) € p. The mappingV = h=' o f maps
X to Ai.e. itis avaluation. Thus, every mapping f corresponds to a valuation. On
the other hand, if V : X —» A is a valuation, then f = h oV is the corresponding
mapping from V; to A. From the previous consideration it follows that every f
from Hom(o;, p) also belongs to Hom(c?, p) if and only if the Horn formula that
corresponds to (3) for o = p, is true in every valuation.

Further, observe a Horn formula ¢ as in (1), where V' is a set of variables ap-
pearing in it. Let ¢ and ¢’ be relations on V' defined by:

(z,y) € o if and only if there is an atomic formula F; = a(x, y) in the antecedent
of ¢ and

(z,y) € ¢’ if and only if there is an atomic formula G; = a(z, y) in the consequent

of .
By the consideration as above we conclude that the relations on A satisfying the
formula ¢ and the corresponding inclusion (3) coincide. O
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Corollary 1. The set RS is an algebraic lattice under inclusion.

Proof. Consider a trivial algebra A = (A, f) (f(z) = «) on A # 0. Then, RE
contains compatible relations. Since the corresponding (according to Theorem 1)
collection of relations Ré is an algebraic lattice under inclusion by Proposition 2
in [2] (because it coincides with RE), R4 is also an algebraic lattice. O

In the sequel, we consider a set of Horn formulas § such that the diagonal relation
on a given set satisfies each of them.

Let S be a set of Horn formulas of the type (1), such that
(4) (A4, A4) S

holds for a nonempty set A (A4, or A is the diagonal relation on A).

Next we describe Horn formulas which satisfy (4).

Observe that every formula defined by (1) over a set of variables X is equivalent
to the finite conjunction of formulas ¢ being of the form

(5) ¢ = (Var,.. ., op)(a(z,, 2,)& .. .&a(;r,'p_l , sz) = a(z, 1)),

where {&;,,...,2;,} = Xg ={a1,..., 2} CX.

Denote by Ty the set of atomic formulas figuring in the antecedent of ¢:

To = {ali, xiy), .. ale,_,,2,)}

Further on, for every 2 € X, we define Uy(z), as follows:

y € Ug(z) if and only if there are n € N and ug,...,u, € Xy, such that
a(uj,ujy1) € Ty or a(ujyr,u;) € Ty, for j=0,...,n—1 and & = ug, y = uy.

A part of the following proposition is a consequence of Lemma 2 in [2], but we
provide another proof.

Proposition 1. Let A be a set, such that |A| > 1 and ¢ a Horn formula defined
by (5) over a set of variables X. Then, Ag |= ¢  for all } # B C A if and only if

Ug(1) N Ug(22) # 0.

Proof. Suppose that Ug(x1) N Ug(x2) = B. Then, let B be a nonempty subset of
A and a,b € B, a # b. Consider the valuation V : Xy — A, such that V(u) =«
for every u € Ug(x1), and V(v) = b for every v € Ug(x1). Then obviously Ap
is not a model for ¢, since all atomic formulas from 7y in this interpretation are
associated to ordered pairs with equal coordinates ((a, a) or (b, b)) belonging to Ap,
and a(z1, z2) is interpreted by (a,b) € Ap.

Conversely, let Uy (21) NUg(22) # B. Then the diagonal relation of any nonempty
subset B of A is a model of ¢. Indeed, for any valuation V : Xy — A which assigns
different values a,b € B to x1 and x5, both antecedent and consequent of ¢ are
false if « is interpreted by Apg, hence ¢ is satisfied. Obviously, ¢ is satisfied also in
the case when the same value from B is assigned to 1 and x». Thus, Ag = ¢.

Observe that the empty set trivially satisfies any set of Horn formulas of this
type, hence 0§ € Ré, for every nonempty set A. a
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Proposition 2. Let A, S and R§ be as above. Then, the principal ideal Al in
Rg’ is isomorphic with the power set of A.

Proof. By the condition (4), diagonal relations of all subsets of A belong to R4.
Hence, the mapping f : Agp — B, B C A (with Ay = §}) is obviously the required
isomorphism. a

Proposition 3. If B is a nonempty subset of A, then (i) B? and (ii) B> U A are
relations from R4

Proof. Let ¢ € S, as described by (5):

o= (Var, ... ap) oz, 2,)& . &ale;,_,xi,) = oz, 22)).

(i) If the antecedent of ¢ is satisfied by B2, then obviously the consequent also
holds. Indeed, by the assumption the variables 27 and x5 appear also in the an-
tecedent of ¢. Therefore, B? is a model of ¢.

(i1) Suppose that for any valuation, B? U A satisfies the antecedent of ¢, i.e.,
that the interpretation of a(x;,,, #i,,,,) is either (a,a) € A, a € A, or (b,c) € B2
b,c € B. If the interpretation of a(z1,z2) is an ordered pair (d,e) from B?, then
B2 UA k= ¢. If one of these coordinates, e.g. d, is not an element from B, then,
since A € R4, by Proposition 1 it follows that d = e. Thus again B2 U A = 4.

Hence, B2U A € R4. O

In the sequel, A is supposed to belong to RSA, for every A. We discuss particular
cases of such lattices, examples of which are well known.
If a relation p C A? satisfies the formula

(6) ¢ = (Va)(Vy)(a(z,y) = a(z, z)&a(y, y)),

then it is called a weakly reflexive relation on A.

Some particular known cases are as follows. Let A be a nonempty set and Rw A
the set of all weakly reflexive relations on A; Qw A the set of all relations on A
which are reflexive and transitive on subsets of A (weak quasi-orders on A); Tw A
the set of all relations on A which are reflexive and symmetric on subsets of A
(weak tolerances on A); Fw A the set of all relations on A which are symmetric
and transitive on subsets of A (weak equivalences on A). Obviously, all these
relations satisfy the formula (6).

It is easy to see that all the mentioned sets are algebraic lattices of the form
Ré, for a suitable set of Horn formulas §. Hence, in all these lattices the principal
ideal A generated by the diagonal relation A on A is isomorphic with the power
set P(A) of A. However, these lattices have some additional properties, as follows.
The filter At (i.e., the interval-sublattice [A, A?%]) is the lattice of the corresponding
reflexive relations on the whole set A. Each of these is a disjoint union of interval
lattices [Ag, B*], B C A.

Next we give conditions under which Ré has the foregoing properties.

Recall that @ € L is said to be codistributive if for all z,y € L, a A (z Vy) =
(a Ax)V (aAy). Such element induces a homomorphism n, of L onto al, defined
by n4(z) =z Aa.

Observe that in an algebraic lattice every codistributive element is infinitely
codistributive ([5]). In this case, the congruence classes induced by n, have maximal
elements.
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In all algebraic lattices listed above, the diagonal relation A is an (infinitely)
codistributive element. Moreover, maximal elements of the congruence classes in-
duced by na are squares of subsets of A.

Theorem 2. Let S, A and R§ be as above. The following are equivalent:

(i) A is a codistributive element in (R4, C), and maximal elements of the con-
gruence classes induced by na are squares of subsets of A;

(ii) S = ®, where ® is given by (6);

(iii) R4 is a disjoint union of lattices consisting of reflexive relations on subsets
of A, which satisfy S.

Proof. (i) = (i) follows by Proposition 3 in [2].

(i) = (i1) Suppose that there is a relation p € RS which does not satisfy (ii),
i.e., such that for some a,b € A
(a,b) € p and at most one of two pairs (a, a), (b,b) is in p.

Take (a,b) € p and (a,a) & p, and let B={z € A | (z,z) € p}.

Now, if A is a codistributive element in R?, then, since p A A = Apg, it follows
that p belongs to the same class of the congruence induced by na as B%. However,
p £ B? and B? is not the greatest element of the class.

(ii) = (iii) Suppose that every p € R4 satisfies the formula ®, i.e., that

(z,y) € p implies (z,2) € p and (y,y) € p.
Then, for B = {z | (z,z) € p}, Ap € R4, and B? € RZ. In addition,
(7) Ap<p< B

fe., RE = U(lAp, B7] | B C A).
(ii1) = (i) If p,0 € RA, then there are B,C C A, such that p € [Ap, BY],
¢ € [Ac,C?. Now,

pV o€ [Apuc, (BUC)Y

(since Ap VAc < pVO<B?Vv(C?<(BUC)?).
Hence, (pVO) NA=Apye = AV Ac = (pANA)V (0 AA), which proves that
A is a codistributive element of (RZ, C).

By (7), B? is the greatest element of the class to which p belongs, since p A A =
B AA = Ap. O

From now on, we assume that formula ® given by (6) (describing the weak
reflexivity) is a consequence of formulas in S.

Proposition 4. If p € R2, then also pUA € R2.

Proof. Let p € R§ and pNA = Ag, B C A. By Theorem 2, p < B?. We have
to prove that pV A = pUA in RZ. Observe that pV A < B2V A = BZUA,
by Proposition 3. Now, if pUA ¢ Ré, then there is a formula (5), which is not
satisfied by p U A, i.e., there is a valuation V such that the antecedent is true,
while the consequent is false. Let V(z;) = b, and V(z2) = ¢, in this valuation.
Now, b,c € B, b # c and (b,¢) € p. Since A € R%, by Proposition 1, we have
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that Up(z1) NUg(z2) # 0. In other words, in this valuation all elements from
Ug(z1) and Uy (x2) have values from B. Now, starting with V', we consider another
valuation V' on B, as follows. Values of all variables which in V' are elements from
B remain the same while all other variables take the same value (from B). In this
valuation p does not satisfy the formula, which gives a contradiction.

Hence, pU A € RE, whenever p € R%. a

Next we prove that some properties of A enable structural decomposition of the
lattice Rg.

As it is known, an element a of a bounded lattice L is neutral if the mappings
z— zAaand 2 — zVa are homomorphisms on L, and z — (z Aa,z Va) is an
embedding from L into al x at.

Theorem 3. A lattice identity holds on the lattice R£ if and only if it holds on
its sublattice At of all reflexive relations from R2.

Proof. Tn every lattice R4, A is a neutral element. This is an easy consequence of
Proposition 4. The proof of the Theorem is now straightforward, by the definition
of a neutral element, and by the fact that Al="P(A). d

If A= (A, F) is an algebra, then R% is the set of all relations from RZ which
are compatible with all fundamental operations on A.
The following are almost immediate consequences of the above results.

Corollary 2. Let A = (A, F) be an algebra and S a set of formulas as previously
defined. Let also Rjé be the set of all compatible relations on A which satisfy S.
Then Ré is an algebraic lattice under inclusion whose ideal Al is isomorphic with
the lattice SubA. O

Corollary 3. If A, S and 'Ré are as in Corollary 2, then the following are equiv-
alent:

(i) A is a codistributive element of the lattice R4 and the maximal elements of
congruence classes induced by na are squares of subalgebras;

(ii) every p € RE is weakly reflexive;

(iii) R? is a digjoint union of lattices consisting of reflexive, compatible relations
on subalgebras of A, which satisfy S. a
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