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LINE DIGRAPHS OF COMPLETE BIPARTITE
SYMMETRIC DIGRAPHS ARE RATIONAL

JAN BEKA

ABSTRACT. A digraph D is divisible by ¢ if its arc set can be partitioned into ¢
subsets, such that the sub—digraphs (called factors) induced by the subsets are all
isomorphic. If D has q arcs, then it is t-rational if it is divisible by t or ¢ does not
divide ¢. D is rational if it is t-rational for all ¢ 2 2. In this note, we show that graphs
L(K}, ) are rational.

1. INTRODUCTION

An isomorphic factorization of a digraph D is a partition of its arc set into subsets
such that the sub—digraphs (called factors) induced by the subsets are mutually
isomorphic. If there exists an isomorphic factorization D into t factors, we say that
D is divisible by t. For given t and a given digraph D having precisely ¢ arcs, an
obvious necessary condition for the divisibility of D by t is that ¢ divides g. This
is called the divisibility condition for D and t. D is t-rational if D is divisible by ¢
or the divisibility condition for DD and ¢ is not satisfied, otherwise D is t-irrational;
D is rational if it is t-rational for all £ = 2, otherwise D is irrational, in which case
D is t-irrational for some t 2 2.

The problem which concerns us is to find values of  and ¢ for which all
r-regular digraphs are t-rational. Wormald [6] has shown that for fixed ¢ and r
such that 2 £t < r, almost all r-regular digraphs are not divisible by ¢, and for
fixed ¢ Z 2 almost all regular tournaments also are not divisible by ¢. Further, in [6]
it was proved that all 1-regular digraphs are rational. For r-regular graphs, some
results in the direction were achieved in [1, 2, 3, 4, 5, 6].

The line digraph L(D) of a digraph D(V, A) has the arc set of D as its vertex
set, and there is an arc from zy to zw in L(D) if y = z. The aim of this paper is
to prove the divisibility of digraphs L(K7, ,,) by ¢ for any ¢ dividing the number of
its arcs.

2. RESuLT

Let K}, , be a complete bipartite symmetric digraph with partite sets V; and Va,
where |Vi| = |Va| = n. Then the line graph digraph L(K} ) is a digraph with 2n?
vertices, 2n® arcs and regular of degree n. We shall prove the following theorem:
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Theorem. Let n > 1 be any positive integer. Then the line graph L(K}, ) is
rational.

Proof. Assume t|2n® for any positive integer ¢t > 1. We show that then L{K}, ) is
divisible by ¢.

Let K7, , denote the complete bipartite symmetric digraph with partite sets
Vi = {x1,29,...,2,} and Vo = {y1,y2, ..., yn}, and let

ap =(z1y1T2Y2 - . Tnin)(T1Y2T2Y3 . - ZnY1) - - (T1YnTay - Tnln-1)
(1219222 - - - YnTn) (Y2T1y3T2 . .- Y1Z0) . - (YnT1Y1Z2 . . Yn—1Tn) =
=E1€2---EaMY2---Tn

be the vertex permutation of L(K} ,). Let as denote a permutation of arcs of
L(K}, ) that is induced by the permutation a;. The induced arc permutation as is
seen to have the property that the length of every cycle is n, and that the nunber
of these cycles is equal to 2n?. Thus induced permutation oy has the expression of
the form of a product of cycles

n n n n
Qg = H Hfﬁj : H H"rjfr-

i=1j5=1 j=li=1

Define now a new digraph K*(A, B) with partite sets A = {uj,uz,...,u,} and
B = {v1,v2,...,v,}. Let every vertex u;(v;) correspond to the cycle €;(vi), i =
1,2,...,n, and let the vertex u;(v;) be connected by an arc with the vertex v;(u;)
if and only if a cycle £, (7:€:) belongs to az. It is evident that the digraph K*(A, B)
is isomorphic to K7, . Next, let ?(X, Y') denote a complete bipartite digraph which
contains all arcs of which start-vertex is from X and end-vertex is from Y.

The exact construction of ¢ isomorphic factors of L(K7, ,,) depends on the parity
of £.

Case 1. Let t be even and let ¢|2n% Then t = 2r for some positive integer r,
and therefore r divides n3. Let ged(r,n?) = ri. Consequently, there exist positive
integers b and ¢, such that b|n, ¢|n, and r|, = be. Next, let 7|ry = d. Then obviously
d|n.

Divide K*(A, 3) into two isomorphic digraphs ?(A, B) and I?(B,A). Owing
to this it is sufficient to construct a decomposition of ?(AjB) into r isomorphic
sub-digraphs.

Firstly, construct the decomposition of K:(A, B) into r, isomorphic sub-digraphs.

b c
Let A= |J Ax, B = U By, |Ak| = n/b, and |B,| = n/c, where the sets Ay and
k=1 s=1

B, are mutually disjoint. Define r; sub—digraphs of I_{"(A, B) in the following way:
Grs = ?(Ak,B_.,) for every ordered couple (k,s) € {1,2,...,b} x {1,2,...,c}.
Sub-digraphs G, are all isomorphic because there exists an isomorphism between
Gk,s, and Gy,s, induced by mapping (k1,s1) — (k2,s2). By the backward applica-
tion of the previous correspondence on the digraphs G, we get the decomposition
of L(K}, ,,) into r isomorphic sub-digraphs, denote them by Fs. To complete the
proof it now suffices, without loss of generality, to decompose F, into d isomorphic
sub-digraphs. Let one part of the complete bipartite digraph Fi; contains vertices
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of cycles €1,€2, ... ,&,,4 and second part contains vertices of cycles y1, 72, ..., Tn/c-
Denote by ag/F; the reduced induced arc permutation which contains only those
cycles in ap which correspond to arcs belonging to £;. Then

n/bnfe

ag/Fyy = H H EiY;

i=1j5=1

is the product cycles having lengths which are multiples of d as d|n. Choose now
from each cycle of the permutation as/Fy; an arc h;; that occupies the first place
in given cycle and put

E = E(Fin1) = {(az2/F1)"“*(hi;);u 2 0}.

Then {E, (az/F11)(E),...,(az2/F11)4"Y(E)} is a partition of the arcs of Fy,. This
constitutes an isomorphic factorization of Fy;, as the sub-digraph Fy;; induced by
E is isomorphic to the sub—digraphs of Fj; induced by each of (as/F11)(E),... Iso-
morphisms between F11; and these sub-digraphs are provided by the corresponding

powers of a;. Hence Fy; is divisible by d. In consequence of preceding follows that
the digraph L(K}, ,,) is divisible by ¢.

Case 2. Let ¢ be odd and let t|2n®. Then ¢t divides n®. Let (¢,n?) = ¢, and let
t/ty = d. Then obviously d must divide n. Since t;|n?, then there exist positive
integers b and ¢ such that b|n, ¢|n, and ¢; = be. Consider subsets A, and B, that
have the same meaning as in the Case 1.

Suppose b > 1 and ¢ > 1. Define for every ordered couple (k,s) € {1,2,...,b} x
{1,2,...,c} digraphs Gj, = ?(Ak,Bs) U ?(Bs+1,Ak) where the addition s + 1
is taken modulo ¢ with residues 1,2,...,¢. It is seen that every digraph Gy, is
isomorphic to the directed “path”F3 with “vertices” Byiy, Ay and B, whereupon
these paths are arc-disjoint. Then digraphs Fy, obtained from Gy, by analogous
fashion as stated above provide an isomorphic factorization of L(K} ) into t;
factors. Take now the digraph F; and decompose it into d isomorphic sub—digraphs.
Let one part of the bipartite digraph Fj; contains vertices that are elements of
cycles €1,€2,...,en, and the second part contains vertices that are elements of
cycles vi,72, .-+, Tnfer Tnfes1s- -+ Yanser a0d let the induced reduced permutation
ap/F1y contains only those cycles from «» for which there exists a corresponding
arc in Fyy. Then

nj/bn/c 2n/c n/b
ag/Fy =HHE'E'Y;,~' ' H H’)’jfi,
i=1j=1 Jj=njc+li=1

where all cycles of az/Fy) have lengths which are multiples of d. From each cycle
£:7; and 7yj€; in ap/F1; choose the first arc h;; and e;;, respectively, and put

E = E(Fin) = {(a2/F11)"*(hs;), (a2/F11)"%(ej;); u 2 0}.

The system {E, (a2/F11(E), ..., (a2/F11)*}(E)} is a partition of the arc set of Fy;
and sub-digraphs induced by these subsets provides an isomorphic factorization of
F1. Thus Fy, is divisible by d und in consequence of the preceding the digraph
L(K}, ) is divisible by ¢.



Suppose now b > 1 and ¢ = 1. Then d = 1 and ¢ = b. Define in this case b sub—
digraphs of K*(A, B) in this way: Gx = K (Ax, B)UK (B, Ags,) for k= 1,2, ..., b,
The addition k + 1 is taken modulo b with residues 1,2,...,b. Note, that subsets -
Ay have the same meaning as in Case 1. As above, the gained sub-digraphs Fj
are all isomorphic because each of them is isomorphic to the directed “path” ‘]_5)3
with “vertices” Ay, B and Ay, and these directed “paths”are arc—disjoint. Hence
L(K} ) is divisible by t. Since for every t dividing 2n® the digraph L(K} ) is
divisible by ¢, then L(K}, ,,) is rational, which completes the proof.

In conclusion, we note that analogous theorem for non-oriented graphs L(K,, ,,)
will be proved in the forthcoming paper.
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A NOTE ON THE IMPROPER
KURZWEIL-HENSTOCK INTEGRAL

ANTONIO BoccuTo AND BELOSLAV RIECAN

ABSTRACT. A connection is studied between the improper Kurzweil-Henstock inte-
gral on the real line and the integral over a compact space.

INTRODUCTION

In [5] two possibilities are mentioned of defining the improper Kurzweil-Henstock
integral on the real line (see also [2] for a more general range). In [1] and [6] the
Kurzweil-Henstock construction has been examined for a general compact range. It
is natural to consider one-point compactification of the real line. Therefore we work
with the compactification and we prove a convergence theorem in compact spaces
describing the situation from the real case.

KURZWEIL-HENSTOCK INTEGRAL IN COMPACT TOPOLOGICAL SPACES

Let IN be the set of all strictly positive integers, IR the set of the real numbers,
IR™ be the set of all strictly positive real numbers. Let X be a Hausdorff compact
topological space. If A C X, then the interior of the set A is denoted by int 4.

We shall work with a family F of compact subsets of X closed under the in-
tersection and a monotone and additive mapping A : F — [0, +o00]. The additivity
means that

(1) MAYB) + MA()B) = A(A) + A(B)

whenever A, B,A|JB € F.

By a partition (detaily, (F, A)-partition ) of a set A € F we mean a finite collec-
tion {(U:1,t1), ..., (U, tx)} such that

(i) U, ... JU € F,
k
(i) |J th = A,

i=1
(iii) A(U; U;) = 0 whenever i # 7,
(v) tieUy(i=1,... k).
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A finite collection {(U1,¢1), ... , (Uk,tx)} of subsets of A € F, satisfying conditions
(i), (iii) and (iv), but not necessarily (ii), is said to be decomposition of A. We shall
assume that F separates points in the following way: to any A € F there exists a -
sequence (A, ), of partitions of A such that

(i) An41 is a refinement of A,
(ii) to any x,y € A, x # y, there exist n € IV and B € A, such that z € B and
y & B.
We note that this assumption is fulfilled if the topological space X is metrizable or
it satisfies the second axiom of countability (see [6]).

A gauge on a set A C X is a mapping ¢ assigning to every point z € A a
neighborhood é(z) of z. If D = {(U,t1),... , (Us, tx)} is a decomposition of A and
§ is a gauge on A, then we say that D is d-fine if U; C §(¢;) forany i € {1,2,... ,k}.

We obtain a simple example putting X = [a,b] C IR with the usual topology,
F =the family of all closed subintervals of X, AM[a,]) = f—a,a < a <[ <b
Any gauge can be represented by a real function d : [a,b] — R*, if we put é(z) =
(r —d(z),z + d(x)).

Another example is the unbounded interval [a,+o00] = [a,+00) [ J{+0o0} con-
sidered as the one-point compactification of the locally compact space [a,+00).
The base of open sets consists of open subsets of [a,+0c) and the sets of the
type (b, +00) J{+o0}, @ < b < +oo. Any gauge in [a, +-00| has the form é(z) =
(z —d(z), z +d(z)), if z € [a, +o0] IR, and §(+00) = (b, +00] = (b, +00) U{+o0},
where d denotes a positive real-valued function defined on [a,4-00), and b denotes
a real number.

Let us return to the definition of Kurzweil-Henstock integral (K H-integral) on
X If D= {(U,t1),..., Uk, tx)} is a decomposition of a set A, and f: X — IR,
then we define the Riemann sum as follows:

k
S(£,D) =Y ft)AUs),
i=1

if the sum exists in IR, with the convention 0 - (+00) = 0 (—o0) = 0.
We note that the fact that F separates points guarantees the existence of at
least one é-fine partition D such that S(f, D) is well-defined for any gauge d (see

(6], [8])-

Definition 2.1. A function f : X — IR is integrable on a set A if there exists
I € IR such that Ve > 0 there exists a gauge § on A such that

(2) IS(f,D) 1| <e

whenever D is a d-fine partition of A such that S(f, D) exists in JR. We denote

1= 1

(see also [6], Definition 1.8., p. 154).



THE CONVERGENCE THEOREM

We now prove the following:

Theorem 3.1. Let X = Xo|J{zo} be the one-point compactification of a locally
compact space Xo. Let f: X — IR be a function such that f(z¢) = 0. Let (An)n
be a sequence of sets, such that A, € F, An C int Apy1, Ans1 \int A, € F,

(e ¢]
AMA \intA,) =0 (n = 1,2,...), U Ap = Xg. Let f be integrable on A, (n =
n=1
1,2,...) and let there exist in IR an element I such that, Ve > 0, there exists an
integer ng such that

‘/Af*l‘ge VAEF, AD An,.

Then f is integrable on X and/ f=1r
X

Proof. Let € be an arbitrary positive real number, and ng € IN be as in the hy-
potheses of the theorem. Put Ag = 0, B, = A4 \int A, (n=1,2,...). Proceeding
analogously as in [6], Lemma 1.10, and as in [2], we get that f is integrable on every
subset of A, belonging to 7 (n =1,2,...) and thus, in particular, f is integrable
on B, (n=1,2,...). Therefore, Vn € IN, there exists a gauge 6, on B, such that

(3) jB f = 5(f,Dx)

for any d,-fine partition D, of B,. From (3) and Henstock’s Lemma (see also [6],
Lemma 2.1., pp. 158-159; [5], Theorem 3.2.1., pp. 81-83), it follows that

[ 1-sue

i=1 "1

for each §,-fine decomposition £, = {(V1,t1),...,(Vh,tn)} of B,. Evidently
By () Bns1 = An\intA, VYne .

3

< an+3

&
S 2n+2

(4)

Therefore
Bn = (B[ ) Bao1) | J(int B) | J(Ba [ Bas1) V.

Moreover, it is easy to check that

(5) Bj N By = @ whenever |5 — | > 2
and that
(6) (tnt Bp) N (int Bpey) =0 VYne .

Now define a gauge é on X by the following formula:
Sn(x) [\(int Bn)ifz € int By,

;

(1) 6(z) = 5n(o:)ﬂ5n+1(x)ﬂ(mtA,.H)ifxeBnﬂ3n+1, (n=1,2...)

(X0 \ Any) | Hzo}ifz = 2.
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Let D = {(Uy,t1),..., Uk, tk)} be a é-fine partition of X. There exists (U;,,ti,) €
D, withiy € {1,2,... ,k}, such that =y € U;,. We shall prove that t;, = z¢. Namely,
in the opposite case,

zo € Uiy, C 6(tiy) C dn(tiy)

for some n. But 6,(t) C Xy for t # xg. We have obtained zp € Xy, that is a
contradiction.
Since f(xg) = 0, the Riemann sum S(f, D) has the form

Z f(t) MUs),
i=1,... k,i#io
and t; € Xo (i =1,... ,k,i #1p). Let
A=) B,
neT

where
(8) T={neIN:3ie{l,... k}i#iy: BNl # 0}

By (7) , and since D is a d§-fine partition of X, we get that

(9) ADA,,

oo

We claim that, if U;, i # i, has nonempty intersection with at least two of the
int By,’s, then necessarily there exists n € IV such that the point ¢; corresponding
to U; belongs to B, N B,,+;. Indeed, if {; € int B,, for some n, then, from (7) and
the fact that D is a d-fine partition of X, we'd have

By hypothesis we have

(10) <€

U; C §(t;) Cint By

this is impossible, by virtue of (5) and (6). From this and since

(Bao1 [V Bo)(\(Ba[ ) Bns1) =0 Vn,

it follows that, for every ¢ = 1,2,... |k, i # 1o, the B,’s having nonempty inter-
section with U; are at most two, while the B,’s which have nonempty intersection
with U;, can be infinitely many (even all the B,,’s). Thus we proved that the set T
in (8) is finite.
For n € T define a decomposition &, of B,, in the following way:
En ={(L(i,ti) it iTLtBn}
U{(uz n Bn: t?]) : ti € Bn ﬂ Bn—l}

U{(Uian,ti) 1t € BnﬂBre+]}-
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Then, by construction, we have:

(11) 5(,D) =Y S(f,€n)

neT

by additivity of A and since A, \ int A, = B,()Bnt1 C int A, and MA, \
intA,) =0Vne N.

Similarly,
(12) / 1=/
r%'; u“,‘C int By ,i#ig ul A
Since Dy, is §,-fine, we have (3). From (3), (10), (11), (12), and (9) we obtain:
IS(,D) =11 =D S(f,&) — 1| =
neT
Z(SU’E")“/ f)”fo -1f<
n€T Yty C int B iU neT VYU cint ByizigUi
€
st.& - [ 4 [1-1|s Y sin ve<te
r;" " Uit € int By igtigli A "Ze;, an+2
From this the assertion follows. [J
APPLICATIONS

The following results are consequences of Theorem 3.1:

Proposition 4.1. ([5], Theorem 2.9.3., pp. 61-63) Let f : [a, +00] — IR be such

that f(+o00) = 0, f be integrable on [a,b] for any b > a, and let there exist in IR
the limit
lim
b=—+4-00 [a.b]

Then f is integrable on [a, +00|, and

f= lim f
/[a.+oo] b—+o00 la,b]

Proposition 4.2. (see also 5], Theorem 2.8.3., pp. 57-59 and Remark 2.8.4, p.57)
Leta,be IR, a <b, f:[a,b] = IR, f be integrable on [a,z] for any a <z < b, and
let there exist in IR the limit
lim
z=b" JS{q,q]

Then f is integrable on [a,b], and

f= lim / [
(a,b] z=b" JSla,z)

11



Proof. We observe that [a, b] = [a,b) | J{b} can be considered as the one-point com-
pactification of [a,b). The only difference is that we did not assume f(b) = 0. Of
course, one can put g(z) = f(z) — f(b), and use Theorem 3.1 with respect to the .
function g. Then we have

f g = lim q,
la,b] b~ Ja,a]

and hence

f:f(b)(bfaH/ g=

[a,b] [a,b]

— lim f()(z—a)+ lim 9=
z—b~ b~

[a,e]

lim/ (g+ f(b)) = lim/ f
z=b" Jia,z] z=b" J[a,x]

Il

This concludes the proof. O
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JOIN AND INTERSECTION OF HYPERMAPS

ANTONIO BREDA D’AZEVEDO AND ROMAN NEDELA

ABSTRACT. Hypermaps are generalisations of maps - 2-cell decompositions of closed
surfaces. The correspondence between hypermaps and quotients of the group A freely
generated by three involutions is well-known. In this correspondence hypermaps cor-
respond to conjugacy classes of subgroups of A, and hypermap coverings to the
subgroup containment.

Let H and K be two hypermaps. We shall introduce and study two binary oper-
ations - join and intersection, defined on hypermaps. The corresponding operations
in the subgroup representation is the intersection of two subgroups of A and the
subgroup closure in A. We investigate basic properties of the join and intersection,
particular attention is paid to the study of orthogonal hypermaps, final sections are
devoted to the study of the relationship of some algebraic and topological properties
of hypermaps and the join and intersection. As a byproduct we get a method of com-
parison of two hypermaps which led us to the definition of the shared cover index.
This transpired to be a generalisation of the chirality index defined in [3]. In fact,
the chirality index of an oriented regular hypermap H is just the shared cover index
of H with its mirror image.

1. INTRODUCTION

A topological map is a 2-cell decomposition of a compact connected surface. A
hypermap is a certain abstraction of a topological map linking different fields of
mathematics including combinatorics, group theory, geometry of Riemann surfaces,
algebraic geometry and Galois theory. For a survey explaining these relations we
refer the reader to [9,10]. Formally, a hypermap is a 4-tuple (F;rg,71,72), where
F is a set of flags and r;, i = 0,1,2 are fixed point free involutory permutations
acting on F such that (rq,ry,r2) is transitive on F.

It is known that any hypermap can be viewed as a quotient of the universal
hypermap given by the action of the group A = (rg,r1,72;78 = r? =713 = 1) on
itself by left multiplication. This gives rise to a correspondence between subgroups
of A, called hypermap subgroups in this context, and hypermaps. In particular,
normal subgroups of finite index in A determine hypermaps which automorphism
group acts regularly on the set of flags. Using the representation of hypermaps via
hypermap subgroups it is easy to see that for any two regular hypermaps H, K
there is a least regular common cover H V K, called the join of H and K, satisfying
the following property: if a regular hypermap & covers both H and K then it covers

2000 Mathematics Subject Classification. 05C10; Secondary 05C25.
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H Vv K. Similarly, we define H A K to be the largest regular hypermap covered by
‘H and K, called here the intersection of hypermaps. Although both constructions
are known [18,2,3], no systematic study of their properties (from the point of view
of theory of hypermaps) was done, except the paper of S. Wilson [18] where the
investigation is restricted to joins of maps.

The introduction is followed by a section where we develop some necessary defi-
nitions, notations and mention some basic facts on hypermaps and their represen-
tations. In Section 3 we introduce the join and intersection of two hypermaps and
prove some fundamental results about them. In Section 4 we study the structure of
the monodromy group of the join and intersection of two regular hypermaps, this
is equivalent with the study of the corresponding automorphism groups. In Section
5 we study the orthogonality of two hypermaps, an interesting phenomenon related
with the join and intersection of them. Final Sections are devoted to an investiga-
tion of orientability, reflexibility and self-duality of regular hypermaps in relation to
the join and intersection. Several ideas and results from (3] and [18] are generalised
there.

2. HYPERMAPS AND SUBGROUPS OF A

A topological hypermap H is a cellular embedding of a connected 3-valent graph
X into a closed surface S such that the cells are 3-coloured (say by black, grey and
white colours) with adjacent cells having different colours. Numbering the colours
0, 1 and 2, and labelling the edges of X with the missing adjacent cell number, we
can define 3 fixed points free involutory permutations r;, i = 0, 1, 2, on the set F'
of vertices of X; each r; switches the pairs of vertices connected by i-edges (edges
labelled 7). The elements of F are called flags of H and the group G generated by
ro, 11 and 7 is called the monodromy group Mon (H) of the hypermap H. The cells
of H coloured 0, 1 and 2 are called the hypervertices, hyperedges and hyperfaces,
respectively. Since the graph X is connected, the monodromy group acts transi-
tively on F and the orbits of (rg,71), (ri,r2) or (rg,r2) on F determine hyperfaces,
hypervertices and hyperedges, respectively. Let k = ord(rory), m = ord(rir2) and
n = ord(rary) be the orders of the respective elements in the monodromy group.
The triple (k,m,n) is called the type of the hypermap. Maps are hypermaps satis-
fying condition (rorz)? = 1. In other words, maps are hypermaps of type (p,q,2)
or of type (p,p,1).

It is known that all information on the topological hypermap H is coded in the
three associated fixed points free permutations acting on F (see for instance [4, 6,
11, 12, 14, 15]) . Thus we define a hypermap to be a 4-tuple (F;rg,r1,72), where
ri, i = 0,1,2 are fixed point free involutions acting on F such that the action of
Mon (H) = (rg,71,72) is transitive. Let H = (F;ro,m1,72) and K = (F';tg,t1,t2).
A homomorphism H — K is a mapping 7 : ' — F' such that t;m = 7r;, for
each i = 0,1,2. Due to the transitivity of the action of Mon (K) a hypermap ho-
momorphism is necessarily surjective, thus homomorphisms between hypermaps
are alternatively called coverings. An easy but fundamental observation estab-
lishes that given covering m : H — K there is an induced group epimorphism
7* : Mon (H) — Mon (K) taking r; — t; for i = 0,1, 2. Homomorphisms of hyper-
maps correspond to branched coverings of topological hypermaps mapping i-cells
onto i-cells for i = 0,1,2. A bijective homomorphism H — K is an isomorphism,
we write H 22 K in this case. An autornorphissm H — H is a permutation of flags
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of H commuting with the involutions r;, for each i = 0,1,2. In what follows, we
shall always let the elements of the monodromy group of a hypermap H having left
action on the flags, while the automorphisms of H will act from ‘right’.

It is well-known (and easy to see) that the action of the automorphism group of
a hypermap on its flags is semi-regular (i. e. the stabiliser of a flag is trivial). In the
case the automorphism group Aut () acts regularly on the flag-set of a hypermap
H, the hypermap H is called regular.

Besides the monodromy group G = Mon (H) = (rg,r1,r2) of a hypermap we
consider its even word subgroup generated by Gt = (p,A), where R = r;ry and
L = rory. Obviously, it is a subgroup of index at most two. If [G : G*] = 2 the
hypermap H is orientable. The category of oriented hypermaps is formed by triples
(D; R, L) where R, L are permutations generating a group (the oriented monodromy
group) acting transitively on the set of darts D. The notions of homomorphism, of
isomorphism and of automorphism are defined in the obvious way. An oriented map
is regular if its automorphism group acts regularly on the set of darts.

Let us denote by

A= (PDaPI,pz; T'g :Tf :T% = 1)

the free product of three two-element groups.

The associated (infinite) hypermap U = (4A; po, p1, p2), with p; (i = 0,1,2) act-
ing by left multiplication, will be called the universal hypermap. It follows that
the monodromy group of any hypermap H is an epimorphic image of A and this
epimorphism induces an action of A on flags of H. Hence H can be represented
as a hypermap (A/H;r,r],r5), where H is a stabiliser of a flag in the action of
A, A/H is the set of left cosets of H and the action of r! is defined by the rule
ri(xH) = ryzH for i = 0,1,2. The group H of finite index is called the hyper-
map subgroup of H. The above defined hypermap corresponding to a hypermap
subgroup H will be denoted by U/H and will be called an algebraic hypermap. A
routine calculation shows that two subgroups H; and Hj of A determine isomor-
phic hypermaps if and only if they are conjugate. Hence, the representation of a
hypermap by a hypermap subgroup is not unique, this is because in an irregular
hypermap two flag stabilisers may be different although they are always conjugate.
More generally, H covers K if and only if there exist g € A such that H9 < K. As
concerns properties of algebraic hypermaps the following (well-known) statement is
worth to mention explicitly. Recall that given groups H < G the normaliser Ng(H)
is a subgroup of G consisting of g € G such that H9 = H.

Proposition 2.1. Let H be an algebraic map with a hypermap subgroup H < A.
Then Aut(H) = Na(H)/H.

Proof. Let ¢ be an automorphism of H taking H onto gH. We show that the
assignment A : ¢ +» gH defines the required isomorphism. Since ¢ is an automor-
phism of H, we have hgH = h(Hyp) = (hH)p = ghH = gH for every h € H.
Thus g normalises H. By its definition A is a homomorphism. The semi-regularity
of the action of the automorphism group implies that A is injective. To see that it
is surjective, let us denote by ¢, the mapping zH + zgH. This is a well-defined
automorphism if and only if for every h € H, we have hgH = gH. But the latter
statement means g € Na(H). O
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It follows that a hypermap H is regular if and only if the associated hypermap
subgroup is normal (see also {7,6]). Hence H is uniquely determined in this case. In
what follows we (as a rule) denote by H < A the hypermap subgroup associated .
with a regular hypermap H. To establish a one-to-one correspondence between the
normal subgroups of finite index of A and regular hypermaps we need to extend the
family of all regular hypermaps by considering a trivial hypermap being the one-
flag hypermap with the trivial action of the three defining involutory permutations.
We shall use 1 to denote the trivial hypermap. The hypermap subgroup of the
trivial hypermap is A. Let H and K are regular hypermaps. Then H — K if
and only if K > H. Hence there is an isomorphism between the set of regular
hypermaps partially ordered by the relation "to be a cover”, and the set of normal
(torsion free) subgroups of finite index ordered by the subgroup relation. In what
follows this correspondence will be extensively employed. In fact, the whole paper
is devoted to a detailed investigation of this fundamental correspondence. Let us
remark that coverings between regular hypermaps are necessarily regular (see [13]),
i. e. the group of covering transformations acts regularly on each flag-fiber. If H — X
are regular hypermaps with the hypermap subgroups H < K then the covering
is defined by mapping 7 : «H — zK and the covering transformation group is
isomorphic to the kernel Ker 7 of the above group epimorphism 7 : A/H — A/K.

Similar statements about the correspondence between oriented hypermaps and
conjugacy classes of subgroups of finite index of the free 2-generator group At <A
can be established. In particular, there is one-to-one correspondence between the
isomorphism classes of oriented regular hypermaps and normal subgroups of finite
index in A™.

The reader interested to get more information on maps, hypermaps and related
topics is referred to [4, 5, 6, 9, 10, 11, 15, 16]. As concerns the related parts of
theory of permutation groups an old but popular monograph is [17].

3. JOIN AND INTERSECTION OF TWO HYPERMAPS

Let H = U/H and K = U/K be algebraic hypermaps. Set HV K =U/(H N K)
and H A K = U/(H,K). The hypermaps H V K, H A K will be called join and
intersection of H and KC, respectively.

The following two propositions are direct consequences of definitions.

Proposition 3.1. Let H =U/H and K = U/K be algebraic hypermaps. Then
if both H and K are finite then HV K and H A K are finite,
if both H and K are regular then HV K and H A K are reqular as well,
if H — K is a covering then HVK =H and HAK = K.
if a hypermap X = U/X covers both H and IC then it covers HV K,
if a hypermap X = U/X is covered by both H and K then it is covered by
HV K,

Proposition 3.2. If H and K are reqular hypermaps then HV K and H A K are
well-defined binary operations on isomorphism classes of hypermaps.

Proof. The respective hypermap subgroups are unique. [J

[t follows from the above propositions that for any two regular hypermaps H and
K there is a unique regular hypermap Y = H V K satisfying the following property:
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if ¥ — H and & — K then A covers the join Y. Thus it make sense to speak on the
least common cover of two regular maps H and K. Similarly, any hypermap covered
by two regular hypermaps is covered by H A K and so we can view the intersection
as the largest common quotient of H and K.

An irregular hypermap can be represented by two different hypermap subgroups
H and HY for some g € A. Thus the join and the intersection does not preserve
isomorphism classes of hypermaps. Hence, they are binary operations on algebraic
representations of hypermaps and not on the isomorphism classes. Since the inter-
section of normal subgroups as well as their product HK = (H,K) is a normal
subgroup, we have not such a problem provided we restrict ourselves to the fam-
ily of regular hypermaps, so we can speak on a join and intersection of (abstract)
regular hypermaps. In a general case we shall always assume that with a given
hypermap H a particular representative H < A of the respective conjugacy class
of hypermap subgroups is associated. The latter is equivalent with considering a
rooted hypermap, meaning a hypermap with a specified flag (the root of it). This
approach is taken in [18].

The following lemma lists the properties of the join and intersection which are
trivial consequences of the definitions. In particular, it follows that algebraic hy-
permaps form a lattice isomorphic to the lattice of all subgroups of A and regular
hypermaps form a lattice isomorphic to the lattice of all normal subgroups of A.
The ordering on regular hypermaps is given by hypermap coverings.

Lemma 3.3. Let X', Y and Z be algebraic hypermaps (regular hypermaps). Let U
and 1 be the universal and trivial hypermaps. Then

AVQYVvE)=(XvIVZE,
AvYyYy=Yvd&,
AVU=Uand X V] =X,
XANQPYVE)->(XAY)V(XAZ).

Interchanging joins and intersections in the above statements we get a dual
version of the above lemma. In particular, we have

XVIAZ)—= (XVIIA(XVE)

Let H be a hypermap. Denote by |H| the number of its flags. Of course if H is
a regular hypermap we have [H| = |[Mon (H)| = |A/H|. The following statement
relates the monodromy groups of the join and intersection of hypermaps with the
monodromy groups of the original hypermaps.

Proposition 3.4. Let H and K be regular hypermaps. Then the monodromy group
of HV K is a subgroup of the direct product Mon(H) x Mon (K) and we have

Mon(HAK) = Mon(HVK)/(H/HNK x K/HNK),
where H/HN K x K/H N K is an internal direct product. Moreover,

HV K- [HAK| = [H]|-|K].

Proof. We show that the mapping ¢ : g(H N K) — (gH,gK) is a monomorphism
A/(HNK)— A/H x A/K. Indeed, for any z,y € A

Y((eHNK)(yHNK)) =Y(zyH NK) = (zyH,zyK) =
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(zH,z2K)(yH,yK) = (zH N K)Y(yH N K).

Now let (rH N K) =1 = (H,K) for some z € A. Then (zH,zK) = (H, K),
and consequently z = 1. Hence, ¢ is a monomorphism.
By the third isomorphism theorem

HK/HNK =H/HNK xK/HNK=HK/K x HK/H.
Using this we get

[HVK|HAK|=|A/HNK||A/HK|=|A/HK||HK/K x HK/H||A/HK| =
|A/HK||HK/K||A/HK||HK/H| = |A/K||A/H| = |K||H].
By the second isomorphism theorem we obtain
Mon(HAK)=A/HK =2 (A/HNK)/(HK/HNK) =
Mon (HVK)/(H/HNK x K/HNK).
O

The equality |HVK|-|[HAK| = |H|-|K|, combined with the well-known statement
in elementary number theory establishing

M| - IK| = ged([H], |K]) - lem(H], |K]),
may suggest that |[H Vv K| = lemm(|H|, |K]|), or equivalently

|H A K| = ged(|H|,|K|). However, this is not true in general. In general, we can

only claim that lem(|H|, |K]|) divides |H Vv K|, and |H A K| divides ged(|H|, |K]). The
above two equalities imply

[HVK]  ged(|H],|K])
lem(|H|,|K])  |HAK]

This observation led us to a new concept allowing us to relate two hypermaps.
Given two regular hypermaps H and K the integer

(HV Kl ged([H], [K])
lem(|H|,|K])  |[HAK|
will be called the shared cover indez of H and K. Clearly, if one of H, K covers the
other then s(H,K) = 1. Generally, it can be equal to any divisor of ged(|H], |K|).

Replacing hypermaps by oriented hypermaps one can see that the concept of the
shared cover index applies in the category of oriented regular maps as well. Here it
can be viewed as a generalisation of the chirality index studied in [3]. Recall that
by the mirror image of an oriented hypermap H = (R, L) we mean the hypermap
H" = (R™',L™'). The integer x(H) = H/(H N H") is called the chirality index of
H, see [3].
Proposition 3.5. Let H be an oriented reqular hypermaps and H” is the mirror
image of it. Then s(H,H") = k(H), where x(H) is the chirality indez of H.
Proof.

s(H,K) =

HVH'|  [HVH'|  |A/HNH|
lem([H], [H|) IH| |A/H|

s(H, M) = — |H/HNH"| = 5(H).

O
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4. MONODROMY GROUPS OF THE JOIN AND INTERSECTION OF TWO HYPERMAPS

Throughout this section all the considered hypermaps will be regular. In the
above section we have derived some information on the structure of the monodromy
groups of H vV K and 'H A K. In what follows we shall consider the problem how to
calculate the above monodromy groups by using the action of monodromy groups
of H and K. Let A = (rp,...,rx) and B = (sy,...,sx) be two k-generated groups.
Let us define their monodromy product A x,, B to be the subgroup of the direct
product generated by (r;,s;), where ¢ = 0,1, ..., k. Note that S. Wilson calls it the
parallel product in [18]. Further, denote by m; : A x;,, B - A, 1y : Ax,, B — B
the natural projections erasing the second and first coordinate, respectively.

Theorem 4.1. Let H = (A;ro,71,7m2) and K = (B; so, 81, 82) be reqular hypermaps.
Then Mon(H VvV K) = Mon(H) xm Mon(K) and Mon(H A K) = Mon(H) %,
Mon (K)/Ker noKer m.
Proof. Let A = (Rg, Ry, Ry; R} = R? = R3 = 1). Recall that the hypermap sub-
group of H can be reconstructed as a stabiliser H = STABA(zg) of a flag zq and
similarly for K, K = STABAa(yo). Denote by ¥, : H — (A/H; RyH, Ry H, Ry H)
the isomorphism of hypermaps and by ¥} : MonH — A/H the induced group
epimorphism sending r; — R;H, for i = 0,1, 2. Similarly, denote by 5 the isomor-
phism X — (A/K; RyK, R1 K, R2 K') of hypermaps and by 3 the respective group
epimorphism taking s; — R; K. Then we have an isomorphism ¥ : A/H x,, A/K —
Mon (H) x nMon (K) taking (R.H, RiK) — (1)~ (RiH), (13) " (RiK)) = (rs, ).

In the proof of Proposition 3.4 we have already verified that the mapping & :
A/HNK — A/H %, A/K, taking g(H N K) onto (¢H,gK), is an isomorphism
of groups. Now the composition ¥® establishes an isomorphism Mon (H Vv K) —
Mon (H) %,, Mon (K).

Regarding the intersection of H and K, by Proposition 3.4 we have

Mon(HAK) =Mon(HVK)/(H/HNK x K/HNK).

In view of what we have proved it is enough to see that ¥® sends K/H N K onto
Ker mp, and H/H N K onto Ker ;. Indeed,

VO(K/HNK) =V({(gH,K)|lg € K}) =

{(w,1)[{(w,1) € Mon (H) X, Mon (K)} = Ker 5.
Similar calculation verifies the statement V®(H/H N K) = Kern;. O

We say that a covering H — K of regular hypermaps is smooth if both hypermaps
are of the same type. Smooth covers of hypermaps correspond to unbranched covers
of their topological equivalents.

Proposition 4.2. Let H and K be regular hypermaps. Then

(a) the hypermap H V K smoothly covers both H, K if and only if the types of H
and K are equal.

(b) if both H and K smoothly cover the intersection H A K then they have the
same type.

We shall see later that the above implication (b) cannot be reversed.
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5. ORTHOGONAL HYPERMAPS

Two regular hypermaps H, K will be called orthogonal if HK = A. We shall use
H LK to denote the orthogonality of H and K. Let G, H be two groups. A common
epimorphic image of G and H is a group (Q such that there are epimorphisms G — @
and H — Q. Let H = (rg,r1,72), K = (s0,$1,82) and Q = (tg, 11, t2) be groups.
We say that @ is a monodromic common epimorphic image of H and K if both
the assignments r; — ¢; and s; — t; (for ¢ = 0,1, 2) extend to group epimorphisms
H—-Qand K — Q.

The following theorem gives several characterisations of the orthogonality.

Theorem 5.1. Let H and K be regular hypermaps. Then the following conditions
are equivalent:
(i) HLK,
(i1) H A K 1s a trivial hypermap,
(iii) H and K have no nontrivial common quotients,
(iv) the monodromy groups Mon (H) and Mon (K) have no cornmon monodromic
epimmorphic images,

(v) Mon(HVK)= Mon(H) x Mon(K).

Proof. (1) < (i1) Since the flags of the intersection are the elements of A/HK, the
intersection is a trivial hypermap if and only if HK = A.

(7t) < (4i4). If H A K is nontrivial then it forms a non-trivial common quotient.

Vice-versa if there is a non-trivial common (possibly irregular) quotient Q then
there are g,h € A such that A > @9 > K and A > Q" > H. By normality
of both H and K we get A > Q* > K, A > Q* > H for any z € A. Hence
Qa =U/ N ea @ — Q is a non-trivial regular common quotient. However, since
Qx is covered by H A K, thus the intersection is a non-trivial hypermap.

(1) < (v). By Proposition 3.4 Mon (H V K) < Mon (H) x Mon (X). The second
part of Proposition 3.4 implies that the equality holds if and only if H LK.

(#4i) « (dv) If there is a common quotient @ for H and K then the coverings
H — Q and K — Q induce, respectively, monodromy epimorphisms Mon (H) —
Mon (Q) and Mon(K) — Mon (Q). Vice-versa, if () is a monodromic common
epimorphic image, then representing the hypermaps via hypermap subgroups we
get that the assignments gH +— gQ, gK +— ¢Q, where g ranges in A extend to group
epimorphisms. However, the same mappings establish coverings U/H — U /() and
U/K — U/Q. The statement follows. [J

Denote by @ the two-flag hypermap with ro = r; = rp being equal to the non-
trivial involution interchanging the two flags. It is easy to see that the hypermap
subgroup of O is A™T.

Proposition 5.2. Let H and K be (regular) hypermaps. If H and K are orthogonal
then at least one of the hypermaps H and K is nonorientable.

Proof. Assume both H and K are orientable. The orientability implies that both
H < A*, K < A™" are subgroups of the even-word subgroup A% of A. Then
O = U/AT is a common non-trivial quotient, a contradiction. O

In general, it can be difficult to see the orthogonality of hypermaps. In what
follows we give some sufficient conditions implying the orthogonality of hypermaps.
The following proposition is a straightforward consequence of Theorem 5.1.
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Proposition 5.3. Let H and K be regular hypermaps. If the monodremy groups
of H and K have no nontrivial common epimorphic images then the hypermaps H
and K are orthogonal.

Thus a regular hypermap with a non-abelian simple monodromy group is or-
thogonal to any other hypermap.

Numerical conditions implying the orthogonality may be useful in constructions.
We shall present a sample of them.

Proposition 5.4. Let H and K be regular hypermaps of types (mg, mq, ms) and
(ng,n1,n2). Let one of them, say H, be non-orientable.

If for any two i,j € {0,1,2} the integers m;, n; and m;, n; are respectively
coprimes then the hypermaps H and K are orthogonal.

Proof. Let the monodromy groups be generated by the triples of involutions
Mon(H) = (ro,71,72) and Mon (K) = (so,s1,s2). Denote by R; = r;riy, and
Si = 8i8i+1, 1 = 0,1,2. By the assumption, two of ged(R;, S;i), i = 0,1,2 are equal
to 1. Without loss of generality we assume gcd(Rg, Sp) = 1 and ged(Rg, S2) = 1.
Then the following equality for the even word subgroup of the monodromy product
holds true:

(Mon (H) Xm Mon (K))* = (Rg, Ry) % (So, S2) = Mon T (H) x,,, Mon *(K).

To prove the orthogonality of H and K we show that the projections of the lat-
ter group into the coordinate factors contain isomorphic copies of the even-word
subgroups of the original hypermaps. Since the orders of Ry and Sy are coprime,
(Ro,1) and (1, Sp) are elements of the cyclic group {(Ry,Sp)). For the same rea-
son we see that (Rg, 1) and (1,S2) belong to ((Rz, S2)). Now observe Mon *(H) =
((Rp, 1), (Rz2,1)), and similarly we get Mon *(K) = ((1, Sp), (1, S2)). Hence we have
that Mon (H V K) contains a subgroup G = Mon *(H) x Mon *(K). Since H is
non-orientable, Mon *(H) = Mon (H). By Theorem 4.1 the monodromy group of
the intersection

Mon (H A K) = Mon (H) x,, Mon (K)/Ker maKer .

Since Mon (H) x Mon *(K) < KermKerm the intersection is either trivial or
a 2-flag hypermap. However, the only (regular) 2-flag hypermap is @ which is
obviously not covered by H. Hence, the intersection is the trivial hypermap and we
are done. [

A cellular embedding of a graph into a surface is called a regular embedding if
the corresponding map is regular.

Proposition 5.5. Let H and K be regular maps determined by regular embeddings
of two non-bipartite graphs with coprime valency. Then H L K if and only if at
least one of M, K s non-orientable.

Proof. If both embeddings define orientable maps then they both cover @, and
consequently, they are not orthogonal.

Let one of the maps associated with the embeddings of graphs is non-orientable.
With the same notation as above we have R} = 1 = S2, because the hypermaps
are maps now. Since the valences of the maps are coprime we have that (R, 1)
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and (1, S1) belong to the monodromy product of the even word subgroups. Since
the graphs are non-bipartite there are identities of the form H:__l R“Ry = 1,
[T, S7*S2 = 1, where k and n are some odd integers. Replacing above R; by
(R1,1), Rz by (Ry, S2), S1 by (1,57) and Ss by (f2,.92) we get that the involutions
(R2,1) and (1, S2) are elements of the monodromy product. Hence the even-word
subgroup of the monodromy product is the direct product of the even-word sub-
groups of the original maps. Now we can complete the proof as above. [

There are oriented versions of the above propositions. We shall state them with-
out proofs

Proposition 5.6. Let H and K be oriented regular hypermaps of types
(mg,my, m2) and (ng,n1,n2).

If for any two i,j € {0,1,2} the integers m;, n; and m;, n; are respectively
coprimes then the hypermaps H and K are orthogonal.

A cellular embedding of a graph into an orientable surface is called orientably
reqular if the corresponding oriented map is regular.

Proposition 5.7. Orientably regular embeddings of non-bipartite graphs with co-
prime valency determine a couple of orthogonal oriented maps.

6. ORIENTABILITY, REFLEXIBILITY AND SELF-DUALITY

Topological and algebraic properties of maps, as for instance, the orientability,
the reflexibility and the self-duality have their counterparts in the associated alge-
braic representations. The aim of this section is to discuss the above properties and
concepts in a relation with the join and with the intersection of two hypermaps.

6.1 Orientability.
An algebraic hypermap H = U/H is orientable if H < AT, where AT =
(ryr2,ra10) is the even word subgroup of A (which is an index two subgroup).
The following statements are direct consequences of the definitions so we shall
omit the proofs of them.

Proposition 6.1. Let H and K be regular hypermaps with the respective hypermap
subgroups H and K. Then
of both H and K are orientable then both H vV K and H A K are orientable
as well,
if one of H, K is orientable and the other not then HV K is orientable while
H A K is nonorientable,
if both H and K are nonorientable then H A K is nonorientable as well.

Proposition 6.2. Let H be a regular hypermap. The following statements are
equivalent:

H is orientable,

H covers O,
H=HVO,
O=HAO.

It follows that H is nonorientable if and only if H L O and the algebraic coun-
terpart to the well-known construction of the antipodal double cover over a nonori-
entable hypermap H is the construction of the join H Vv O (cf. [18]). Let us remark
that in the case of maps the first three items of Proposition 6.2 are covered by [18].
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6.2 Reflexibility.

A regular oriented hypermap K = UT/K is reflezible if K™ = K. Note that
since K is a normal subgroup of A", we have K™ = K" = K". The hypermap
K" = U* /K™ will be called the mirror image of K. Clearly, the join X v K" and
the intersection K A K™ are reflexible hypermaps. In general, we have the following

Proposition 6.3. Let K be an oriented regular hypermap. Then

the join KV K" is the least reflexible reqular oriented hypermap covering K,
the intersection K A K7 is the largest reflexible regular oriented hypermap
covered by K.

As it was already noted, see Proposition 3.5, the integer x(K) = s(K,K") =
m]%%;[, called the chirality index in (3], can be used to measure of how much a
given hypermap is far from being mirror symmetric. Moreover, the way how two
hypermaps with the same chirality index are chiral can be of different quality. More
precisely, for any oriented regular hypermap we have coverings HVH"™ — H —
HAHT. It is proved in [3] that the two associated groups of covering transformations
are isomorphic and their size is equal to the about mentioned chirality index which
coincides with the shared cover index s(H,H"). The associated group is called
the chirality group of H. It is proved in [3] that any finite abelian group can be
isomorphic to the chirality group of a regular hypermap. Members of several infinite
families of non-abelian groups are proved to appear as chirality groups as well (see
(3]).

6.3 Self-duality.

Let o be a permutation of {0,1,2}. Clearly, o induces an outer automorphism &
of A mapping r; — 7is. A o-dual of H is the hypermap U /5 (H) with the hypermap
subgroup &(H). It may happen that H = ¢(H), in this case H is called o-selfdual.
If H is o-self-dual for all 6 possible permutations & of the index-set we shall say

that H is totally selfdual. Similarly as for the reflexibility we have the following
statement.

Proposition 6.4. Let K be a regular hypermap and let ¢ is a permutation of
{0,1,2}. Then
(1) the join KKV K7 is the least a-selfdual reqular hypermap covering K,

(2) the intersection K A K% is the largest o-selfdual reqular hypermap covered
by K.

In particular, if S3 denotes the group of all permutations of {0,1,2} then
U/Nyes, K7 is the least totally selfdual hypermap covering K. Similarly,
Ul [lpes, K 7 is the largest totally selfdual hypermap covered by K.

7 G-SYMMETRIC MAPS AND HYPERMAPS

The results of the previous section are just particular instances of a more gen-
eral approach. Let Out (A) be the outer automorphism group of A. Recall that
Out (A) = Aut (A)/Inn (A), where Inn (A) denotes the group of inner automor-
phisms of A acting by conjugation on A. The outer automorphism group Out (A)
was described by L. James in [8]. It follows that Out (A) = PSL(2,Z) and it is
generated by the 6 permutations permuting the three generators rg, 7, and ro and
one twisting automorphism taking ro + rergre, r1 — 71, ro +— ro. The orbit of
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the action of Out (A) on a hypermap H is finite and can be constructed by making
o-duals and applying the twisting operator repeatedly.

Let G < Out (A) be a subgroup. If H is a regular hypermap then for each ¢ € G
the hypermap H® = U/H? is also regular. We say that # is G-symmetric if it
is invariant with respect to G, i. e. H = H? for every ¢ € G, or equivalently,
H = H? for every ¢ € G. The join VgeqH? and the intersection Ngeg H? are
clearly G-symmetric hypermaps for any regular hypermap M. By the definition H
is G-symmetric if and only if H = V¢EG H? or equivalently, H = /\¢€G H?. We
have the following statement.

Proposition 7.1. Let H be a regular hypermap and G < Out(A). Then
the join V¢EG H? is the least G-symmetric reqular hypermap covering H,

the intersection A\, H? is the largest G-symmetric reqular hypermap cov-
ered by H.

We can use the covering transformation groups of the coverings
Vq&eG H?® - H and H — /\¢€G H?® to measure of how much a given regular hyper-
map is far from being G-symmetric. Clearly, 7 is G-symmetric if and only if these
coverings are trivial. In the case |G| = 2 we can say something more.

Proposition 7.2. Let ¢ € Out(A) (¢ € Out(A*)). Let H be a regular hypermap
(an oriented regular hypermap). Then the groups of covering transformations of
coverings HV H® — H and H — H A H® are isomorphic. Let this common group
be denoted by C(H, H®). The order of C(H, H?) is the shared cover index s(H, H?).

Proof. The first covering is defined by the epimorphism 7 : A/JH N H® — A/H
taking z(H N H?) — zH for any z € A. Clearly, the kernel Kerw = H/H N H®.
The second covering is defined by the epimorphism o : A/H — A/HH? taking
xH — zHH®. Now the kernel is Kero = HH®/H.
By the third isomorphism theorem we have

Kero = HH®/H = H/H N H? = Ker.

To complete the proof of the statement we proceed similarly as in the proof of
Proposition 3.5

_ged(ML, M) _ M| |A/H

b =
L) = 0 A ] T HAM? ~ [AJHH?|

= |HH?/H| = [Kero]|.

a

It follows that if G < Out (A) is of order two, the two covering transformation
groups of the covering H vV H? — H — H A'H? are isomorphic. In the special case,
when G < Out (A™) is the group acting on an oriented map H by taking its mirror
image H" we get, as a corollary, Theorem 3 of [3]. In this case the chirality group
mentioned in the previous section coincide with the group C(H, H?).

If a regular hypermap M is G-symmetric for G = Out(A) we say that H is char-
acteristic. In this case any automorphism of A leaves the hypermap subgroup H
invariant. Hence H is a characteristic subgroup of A. Vice-versa, a characteristic
subgroup H < A of finite index determines an Out (A)-symmetric regular hyper-
map. Consequently, drawings of hypermaps sharing this property can be viewed as
pictures of the characteristic subgroups of finite index of A. Since the structure of
Out (A) was described by L. James in [8] we have the following:
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Theorem 7.3. Let H = (F;rg,r1,72) be a hypermap. The following statements
are equivalent:

H is reqular and OQut(A)-symmetric (that is, H 1s characteristic),
H=U/K, where K is a characteristic subgroup of finite indez,

H s regular and isomorphic to each of the following three hypermaps
(Firg,m1,70), (Fi70,72,71) and (Fyrargre,m1,72).

A similar statement can be formulated in the case of oriented hypermaps by
using the fact Out (A*) = (Out (A), p) where p is the automorphism mapping an
oriented hypermap onto its mirror image p: (D; R, L) — (D; R™,L™1), see [8].

Finally we stretch that if H; and Hs are two G-symmetric hypermaps for some
G < Out(A) then the join H; V Hz and the intersection H; A Ha are also G-
syminetric hypermaps.

Example. Let us examine characteristic subgroups H of A of small index via
the corresponding A-symmetric regular hypermaps H. Since H is totally selfdual
such a hypermap is of type (n,n,n) for some integer n > 1. There is just one
non-trivial regular hypermap of type (1,1,1) and it is @ = A/A*. Obviously A™
is characteristic. Also it is easy to see that we have only one A-symmetric regular
hypermap H of type (2,2,2) - this is actually the only characteristic map. Its
topological hypermap arises by colouring the opposite faces of the cube by the same
colour (see Fig. 1). Consequently, A/H = C3 is elementary abelian and H = D [2].

FIGURE 1

As concerns type (3,3,3) we shall argue as follows. Clearly, H is one of the
toroidal hypermaps classified by Corn and Singerman in [6]. The smallest represen-
tative of the family is the hypermap Hy drawn on Fig. 2.
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FIGURE 2

It has 6 flags and one hypervertex, hyperedge and hyperface, respectively. As all
the regular toroidal hypermaps of type (3,3,3) it is totally selfdual. However, it is
easy to see that the three involutory generators satisfy the relation rorgro = ry.
Hence, the twisting operator takes H, = (F;rg,r1,72) onto (F;ry,r1,73). The
latter hypermap is clearly not isomorphic to H; since it has type (1,3,3). Take
two hypermaps A and B from the orbit of A with the respective types (1,3, 3) and
(3,1,3). By Proposition 5.6 the corresponding oriented hypermaps are orthogonal
and so AAB = O. Hence O is the largest A-symmetric hypermap covered by both
A and B, and consequently, by H> as well. The covering Ha — O = Ha A A is a
3-fold covering. Hence, H2 V A = K is a A-symmetric regular hypermap of type
(3,3,3), and the covering K — H is a 3-fold covering. Consequently, K has 18 flags.
By [6] there is precisely one such hypermap H3 of type (3,3,3) depicted on Fig.3.
Since the oriented hypermaps A and B are orthogonal, the even word subgroup is
isomorphic to the direct product C3 x C3. The monodromy group of Hj is then a
semidirect product of (C3 x C3) by Cs.

We can prove that this is a unique A-symmetric regular hypermap of type
(3,3,3). As a curiosity let us mention that the underlying 3-valent graph is known
as the Pappus graph, which is related to the well-known Pappus configuration, a
popular example of a finite geometry.

F1GURrE 3

Since the join of two characteristic hypermaps is again characteristic the hyper-
map Hy = DV Hg of type (6,6,6) is also a characteristic hypermap. By Proposi-
tion 5.6 the oriended hypermaps corresponding to D and H3 are orthogonal. Hence
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the even word subgroup of the monodromy group of Hy is the direct product C3 x C?
and it is of size 36. Consequently, H4 is a characteristic hypermap of genus 10.

To find a A-symmetric regular hypermap of type (4,4,4) we checked the list
of regular hypermaps of genus 2 in [1]. There is precisely one regular hypermap
Hs of type (4,4,4) and genus 2. The hypermap is totally selfdual (see Fig. 4). A
direct computation verifies the relation (rororor;)* = 1, hence the twisting operator
applied on Hj gives a regular hypermap of type (4,4,4) with the same number of
flags. Since the orientability is preserved, it is a hypermap on an orientable surface
of genus 2. Since there is just one regular hypermap of type (4,4, 4) on the surface
of genus 2, it must be H;. Consequently, Hs is A-symmetric.

FIGURE 4

The join Hg = Hz V Hy is a characteristic hypermap of type (12,12,12). By
Proposition 5.6 the corresponding oriented hypermaps are orthogonal, hence the
even word subgroup is the direct product of the even word subgroups of factors.
Consequently, the size of the (full) monodromy group |Mon (Hg)| = 144 and the
genus is 28.

If we restrict ourselves to maps then the characterisation of the outer automor-
phism group Out (A(co,00,2)) done by Jones and Thornton [12] can be useful.
Recall that A(0o,00,2) = (rg,r1,72;78 = 1% = 13 = (ror2)? = 1) is & monodromy
group of the universal map covering any map. The outer automorphism group
is isomorphic to S3 and is generated by two operations (see [12]), first one de-
fined by (F;rg,r1,72) — (F;72,71,70) and second one defined by (F;rg,r1,72) —
(F;rora,m1,72). First one is known as the duality operation while the second one co-
incide with the Petrie operation. A more detailed discussion on Out (A(co, 00, 2))-
symuetric regular maps can be found in Section 5 of [12]. Theorem 3 in [12] is
similar to our Theorem 7.3.
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APPLICATIONS OF LINE OBJECTS IN ROBOTICS

ANTON DEKRET AND JAN BAKSA

ABSTRACT. In this paper the Lie algebra of the Lie group of Euclidean motions in
E3 is explained as the vector space Ag of couples of vectors in F3. All subalgebras
and all 3-dimensional subspaces of Ag which are orthogonal to themselves according
to the Klein form and their kinematic interpretations are described. Vector fields in
E3 determined by elements of Ag and their kinematic and dynamic interpretations
are investigated

1 INTRODUCTION

Line Pliicker‘s coordinates inspire applications of couples of vectors in robotics.
First of all in this paper the Pliickers coordinates, basic structure properties such
as the Klein and Killing forms, the Lie bracket in the algebra Ag of all couples
of vectors in Euclidean space Ej are recalled. The algebra Ag is isomorphic with
the Lie algebra of the Lie group of all isometries preserving orientation in FEj.
All subalgebras of Ag and all 3-dimensional subspaces which are orthogonal to
themselves according to the Klein form are described. Mechanical engineers use the
notion of screws as a useful tool for solving of robotic problems. The roots of this
notion are in 194 century, Ball [1]. We describe the set of screws as a projective
5-dimensional space P¢ of all 1-dimensional subspaces in Ag, so the sum of two
screws has not sense. We show that the Lie bracket in Ag induces both a map
P? x PY — PZ and a map 3 x 8 — [3 defined on couples of nonparallel lines
in E3, where 3 is the manifold of proper lines in Ej. Inspired by [2] and [4] we
introduced vector fields in F3 induced by elements of Ag and give their kinematic
and dynamic interpretations. This work does not give quite new original results
except the description of subalgebras of Ag and of their kinematic interpretations.
Perhaps it will be useful from the point of view of explanation which is close to
the papers [5] and [3]. We prefer the algebra of vector couples to the dual number
and dual quaternion technique because of the cleaner geometrical and mechanical
interpretation.

2 PLUCKER LINE COORDINATES, VECTOR COUPLES, SCREWS

Let V3 be the vector space associated to the Euclidean space E5. The scalar
or vector or mixed product of vectors in V3 will be denoted by a.b or @ x b or

2000 Mathematics Subject Classification. 3A17, 22E70, 22E60.

Key words and phrases. Line Pliicker‘s coordinates, Lie algebra of vector couples, vector field,
screw motion, moment of force and of couple of forces
Supported by the VEGA SR, 1/7489/20.
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(@ x b). respectively. Let (0,81,€2,%3) be a Cartesian coordinate system in FEj.
Let p = ADB be a line determined by its two different points A, B. The couple of
vectors 3 = AB,m = OA x 5§ = OA x OB is called Pliicker line coordinates. In
cartesian coordinates, 5§ = (81 = by —a1,s2 = by — ag,s3 = b3 — a3), M = (m; =
agby — byag, my = azb; — a1bz, m3 = a1b2 — byay). Pliicker line coordinates will be
called canonical if |3 = /53 = 1. Let us note that Pliicker coordinates (3,7m)
satisfy the equality 5.m = 0.

Remark 1. Let (xg, 1,22, 23) be homogeneous coordinates in E3, where the equal-
ity 2o = 0 means improper points (points in infinity). Let [4, B]T denote the matrix
ap a1 az az
bo b1 by by
Pliicker coordinates of a line p = AB. They satisfy the equality det[A, B; A, B]T =
Po1P23 + Po2par + Pospiz = 0 which corresponds with the condition 3.m = 0 in
Pliicker coordinates (3, 77).

]. Then pix = a;by — arb; i,k = 0,1,2,3 are the homogeneous

Pliicker coordinates of a line p is a couple of two vectors (3,77), 5 # 0, 5.m = 0. It
is easy to see that the point C,0C = (3 x7)/5?, is the orthogonal projection of the
coordinate origin 0 into p. If we change determining points of a line p then we get
a couple (k3,km). Changing the origin 0 we obtain a couple (3,/m' = 7 + 0'0 x 5).
It means that the vector 7 of the Pliicker coordinates (3,7) depends on the origin
0 but the scalar product 5.7% does not depend on 0.

Vice versa, an ordered couple of vectors (5,m), 0 # 5, T € Vi, determines the
line p in the direction 5 and passing through the point C,0C = 3 x m/5%. This
line will be called the line of the couple (3,7). The line of a couple (0,71) is the
unproper line p of all parallel plains the normal vector of which is 7z. There is not
any line of the couple (0,0). We use p = #((5,m)) for (3,7) # (0,0).

Let us remind that the set of all ordered couples (3,7m) € V3 x V3 has a real
vector space structure where

k1(51, 1) + ka2(32,M2) = (k131 + kaS2, k171 + koThia)

Lema 1. Let p be the line of couple (5,7), s # 0. Then every couple (5',7') with
the line p is of the form 3 = k3, Mm' = km + us, 0 # k, u € R.
') if and only if 3 = k3 and OC' = OC.

k]
Comparing OC' = gﬁ";’? = X - B with OC = X we get ' = km +
us. O

Proof. The line p is the line of a couple (3'

The set 3, of all couples (3,7), 3 # 0 with the same proper line p is two-
parametric. If X; = (5;,m;) = (k;3, ki + u;5) € B,, i = 1,2, then for k # 0 also
kX, € B, and for ky + ky # 0 also X; + X, € f3,. Denote R(V3 x V3) := {(5,7m) €
Vi x V3;52 # 0}. We say that X, = (3;,m;) € R(V3 x V3), i = 1,2, are L-equivalent
iff there are 0 # k, u € R such that 5, = k3, iy = ki, + u3;,i.e. iff there is a line
p, that X;, Xy € . Denote 3 the space of all L-equivalence classes in R(V3 x Vj).
There is a one-to-one correspondence between the set of all proper lines in E5 and
the set 3. Then 3 is a 4-dimensional manifold. Let m; : R(V3 x V3) — 3 be the map
where m (5,7) is the class of L-equivalent elements determined by (3, 7i7). Certainly
T R(V3 x V3) — fis a fibre manifold, fibre 7' (p) = 3, of which have an almost
vector space structure, i. e. under the conditions introduced above kX, and X; + X,
belong to the same fibre as X; and X,.
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An ordered couple (3,7), § # 0 is called the Pliicker's couple if 5.7 = 0. It is
said to be canonical if also 52 = 1.

Lema 2. Let (5,/m), 5 # 0 be a Pliicker‘s couple. Let p be the line of (5,7). Then
(3,™Mm) 1s the Plicker‘s coordinate of p.

Proof. Let us remind two well known equalities

(1) ax(B o= ( )"6
@) (@xB).

- _  8§xXm _ §m- _
OCxs=—5—X35= =Tn.
s

O

Definition 1. FEvery I-dimenstonal subspace in V3 x V3 will be called a screw. Every
couple X = (3,7m) # (0,0) determines the screw {X) where (M) denotes the vector
space spanned on a set M C V3 x V3. The couple X is called a representative of the
screw (X). A screw (X) is called proper or improper if 3 # 0 or 3 = 0 respectively.

It is clear that if X is a representative of (X) then every representative of (X)
is of the form kX, k # 0, and then all representatives have the same line of couple
which will be called the line of (X).

It immediately follows from the definition of screws that the set P¢ of all screws
is a projective 5-dimensional space. Let 73 : V3 x V3 — PZ be a such map that
ma(X) = (X). It means that 73 is a 1-dimensional vector fibration.

Let X = (35,7), 3 # 0, be a couple of vectors. Denote h := (3.7)/3%. It is easy
to prove the following property.

Lemma 3. The number h does not depend on a chotce of a representative of the
serew (X).

Definition 2. The number h = (5.7) /5% will be called pitch of the screw (X), X =
(3,m),5#0. If =0 we put h = co.

Let us recall that hs is the orthogonal projection of m into 3.

Corollary of Lemma 2. Two proper screws which have the same screw line are
both of the form ((3,M)) and ((3,m + u3)), 5 # 0, u # 0. It means that the set of
all screws with the same screw line form one-parametric family. If h is the pitch of
the first screw then the pitch of the second one is h + u.

Remark 2. It is conspicuous that a proper screw is determined by its line and by
its pitch h. This property is often taken as the definition of screws, see for example

4], [5]-

Remark 3. Let us emphasize that the sum of two screws has not any sense because
sums of different representatives have not to belong to the same screw.
A proper screw {(5,72)), § # 0, is called the Pliicker's screw if h = 5.m = 0.
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Lemma 4. There is a unique Plicker‘s screw in the set of all proper screws with
the same screw line.

Proof. Let ((3,7)), 5 # 0 be a screw with the screw line p. Then every screw with
the screw line p is of the form ((3,7 + u3)). But this screw is the Pliicker‘s one iff
5.(m+us) =0,1. e iff u= —(37m)/s? = —h. It completes our proof.

It is clear that there is a one-to-one correspondence between the set P? of
Pliicker's screws and the space of all lines in Ej, i. e. between the spaces P? and /3.

Remark 4. It is clear that the line p of a couple (3,7m), 5 # 0 depends on the choice
of origin O. If O' is another origin then the line p' of the couple (5, 7%) is the image
of p in the translation determined by the vector 00'.

3. LIE ALGEBRA OF VECTOR COUPLES

Vector space V3 x V3 of all couples (3,71) is closely connected with geometry of
lines in £3. Remind that 5 € V3 is the direction of the line p of a couple (5,77) and
does not depend on coordinate systems. In contrary b depends on the choice of the
origin 0, but 3.7 is independent on 0.

So in the space V3 x V3 there are natural scalar and vector bilinear forms which
gives useful information about geometrical and physical objects connected with
lines in F5. Remind them.

a)Klein scalar bilinear form KL:

Let X; = (5;,7;) € V3 x V3,i=1,2. Then

KL(X;, X3) =31.7 + 3971

It is a symmetric regular bilinear scalar form on V3 x V3 of the signature
(+,+,+,—,—,—). Its quadratic form will be written in the form
KL(X) = JKL(X,X) = 5. Vectors X;,Xy € Vi x V3 will be called KL-
orthogonal if K L(X,, X;) =0.

A subspace B C V3 x Vj is called KL-orthogonal to a subspace A C V3 x V3
if KL(X,Y) = 0 for every X € A and every Y € B. There is a unique subspace
AK which is totally KL-orthogonal to a subspace A C V3 x V3, i. e. if any vector
subspace B is KL-orthogonal to A then B ¢ Ak,

From the definition of KL-orthogonality it follows

1) A couple X = (5,7), 5 # 0 is KL-orthogonal to itself if and only if is a
Pliicker‘s couple.

2) If couples X, Y are KL-orthogonal then kX, uY are also KL-orthogonal.

So we can introduce KL-orthogonality in the case of screws. We say that two
screws (X), (Y) are KL-orthogonal if X, ¥ are KL-orthogonal. Then (X) is KL-
orthogonal to itself iff is a Pliicker‘s screw.

Lemma 5. Let py, ps be two non-parallel lines in E3. Then p, and py are crossing
if and only if their Pliccker‘s screws are KL-orthogonal.

Proof. Let X; = (3;,7;), 3;" =1, 5;.m; =0, 52 # k31, 1 = 1,2, be a representative
of the Pliicker’s screw the line of which is p;. The line p; is passing cross the point
C;,0C; = 5; x m;. Then the lines p;, p; are crossing if and only if 0 = C;C5.(5; %
82) = (52 X Mg — 51 x My1).(8) X 52) = (use the equality (2)) = (55.5,)(M2.52) —
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(mgﬁl)ﬁg - Ef(ﬁl.‘ég) + (M1.51)(51.52) = —(51.m2 + So.0m1) = ~KL(X;,Xo). It
completes our proof.

b) Killing scalar bilinear form K:
Let X; = (5;,7;) € Va3 x V3. Put

K{Xl,Xz) = §1.89

It means that K is a symmetric singular bilinear form on V3 x V3. Its corresponding
quadratic form will be written in the form K(X) := K (X, X) = 5°. Then the line
of X is improper iff K(X) = 0.

c) Lie bracket - vector bilinear form on V3 x Vj3:
The vector product @ x b of @, b € V3 is an example of the Lie bracket of two vectors.
It is a skew-symmetric vector bilinear form on V3. The well known and useful Lie
bracket in V3 x V3 is defined as follows.

If X; = (5;,/M;) € Va x V3, i=1,2, then we put

[X]_,XQ} = (8] % 39,8 X Tg — 5 X 7My)
It is easy to show that the Jacobian identity
{Xll [X21X3” + [X3) [X17X2}] + [-Xz) [X.?'!Xl]] - U

is satisfied. Thus the vector space V3 x V3 becomes a Lie algebra.

The vector space V3 x V3 endowed with the Klein form KL, Killing form K and
by the Lie bracket will be rewritten by Ag instead V3 x V5. It is well known that this
Lie algebra Ag is isomorphic with the Lie algebra of the Lie group of all orientation
preserving isometries in Es3.

The following properties immediately follow from the definition of Lie bracket.

(1) If the line py of X9 = (Sg,72), 52 # 0, is parallel with the line p; of X; =
(%,,71), 51 # 0, i. e. if 33 = kSy, k # 0, then [X;, X3] = (0,5 x (kg —7y)
and thus the line of [X, X5] is improper.

(2) If X3 € (X1),1.e. X3 =kX; and X4 € (Xg), X4 = uXa, then [Xg,X4] =
ku[X,, X3]. It means that [X3, X4] € ([Xi, X3]). Thus we get the map
P? x P — P2, ({(X1),(X2)) — ([X1,X3]). Let us recall the representa-
tion ad : Ag — L(Ag) of the Lie algebra Ag in the vector space L(Ag) of
all linear maps on Ag defined by the rule adx(Y) = [X,Y]. So we have a
representation ad” of Ag in the set of maps on P, ad% ((Y)) = ([X,Y]).

(3) Quite analogously it is easy to see that the Lie bracket preserves the L-
equivalence classes, i. e. if X;,Y; € f,;, 1= 1,2, and p is the line of [X;, X;]
then {Y;, Yzl € :@p-

(4) By direct calculation we get K L(X1,[X, Xs]) =51.(51 x iy — 32 x M) +
(51 % 52).m; = 0. Therefore the Lie bracket [X;,X3] is KL-orthogonal to
X;, 1 = 1,2 and thus also the screw ([X;, X3|) is KL-orthogonal to (X;),
i=1,2

Lemma 5. Let p; be the line of X; = (3;,m;), 5; # 0, 1 = 1,2, 5o # k5;. Then
the line p of [ X1, X2] is the axzis of the lines py, p2, i. e. p intersects py and ps
orthogonally.

Scratch of proof. We can suppose that 32 = 1, i = 1,2. Certainly p is orthogonal
to p;, 1 = 1,2. The line p; is passing through C;, OC; = 3; x 7; and the line p goes
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through C,0C = (31 x 82) x (51 x Tz — 32 x 711 ) /(51 x 52)2. Using the equality (1),
51.32 = cosa, (5 x 52)% = sin® a it is easy to see that C1C.(51 x (51 X 32)) =0, i
e. that p and p; are crossing. Analogously p and p, are also crossing. [

Corollary 1. Let L be the manifold of all proper lines in E3. Then according to
property 3 the Lie bracket in Ag induces the map from L x L into L in which
the image of two non-parallel lines py, pa is the line p which intersects p; and py
orthogonally.

Corollary 2. The line p of a couple ky X1 + kaXo orthogonally intersects the line
p of [X1,X2] because [X1, k1 X1 + ko Xo| = k2[X1, X2] and thus (by Lemma 5) p
orthogonally intersects p.

Lemma 6. Let X; = (3;,7;), i = 1,2, 5 x 53 # 0 be two Pliicker‘s couples. Then
(X1, X2] is a Plicker's couple if either the lines py, pa of X1, Xo respectively are
orthogonal or Xy, Xo are KL-orthogonal.
Proof. [X1, X3| = (31 x 32,5 x My — 52 x ;). Then [X, X,] is a Pliicker‘s couple
iff 0 = (31 X §2).(§1 X Mg — 8 X ﬁ«[) = S?(gg.mg) - (§2.§1)(§] .mg} - (31.52)(§Q.m1) +
53(51.m1) = —(581.52) (317 + 59.7;). O
Recall that the Lie algebra Ag has two basic subalgebras:
VY ={(5,0),5€ Va}, Vi = {(0,m),m € V3}, Ag = V{ @ V.
The line of (5,0) goes through origin 0 and the line of a couple (0,) is improper.
If X1, X2 € V{ then [X, Xo] = (0,0). If X; € Vf, Xa € V' then [X;, Xo) € V. It
means that Vy’ acts on Vi by the Lie bracket; in detail, adx, (X2) = [X1, X2] € V5.
In the next part of this chapter we will try to describe all subalgebras in Ag, i. e.
all vector subspaces A in Ag for which [A, A] C A.

1. Every 1-dimensional subspace A; C Ag is a subalgebra because [X;, X3] = 0
for X2 = k-}(l'

2. Let Ay C Ag be a 2-dimensional subspace. Let X; = (5;,m;), 1= 1,2, is a
base in A;. Then [X, Xp] = (3 X 52,81 x Ty — 32 x 71p) belongs to Ay if
and only if 5; x 33 = k15, + kp32, 51 X g — 5o x Ty = ki + komy. The
former equality is satisfied iff 5; x 55 = 0, i. e. iff 2 = k%,. There are two
cases:
a)if 5, =0, then 3, =0, 1. e. Ay C V.

b) Let 5; # 0. As ky =0 = ky then 5, x (g —k7my) = D..] i.e.my = ki, +usy,
1. e. there is a proper line p in F3 such that A; = (3,) is the vector space
spanned on 3,. We get

Lemma 7. A two-dimensional subspace Ay C Ag is a subalgebra if and only if
either Ay C V5 or if Ay = (8,) for a proper line p.

Remark 5. If A, is not a subalgebra, (i. e. if X7, X7 is a base in A and [ Xy, X2 ¢
Az), then the proper line of all couples X € A, form two-parametric family 7(A3)
of lines which orthogonally intersect the line of [X;, X3]. This line can be called
axis of Ay. Recall that in differential geometry of lines a two-parametric family of
lines is called a congruence of lines.

3. In this part we will investigate two problems: Under what conditions a 3-
dimensional subspace A3 C Ag is a subalgebra and under what conditions A is
totaly KL-orthogonal to itself, i. e. A3 = AKX,
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Let p; : Ag = V3 x V3 — V3 be the projection on the i-th factor, 1 = 1,2, i. e.
P1 (E, m) =3, P2 (§! m-) =m.
There are cases for Aj:
a) p1(As) =0 € Vi. Then A3 = V7 is a subalgebra. As KL(Vy,Vy) = 0 then
Az = A¥ | i. e. Az is totaly KL-orthogonal to itself.
b) dim p1(As) = 1, dim p2(A43) = 3. Always we can choose a base X; =
(51,/m,), X2 = (0,Mm2), X3 = (0,M3) in A3, where V3 = (7a,, s, iii3),
57 # 0. Then (X1, Xo] = (0,5, x ma), [X1, X3] = (0,31 x ), [Xa, X3] =0,
KL(Xy) = 8.7, KL(X;;) = 0, KL‘(XI,XQ) = §1.Mi2, KL(Xl,Xg) =
51.m3, KL(X2, X3) = 0.

It gives

Lemma 8. A 3-dimensional subspace As, dimp,A; = 1, dimpa Az = 3 is a subal-
gebra if py(A3) is orthogonal to pa(A3 NVY) in Vi. The equality AX = A3 cannot
be satisfied.

c) dimp1(As) = 1, dimpy(As) = 2. There is in A3 a base X;(5;,0), X =
(0,73), X3 = (0,7m3). Then for X;, X; and K L(X;, X;) we obtain the same
equalities as in b) except K L(X;) = 0.

So we have

Lemma 9. A 3-dimensional subspace Az, dimpi(As) = 1, dimpy(A3) = 2, is a
subalgebra iff is KL-orthogonal to itself, i. e. iff p1(As) is orthogonal to py(As) in
Vi.

(31,m1), Xy = (52,72), X3 = (0,73), where 3, 5, are independent. Then
[X]_,Xz] = (§] X 32,'). If Ag is a subalgebra then 51 X §3 = k1§1 + k2§2.
It is impossible. We get KL(Xl) = §1.ﬁ1, KL(§2) = §9.7M9, KL(XJ) = 0,
KL(Xy,X3) = 8.7 + 7.5, KL(X1, X3) = 35,.m3, KL(Xy, X3) = 32.m3.
If dimpa(As) = 1 then we can choose 77, = 0 = 7iiy. Then Aé" = Az iff
My = k%) x §3. If dimpa(Az) = 2 we can put m; = 0. Then Ag{ = Ay iff
My = k281 X $2, M3 = k3% x S,. It is impossible. If dimpy(Az) = 3 then
Ty, Mg, M3 we can chose as an orthonormal base in V3. Then A’; = Ag iff
51 =Tny X M3, So = Ma X M3, M3 = 51 X S, 1. e. iff §| = —TMy, 5y = 7,.
We get

d) dimp,(As) = 2, dimpy(As) > 1. Always we can choose a base X; =

Lemma 10. A 3-dimensional subspace Az, dimp,(As) = 2, dimpg(Az) > 1, is not
a subalgebra. If dimpz(A3) = 1 then AY = A; iff pa(As) is orthogonal to p,(As)
in Vy. If dimpy(Ag) = 2 then AX # A;. If dimpy(As) = 3 then AKX = Az iff
Ay = ((—=mmg, M), (M, Ma), (0,M3)) where My, Ty, M3 is an orthonormal base in
V. To every 2-dimensional subspace Vo = (31,82) C V3 there is a unique Ay =
((51,32), (82, -51), (0,51 % 32)) such that AX = Az. Az does not depend on choice
of orthonormal base 3;, 32.

e) dimp;(A;3) = 3, dimp2(A43) = 1. Choosing a base X; = (3,0), X3 = (52,0),
X3 = (53,73) it is easy to show that A3 is not subalgebra and AKX +£ A;.

f) dim(A3) = 3, dimpa(A3) > 2. We can chose a base X; = (31,m1), X2 =
(82,7M3), X3 = (33,73) where 3y, 5,, 53 are orthonormal: ;, x 32 = §3,
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3
§] X 83 = —82, 52 X 83 = §;. Let 7q; = Z’ITL'ggj, i = 1,2,3. Calculating
j=1
[Xi, Xi] we obtain. A subspace Aj is a subalgebra if and only if

(3) mi =mj=m3 =0,mj +mj=0,m} +m)=0,m+ml=0

As KL(X;) =m},i=1,2,3, KL(X1,X2) = m} +m?, KL(X;, X3) = mi +m3,
K L(X3,X3) =m3 + m3 therefore the equality AK = A3 is satisfied iff (3) is true.
The equalities (3) give: 7y = —mi5,+misy, My = m?s, —miss, ms = -mis; +
mggg.
Put 7 := m35; + m352 + m¥ss. Then Ty = 5) x T, My = 53 x M, g = 53 X 7.
The rank 7 of the system (71, g, M3) is 2. We have proved.

Lemma 11.. A vector subspace A3, dimpy(As) = 3, dim py(A3) = 2 is a subalgebra
if a one of the following equivalent conditions is satisfied:

1. AK = A4

2. Ajg is the subspace of couples (3,3 x

m), S € V3 and m # 0 is a given vector.
If dim p; (A3) = 3, dim py(A3) = 3 then Ay is not subalgebra and AKX # Aj.
4. Let A4 be a 4-dimensional vector subspace in Ag. There are cases:

a) dimpy A4 = 1, dimpa Ay = 3. Choosing a base X| = (31,0), X; = (0,7;),
@ =2,3,4 and calculating [X;, X;] we get

Lemma 12. A /-dimensional vector subspace A4, dimp;(A4) = 1, dimpa Ay = 3
15 always a subalgebra,

Let us remark that A4 N Vy = V{7 in this case.

b)dimp; Ag > 2, dimpy A4 > 2. Always we can choose a suitable base and show
that A4 cannot be a subalgebra.

5. In the case when As is a vector subspace always there are bases by which can
be shown that Az cannot be a subalgebra.

Let us introduce survey of all subalgebras in Ag:

1. All 1-dimensional vector subspaces have the subalgebra structure.

2. A 2-dimensional vector subspace A, is a subalgebra if either A, = (Bp) for
some line p or Ay C V5.

3. A 3-dimensional vector subspace Aj is a subalgebra in the cases
a) A3 = Vsp, A3 = V3T
b) dim p1(A3) = 1, dimpz(A3) = 3 and py(A3) is orthogonal to py(Az N V)

in Vi
¢) dimp;(A3) = 1, dimpa(A3) = 2 and p;(A3) is orthogonal to py(Ajz) in
Vs
d) Az = {(5,5 x M) € As,5 € V3, m # 0 is a given vector}
4. A 4-dimensional vector subspace A4 is a subalgebra iff dim mAy = 1,

dim ps Ay = 3.

Remark 6. Let w(A); denote the set of all proper lines of couples (3,71) € A,
(5,M), 5 # 0. It is easy to see that in the cases 3b, 3c, 4 m(A)s is a set of all lines
parallel with the direction p;(A). A line of m(As)y from the case 3d goes through

the point C,0C = Mf;fl_) = -‘iﬁ § — m. Therefore w(A3)y is the set of lines p
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going through points C on the sphere S? with the center M,OM = — -m and with
radius r = IW If s.m # 0, i. e. OC # —7m then p is in the direction 5 and so
it is unique. If 57 = 0, i. e. OC = —77 then every line p going through C and
orthogonal to 7 belongs to m(As)s. So 7w(Aj3)y is a two-parametric family of lines
in Ej3, i. e. it is a congruence of lines. Recall that in the case of a general vector
subspace A3, m(Aj3)y is a 3-parametric family of lines in Ej that is called a complex
of lines.

4. CANONICAL VECTOR FIELDs IN E3 INDUCED By Ag

Recall that a vector field on a differentiable manifold M is a rule £ by which a
tangent vector {(z) at z € M is determined for every z € M. In the case of M = E
£(x) € V.

Definition 3. Let X = (5,7) € Ag and 0 be a given point in E3. This couple X
and O determine a vector field § x oy by the following rule:
a) If 5 =0 then {(x,0)(Y) = for any Y € Ej,
b) Let s # 0. Let hs be the orthogonal projection M into 5, i. e. h = (5.m)/52%.
Let OC == (5 x 1) /5%. Then

(4) €x0)(Y)=3xCY + h3,Y € Es.
This vector field will be called the field of X .
Lemma 13. The value of the field of X at 0 is m, £x,0(0) =

Proof. If X = (0,m), i. e. 5 = 0, then assertion is true. If 5 # 0 then using (1) we
get

£x,0)(0) =3 x CO + h3 = =5 x (5 x m) /5% + h3 = —[(3.m)3 — 5°7) /52 + h3 = m.
O

Corollary 3. For the value of the vector field €(x, 0) at Y € E3 we get {x,00(Y) =
§xCY +hs=35x(CO+0Y)+hs= §x CO0+35x0Y +hs, i e

(5) Exo(Y)=3%x0Y +m
It immediately gives:
a)
(6) §kx,0)(Y) = k(x,0)(Y)
b) If two couples X; = (3;,7;) = 1,2, have the same line of couple, i. e. if
5o = k3, o = kg + u8, then
€(x,,0) = k(x, 0) + ud
Remark 7. If we change origin, if we choose 0' instead of 0 then from (4) or from
(5) we get
é‘(x’[]l)( ) EXCY +h3"' S X (GC+CY)+hS ——fxo)(},)‘*‘EXC‘C or
Ex oY) =3x0Y +m=3x(00+0Y)+m = Exo(Y ) +3 x 0'0 respectively.
Let CE3 denote a set of all vector fields on Fj. It is a real vector space.
Let £ : Vg — CE3 be a map defined by the rule EX) = §(x,0)-
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Proposition 1. The map £ : Ag — £(As) C CFE3 is an isomorphism of vector
spaces.

Proof. By the equality (6) £(kX) = k{(X).
Let X; = (3;,7;), { = 1,2. According to the definition of £ we consider the
following cases:
a) 31 =0=3p : {(X; + Xp) (V) =y + g = (X)) (V) + £(X2)(Y).
b) 5, S2 £ 0: E( X1+ X2)(Y) =82 x 0Y + 7, +70 = £(X)(Y) £ £(X2)(Y).
¢) 3
d)

fl:l

=0 : analogously &(X; + X2)(Y) = &(X1)(Y) + £(X2)(Y)).

0,3
0,
0, §2 #0:6(X) + Xo)(Y) = (81 + 52) x OY + (7y + Tg) = £(X1)(Y) +

4
s #
§(Xa)(Y). ]
We have proved that £ is a linear map. We will show that ker £ =0
0 € CE;. If 5=0then 0 = {X)(Y) =, i. e. £ = (0,0). If 5 #
EX)Y) =35 x0Y +7 for all Y € Ej. It is possible only if s
completes our proof. [

The vector subspace £(Ag) will be denoted as SCE3 := £(Ag). On the vector
space SC E3 by the isomorphism ¢ the following bilinear forms are induced:

a) Klein form SKL(£(X,),£(X2)) = KL(X,, X2),

b) Killing form SK(£(X1),£(X2)) = K(X1, X2),

c) Lie bracket [£(X),£(X2)] = £[X1, X2

Let X; = (5;,7;), i = 1,2, be two couples. Then the isomorphism £ inspires the
following shapes for the above introduced forms.

Proposition 2.
a)SKL(§(X1), €(X
b)SK(£(X1),£(X ))
Jl§(X1),¢(X2)] =5, )—32 x §(X1)

(
Proof. Using the equalities (1) and (6) we get successively
a) 51.6(X2)+52.6(X1) = 5 (32 x0Y +mM3) +32.(5) X0Y+T’n.1) = §1. M2 +82.mMm =
KL(Xy, X3).
b) 51.32 = K (X1, X2)
c) 51 x £(X3) — 32 x (X)) = 5 x (32 x OY+m2)—32 x (5, x 0Y + 7)) =
(S] DY)bgﬁ(&l 52)0Y+81 )(TT12~(S'2 0Y)91+(81 32)DY -8 XM = [Xl,Xg] a

) (X2)+32 £(X1)

ol H
:n!

Remark about trajectories of the vector field £(X). Let us remind that a trajectory
of a vector field is a curve the tangent vectors of which are values of the vector field
in points of this curve. So if ¥ = Y'(t) is the equation of a trajectory of the field
£(X) then

Y = &x.0)(Y (1)

Using the equality (5) we can this equation to rewrite as follows

(7 0 -—s3 s i my
vz | = | s3 0 =-s y2 | + | ma2 | .
s —s§2 81 0 Y3 ™ma

It is a system of differential equations the solution of which are trajectories of
the vector field £(X).
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5. KINEMATIC INTERPRETATION OF THE FIELD §(X) OF A COUPLE X

In this chapter we use a notation X = (1, b) instead (3,7m). We will distinguish
two cases.

a)lf w = 0 then the value of the vector field £(X) is bat any Y € E3. We can
interpret this values as the instants velocities of equable straightforward motions
(translation motions). The trajectories of this motions are lines in the direction b.

2. Let w # 0. Recall that the line p of the couple (w,b) € Ag is going through the
point C,0C = @ x b/®w? in the direction W. Let us consider the equable screw mo-
tion in E3 which is composition of two motions: the first part is the rotation around
the axis p with the constant angle velocity W and the second one is the translation
motion in Ej3 in the direction @ with the constant velocity hw, h = (w.b)/w?. (We
will say that the line p is the axis of this equable screw motion). The velocity 7 of
this motion at a point Y satisfies the equality

7=wxCY + hiw.

According to (5) T is the value of the vector field {(X) at Y € E3. We have
proved.

Theorem. Let X = (w,b) € Ag. Then the vector field £(X) is the velocity field of
the following motions:

If w = 0 then it 1s a translation motion with the velocity b.

If w # 0 then this motion is the equable screw motion around the line p of the couple

X with constant angle velocity w and with translation constant velocity hw, h =
(w.b)/w*.

Remark 8. Wb =0, w # 0, i. e. if KL(X) =0, K(X) # 0, i. e. if X = (w,b)
is a Pliicker's couple then £(X) is a field of velocities of the clean rotation around
the line of X with constant angle velocity @. Couples X belonging to the same
Pliicker‘s screw (X) determine rotations around the line of (X)) with different angle
velocities. When K L(X) # 0, K(X) # 0 then the trajectories of the field £(X) are
screw curves the axis of which is the line of X. The motions determined by the
couples of a screw (X), KL(X) # 0, K(X) # 0, are equable screw motions around
the line of {X) with the same pitch h. In general two cauples X, Xy, K(X3) # 0,
with the same line p of couple, i. e. X; € 3,, determined equable screw motions
around p with different angular velocities and pitches.

Remark 9 (about pitch h). By definition h = (w.b)/w? and then v = |h|||@|, |[@]?* =
w.w, is the translation velocity of the motion determined by X = (w, E), w # 0.
Then |h| = 2, w = ||@||. So |h| is the translation length according to revolution
with angle of radian around the line p of the couple X. It will be called specific lift.
If h > 0 then we say that both motion parts, rotation and translation, have positive
orientation, (If the rotation is in the direction of fingers of the right hand then the
translation is in the direction of the thumb.), and in the opposite case h < 0 we
say about negative orientation.

Remark 10 (about influence of a choice of a origin 0). If we use a point 0' instead
0 then the line of a couple X = (i, b) is the line p = 7(p) where 7 is the translation
determined by the vector 00'. Now C' = 7(C), O'C' = (W x b)/w? = 0C. The veloc-
ity of the equable screw motion around p' with angular velocity @ and translation
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velocity @ in a point Y is

f(x,gw)(Y)ZEXC”Y+hE=mX(C )+hw é(xg)+waC

Remark 11 (about subgroups of motions induced by couples of the Lie subalgebras
of Ag). It is well known that to every Lie algebra A there is a Lie group G(A) the
Lie algebra of which is just A. By our investigations in the 3-th chapter there are
9 types of subalgebras.

a) Ay = (X), X = (5,/m) # (0,0). If § = 0 then the corresponding group G(A;)
is the group of all translations with constant velocities k7. If 8 # 0 then G(A;) is
the group of all equable screw motions around the line of X with the same pitch h.

b1) Az = (Bp) for a line p, i. e. Ay = {(ki0, kb+uw), @ # 0,k,u € R}. The group
G(A3) induced by Aj is the group of all equable screw motions around p including
all translations in the direction of p and rotations around p.

ba) If Ay C Vi, A2 = ((0,/,), (0,72)) then corresponding group is the group of
all translations with the velocities 7 € A,.

c;) If A3 = VJ or A3 = VJ then the corresponding group is the group of all
translations in Fj3 or of all rotations about origin 0.

c2) Az C Ag with properties: dim(p; A3) = 1, dim(paAa) = 3, p1(A3) is orthog-
onal to pa(As N V). Then (w,0) ¢ Az and there is (, b)ye Ay, w#0#b. Let p
be the line of (@, b). Then G(As) is generated by all equable screw motions around
lines parallel with p except the one going through origin 0 and by all translations
with velocities T orthogonal to p.

c3) Az C Ag with properties: dim(p; A3) = 1, dim(paAa) = 2, p1(A3) is orthog-
onal to pa(As) in V5. Then (w,0) € Az and G(Aj3) is generated as in the case
¢z including equable screw motions around the line going through origin 0 in the
direction w.

c4) Az = {(W, W x M) € Ag,Ww € V3, # 0 is a given vector}. Then G(A3) is
generated by all equable rotations around the lines going through points C,0C #
—m, of the sphere Sy (describing in the Remark in the end of the 3-d chapter) and
around all lines orthogonal to 7@ going through C,0C = —m.

d) Ay C Ag with properties: dim(py A4) = 1, dim(p2A44) = 3. Then Vi C A4 and
G(A4) is generated as in the case Cy including all translations in Fj.

5. DYNAMIC INTERPRETATION OF A VECTOR FIELDS £(X)

Firstly we recall effects of a force on a rigid body. Let a force f affects on a rigid
body € at a point C' € Q. The line p = (C, f ) going through C in the direction f
is called the line of f. The result of effect of f at a point Y € 2 does not depend
on a choice of a point C on the line p of f. A measure of this effect is moment of
the force f at Y, i. e. the vector YC x f. Denote 7 := OC x f the moment of f at
origin 0. We get a Pliicker's couple (f,77 = OC x f) the line of which is just the
line of f.

Remind further, that the effect of a couple of forces (f, —f,7) with its arm 7 is
the same at every point ¥ € 2. A measure of this effect is moment 7 x f of the
couple of forces.
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Let X = (f,m) € As be a couple of vectors. Let £{(X) be the vector fields
on E3 determined by X. The above considerations inspire the following dynamic
interpretation of the vector field £(X).

a) If X = (0,mm) then £(X) is the vector field the value of which in every point
Y € @ is the moment T of some couple of forces.

b) Let X = (f,) be a Pliicker's couple, i.e. fim = 0. The line p of X we
interpret as the line of a force f. Then £(X) is the vector field the value
of which in a point Y is the moment YC x f of the force f at ¥, where

OC = (f xm) /T, 1. e. C is the orthogonal projection of the origin 0 into
p. The value of this field in 0 ism = OC x f._ B

¢) Let X = (f,m) is not Pliicker's couple, i. e. f.m # 0. Recall that hf, h =
(fm)/ 72, is the orthogonal projection 7 into f. Then the vectors f,m—hf
are orthogonal in V3 and (f,m) = (f,m — hf) + (0, hf) where (f,m — hf)
is a Pliicker's couple. So the vector field {(X) is the sum of the vector fields
&((F.m — KF)) and £((0, 7)), i. e.

UX)Y)=YC x f+hf=¢((f,m—hf))+£(0,hf)).

This means that the value of the field £(x) in a point Y is the sum of the moment
of the force f at Y and the moment hf of some couple of forces.

Values of the vector field £(X) interpreted by moments of forces can be called
dynamic effects of a couple X

Recall that in literature the following notions are used. Elements of the Lie
algebra Ag, i. e. couples X = (3,7m), are called motors. If the vector field £(X) of a
motor X is interpreted as a vector field of velocities then X is called twist.

If £(X) is interpreted as a vector field of moments then X is called wrench.
If two wrenches X1, X € Ag belong to the same screw, i. e. if Xo = kX; then
£(X;) = kE(X)), 1. e. the dynamic effect of X7 is a multiple of the dynamic effect
of Xj. In general if wrenches X, Xy have the same line of couple, i. e. if Xy =
(kf,, k7, + ufy) then the dynamic effect of X, is the sum of a multiple of the
dynamic effect of X; and of a moment of some couple of forces.

Remark 12. (about a twist-wrench interpretation of KL(X;, X3)):

Let a twist X, = (W,b) € Ag determined an equable‘ screw motion of a body
2 around the line p; of X; with angle velocity W and with translation velocity
hw. Then b is the velocity of origin 0. Let X, = (f,7) € Ag is a wrench, i. e.
f is a force the line of which is the line of X3 and £(X5) is a such vector field
that £(X2)(Y) = YCq x f + hf is the sum of the moment of f at Y and of
the moment hf of some souple of forces. Recall that £(X32)(0) = 7. The value
KL(X1,X;) = f.b+w.7 can be interpreted as follows. We can say that f.bis a
translation effect of f and .7 is a rotation effect of f at the origin 0 of the body
moving by a equable screw motion. Then K L(X;, X2) can be called a power given
to the solid 2, moving under the twist Xy, by the wrench X, per unit of time.

Remark on a motion of the effector of a robot.. We consider the effector of a robot
as a rigid solid 2. The moving effector determines in 2 the vector field of velocities
of points Y € 0 at any time t. This vector field is the vector field of velocities of a
equable screw motion around an instantaneous axis and thus it is determined by a
couple X (t) = (@(t),b(t)) € Ag. So a moving effector determines a curve ¢ — X (t)
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in Ag. Vice versa, a curve X (t) in Ag states a movement of a effector the trajectories
of which are solutions of the non-autonomous differential system

Y = Ex(p.0Y U =(t) x T+ b(t).
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THE LATTICE OF VARIETIES OF ORGRAPHS

ALFONZ HAVIAR AND GABRIELA MONOSZOVA

ABsTRACT. In [5] we investigated varieties of orgraphs (i.e. oriented graphs) as
classes of orgraphs closed under isomorphic images, suborgraph identifications and
induced suborgraphs, and we studied the lattice of varieties of orgraphs. We paid
particular attention to varieties containing no nontrivial tournament. In this paper
we pay attention to the part of the lattice of varieties of orgraphs which consists of
varieties generated by sets of notrivial tournaments.

1. INTRODUCTION

A useful tool for investigations of some properties of graphs is a choice of suitable
closure operators and examinations classes of graphs closed under these operators.
For example, classes of graphs closed under induced subgraphs are called hereditary
in [12] and induced hereditary in [3], and were considered in several papers. Classes
of graphs closed under other operators are considered, for example, in [2] and [6]. In
the paper [5] were considered classes of orgraphs closed under isomorphic images,
suborgraph identification and induced suborgraphs.

By an orgraph we mean directed graph G(V, E) without loops with the following
property:

for every two distinct vertices u,v € V, at most one of the edges wv and vu
is an arc from E.

We briefly write uv instead of [u,v] for vertices u,v € V.

We can associate to every orgraph G(V, F) the graph G*(V*, E*) by omitting
the orientation of all edges, i.e. '

V* =V and {u,v} € E* iffuv € Eorvu € E.

An orgraph G(V, E) is called

- weakly connected if G*(V*, E*) is connected,

- a weak cycle if G*(V* E*) is a cycle,

- a tournament if G*(V*, E*) is a complete graph.

Let us recall that by a suborgraph identification of orgraphs G;, Go we mean
gluing of the orgraphs G;, Ga in their weakly connected induced suborgraphs G{, G,
which are isomorphic (we choose an isomorphism between G] and G5 and identify
the corresponding vertices of G| and G; [7]).

In this paper we follow the notation of [5]. If K is a set of orgraphs we denote
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- by I'(K) the smallest class of weakly connected orgraphs containing the set £
and closed under suborgraph identifications ,

- by S(K) the class of all weakly connected induced suborgraphs of orgraphs
from K,

- by I(K) the class of all isomorphic images of orgraphs from K.

Definition 1.1. A set K of orgraphs closed under isomorphic images, induced
weakly connected suborgraphs and suborgraph identifications is called a variety;
that is K is a variety if

I(K) CK, S(K) CK and I'(K) C K.

Obviously, I, S, I' are closure operators on the system of all sets of weakly
connected orgraphs. By [4, Theorem 5.2] we obtain the next statement.

Theorem 1.1. The set of all varieties of orgraphs with set inclusion as the partial
ordering is a complete lattice (denoted by L(I,S,T)).

We denote by V(K) the smallest variety of orgraphs containing a given set K of
orgraphs. We will say that V(K) is generated by the set K.

The following lemma and corollary play an important role in investigations of
varieties of orgraphs.

Lemma 1.2. Let G(V, E) be a weakly connected orgraph which is neither a tour-
nament nor a weak cycle. Then there exist two nonadjacent vertices u,v € V' such
that G — {u,v} is a weakly connected orgraph.

Proof. The statement immediately follows from (8] or [10, page 208]. [

Corollary 1.3. If G(V, E) is a weakly connected orgraph which is neither a weak
cycle nor a tournament, then G is isomorphic to a suborgraph identification of two
proper weakly connected suborgraphs of G.

Proof. By Lemma 1.2 there are two nonadjacent vertices u,v € V such that G —
{u,v} is weakly connected. Let f be the identity on the suborgraph G — {u,v}. The
orgraphs G, = G — {u} and Gy = G — {v} are proper weakly connected induced
suborgraphs of G, and obviously G = G, U/ G,. (O

Whenever uv is an arc of an orgraph G(V, E) , the vertex u is called an adjacent
vertex to v and v is called an adjacent vertez from u. An outdegree (an indegree) of
a vertex v € V in the orgraph G(V, E) is the number of vertices adjacent from v
(to v). When outdegree of a vertex v is i and indegree of v is j, we will say that v

is of type v((;}) and write simply v}, when no confusion can arise.

A tournament will be denoted by Tn(V, E) or briefly by 7Tn. We say that a tour-
nament Tn(V, E) is of type T(01:02::0%) o, < 0j41 for each ¢ = 1,...,k — 1, if
V ={vy,...,ux} and o0y, 0g, ..., ok are the outdegres of the vertices vy, vq, ...,
vk, respectively. When the tournament 7n is of the type 7(°192:-29)  we more
precisely write Tn=(v{"",v{"?’,...,v{°*’). Let us note that the notation 7 (°1:92:0x)of
k-vertex tournament is ambiguous for k& > 5. We identify a tournament with its
type if k < 4. The tournament 7)) was denoted (as the weak cycle) by C3.)
and the tournament 7(©12) was denoted by C(2,1) in [5]. We say that a tournament
Tn(V, E) is nontrivial if |V| > 3.

According to [5] we denote
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- by C4,1) the weak cycle with two adjacent vertices of the types vZ, 19 and three
vertices of the type v] (see Figure la),
- by C(3,2) the weak cycle with two nonadjacent vertices of the types v3, v§ and

three vertices of the type v] (see Figure 1b).
1

- v} /\. v} o /\
\_J A

Vg 'UO

Figure la-b

We denote by 0 the smallest element of the lattice L(I, S,I") and by 1 the greatest
element of the lattice L(I,S,T).

In the paper (5] we showed that the interval [0, V(C(32))] of the lattice L(/, S,T)
is isomorphic to the lattice 3 @ D? where & is the linear (ordinal) sum of the 3-
element chain and the lattice D¢, where D¢ is the dual lattice of the lattice D
of all nonnegative integers with the divisibility relation as the partial ordering. A
variety of orgraphs belongs to the interval [0, V(C(3 2))] iff it contains no nontrivial
tournament.

In the next section we pay attention to the interval [V(C(4,1),1] of the lattice
L({,S,T).

In [5] we used a characteristic of a weak cycle. Let C(V, E) be a weak cycle of the
length n. If all arcs of C have the same orientation, we say that the characteristic
of C is n. On the other hand, if arcs of € have not the same orientation, we choose
an arc vw € F, and we call all arcs of C having the same orientation as vw positive;
the other arcs are negative. The characteristic ch(C) of the weak cycle C is |p — n|,
where p is the number of all positive arcs of C and n is the number of all negative
arcs of C.

The next lemmas were proved in (5] and will be used in this paper. First, we
denote analogously as in [3]

- by C11,...,1) a weak cycle containing no vertex of the type v,

- by C(n,0), n > 3, an n-vertex weak cycle containing only vertices of the type v},

- by C(3,1) the weak cycle with two adjacent vertices of the type vi, one vertex of
the type v§ and one vertex of the type v3.

Lemma 1.4. Let V be a variety of orgraphs. Let C be a weak cycle different from
weak cycles of the type Cu 1, 1y. IfC € V and C' is a weak cycle for which

ch(C') = ch(C), C' #Cs,0) and C' # Cay)
(i.e. the characteristics of the weak cycles C, C' are the same and C' is not a tour-
nament) then C' € V, too.

Lemma 1.5. Let V be a variety generated by a weak cycle Ci,0), n > 3, or by
C(z,1), or by C(32). Let G be an orgraph containing no nontrivial tournament as an
induced suborgraph . Then G € V iff the characteristic of each weak cycle of the
orgraph G is a multiple of the characteristic of the generating weak cycle.
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2. VARIETIES CONTAINING SOME NONTRIVIAL TOURNAMENTS

By Corollary 1.3 every variety of orgraphs is generated by a set of weak cycles and
tournaments. Therefore the next lemmas related to minimal nontrivial tournaments
(minimal with respect the relation of being a subtournament) will prove useful.

Lemma 2.1. A tournament Tn does not contain the subtournament T(111) if and
only if the tournament Tn is of the type T (0:1k),

Proof. We prove the statement by induction on the number of vertices of tourna-
ments.
The statement is evidently true for 3-vertex tournaments.
Let the statement be true for any k-vertex tournaments.
1. Let Tn = (VoM ... ,'U,(:)> be a tournament of the type 7(®1K) We prove
that 7= does not contain the tournament 71:''!)_ Omitting of the vertex v{*’ of 7
(the outdegree of the vertex vy is k) we obtain k-vertex tournament 7+ of the type
T©1k=1) Eyidently any 3-vertex subtournament of the tournament 7n is either
subtournament of the tournament 7+ or a subtournament containing the vertex vy.
The tournament T contains no subtournament of the type 7(b1 (by induction
hypothesis) and the indegree of the vertex vy is zero, therefore the statement follows.
2. Let Tn be a k+1-vertex tournament of type different from the type 7 (®:1-k),
We prove that 7111 is its subtournament. Omitting a vertex v of 7n we obtain
k-vertex tournament 7+,
a) If T contains the subtournament 741 then 711 is the subtournament of
the tournament 7, too.
b) If T contains no subtournament of the type 7(X:1:Y) then 7 is a tournament of
the type 7(%1--%=1) by induction hypothesis. Let 7/ = (ugo),uil), g B
If there exist two vertices u;,u; € V(%), i < j, such that u;v € E(7n) and
vuj € E(Tn) then the tournament (v, uj,u;) = 711 g the subtournament of 7.
Otherwise, the tournament (v, ug, w1, ..., uk—1) or (ug, ¥1,...,Uk—1,V) OF
(g, Uy -+ oy Usy Uy Ugss)s -+ - s Uk—1), 0 < 5 < k — 1, is of the type 7(®1-%) a con-
tradiction. O

It is easy to verify that the next statement is true.

Lemma 2.2. The tournament T©12) is o subtournament of every nontrivial tour-
nament Tn # T(1,1,1)

Now, we focus our attention to varieties containing at least one nontrivial tour-
nament.

Lemma 2.3. Let M be a set of orgraphs . If a nontrivial tournament Tn is not a
suborgraph of any orgraph from M then Tn ¢ V(M) (i.e. Tn does not belong to the
variety generated by the set M).

Proof. 1t immediately follows from the following fact. If 7 is neither a suborgraph
of an orgraph G; nor a suborgraph of an orgraph G, then obviously 7n is not a
suborgraph of any suborgraph identification of the orgraphs G; and Gz. O

Lemma 2.4. The variety V(T ©12)) contains every weak cycle C # C(30y, and it
covers the variety V(C3 2))-
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Proof. First we recall that 7“2 = Cy,y and C(z ) = 7Y, The weak cycle
C(3.2) belongs to the variety V(7(®12)) by Lemma 1.4, and therefore the vari-
ety V(T2 contains every weak cycle C # C(3,0) by Lemma 1.5. The variety

V(712 contains only one tournament (by Lemma 2.3) and the statemant fol-
lows. 0O

Corollary 2.5. Every variety V > V(TOL2) is generated by a suitable set of
tournaments.

Proof. The variety V > V(7T (©1.2)) is generated by a set M = M; UM,, where M, is
a set of weak cycles and M is a set of tournaments (and we suppose 7111 € M,
if C(3,0) € M;). We can assume that the set My of tournaments is closed under
subtournaments (and so 7(®1:2) € My). It follows V(M; UM,) = V(M;) by Lemma
24. O

Corollary 2.6. Let M, Ma be sets of nontrivial tournaments closed under non-
trivial subtournaments and let V(M) > V(TO1L2) and V(M) > V(TO:12).
The variety V(M) is covered by the variety V(Mz) if and only if there exists a
tournament Tn¥ such that My = My U {Tn"} and Tn" ¢ M.

Now we investigate relations between varieties which contain the tournament
70,11

Lemma 2.7. a) The variety V(T 211)) covers only one variety V(Ciq.1)).-
b) The variety V(T 110 €y 9)) covers only two varieties V(T 1) and V(C(3 2))-
¢) The variety V(T €y 9)) is covered by the variety V(T (11D T(01.2)),

Proof. a) The variety V(T (1) = V(C(3,)) does not contain any nontrivial tour-
nament Tn # 751 and the weak cycle C(4,1) belongs to V(TWLY) by Lemma
1.4. On the other hand the tournament 7 11:%) does not belong to the variety Cua
by Lemma 2.3. A weak cycle C belongs to the variety V(711 if and only if the

characteristic of C is a multiple of the number 3 (by Lemma 1.5) and the statement
follows.

b) The variety V(711 C54)) does not contain nontrivial tournament Tn #
T4 and contains every weak cycle C # C(21) (the weak cycle Crp ) = T(012)
is the tournament). Let us recall again that the variety V(7 11) contains a weak
cycle only if and only if its characteristic is a multiple of the number 3 and the
variety V(C(3 2)) contains every weak cycle C # C(s o), by Lemma 1.5.

¢) The variety V(7 (111 7(0.1.2)) contains only two nontrivial tournaments 7 (1-1:1)
and T(OL2) and all weak cycles, and the above considerations yield the state-
ment. O

Thus, we have proved the next statement.

Theorem 2.8. The lattice L(I,S,T") consists of the interval [0, V(C(32))] (con-
taining all varieties without nontrivial tournaments) and order filter with two min-
imal elements V(TW5))Y and V(T(OL2)) (see Figure 2). The pair of varieties
(V(T(l‘l'l),C(g,g)),V(T(U'l'z))} is the splitting pair of the lattice L(I,S,T') (i.e. for
every variety V either V < V(T(l’l‘l),C(glz)) or V> V(T©:12))
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Figure 2

In Figure 2, the generators are used to denote the corresponding varieties, where
tournaments are denoted by their types. Since some different tournaments with at
least 5 vertices have the same type we depicted all 5-vertex tournaments in Figure

3 (by [11)).

48



01234 01333 02224 02233 11134 11224

[ ] [ ] [ ] [ ]
- \
[ ] L ] [ ] [ ]
Q & ® A &
11233 11233 12223 12223 12223 222922

Figure 3

(Upward arcs are shown, downward arcs are implied)

In [5] we showed that the sublattice (the interval) [0, V(C(32))] of the lattice
L(I,S8,T) is distributive. Now we will strengthen the statement.

Theorem 2.9. The lattice L(I,S,T') is distributive.

Proof.

a) First, we show that the sublattice (the interval) [V(C41y),1] is a distributive
lattice. Let M, My be sets of nontrivial tournaments closed under subtournaments
and let Vi = V(M;), Vo = V(M) be varieties generated by the sets M; and Mo,
respectively. By the above lemmas we have

VvV, = V(Ml UMz) and Vi AVa = V(Ml n Mz) if M N Mo # 0.

Notice that M; N My = 0 if one of these sets is {71} and the other contains
only tournaments of the type 7 (%% It implies that the sublattice [V (7 (1.2)) 1]
of the lattice L(I, §,T') is distributive. Therefore the sublattice [V(C(4 1)), 1] is also
distributive as is easy to check.

b) We show that the lattice L(J,S,I") contains neither the pentagon N5 nor the
diamant Mj.

Suppose, on the contrary, that the diamant Mj is a sublattice of the lattice
L(I,S,T). At least two noncomparable elements of M3 belong to the interval
[V(C(4,1),1] or to the interval [0,V (C32)]. It follows that the sublattice My is
a sublattice of the interval [V(C(4,1)), 1] or of the interval [0, V(C(32)], and both
mentioned intervals are distributive lattices, a contradiction.

Suppose, on the contrary, that the pentagon Nj is a sublattice of the lattice
L(I,S,T). Let a,b,c be elements of N5, a < ¢, a || b, ¢ || b, ¢ covers a. Then both
elements a, ¢ belong either to interval (0, V(C(32))] or to interval [V(Ci4 1), 1].
Since the intervals [0, V(C(39))] and [V(C(4,1)),1] are distributive the element b
belongs to the other interval. There are only two possibilities: a = V(C(4,)) and
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c=V(TWID) and b € [0, V(Ci39))] (for example b = V(C(s5,0))) or b= V(C3,0)) €
[V(C(4.1)): ].I and a,ce [0, V(C(gjg))] (fOI‘ example Cc= V{C(5,0)), a = V(C(IO,U}))- In
this case we have bvVa < bVcor bAa < bAc (see Lemma 1.5), a contradiction. O

1]

(7l

(8]
(9]
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ON o-PSEUDODIMENSION OF MONOUNARY ALGEBRAS

DANICA JAKUBIKOVA-STUDENOVSKA AND GABRIELA KOVESIOVA

ABSTRACT. In this paper the notion of a-realizer is defined. There are found neces-
sary and sufficient conditions under which an a-realizer of a connected monounary
algebra exists. Next we deal with a-pseudodimension of a product of some special
types of monounary algebras.

1 INTRODUCTION

Let U be the class of all monounary algebras and let a = (L, f) be a fixed
element of U. To each (A, f) € U we assign a cardinal which will be denoted by
a-pdim(A, f); we say that this cardinal is the a-pseudodimension of (A, f).

QOur definition is in accordance with that used by V. Novék and M. Novotny [6]
(cf. especially Example 6.4 of [6]).

The most of results concern the case when both (A, f) and (L, f) are finite
connected monounary algebras.

First we study a-realizers of (A, f) € U. There are found necessary and sufficient
conditions under which an a-realizer of a connected monounary algebra exists. Next
some special types a are dealt with and we determine a-pdim(A, f) in the case when
(A, f) is a direct product of sticks.

After the World War II, O.Bortvka formulated a problem concerning matrices
commuting with a given matrix, that led to study homomorphisms of monounary
algebras. His problem stimulated the investigation of these algebras; monounary
algebras were investigated e.g. by M.Novotny [7],[8], O.Kopeéek [3], E.Nelson [4],
D.Jakubikova-Studenovska [1],[2]. The concept of pseudodimension was introduced
in 5] for ordered sets. Later it was extended by Novék and Novotny [6] to the
concept of a-pseudodimension of arbitrary relational structures.

For the terminology and definitions cf. Section 2.

2 a-REALIZER
In this section we start with defining of the notions we will use below. Then we

investigate a-realizers of (A, f).

2000 Mathematics Subject Classification. 08A60.
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Definition 2.1. Let n € N,k € N U {0}. The algebra of the type (n,k) is the
monounary algebra (B, f), where B = Z, U{m € N : m < k} (where Z, =
{0n,...,(n —1),} is the set of all integers mod n),

flin) =(i+ 1), foreachi € Z, f(1) = 0,,

f(m)=m —1foreachme N,1 <m < k.
In the case when n = 1, the algebra (B, f) is called a stick or a stick of type k.

Notation 2.2. Let (B, f) be a connected monounary algebra. We denote by C(B)
the set of all cyclic elements of (B, f) and R(B) = |C(B)|.

The degree s(z) of an element 2 € B was defined in [7] (cf. also [1]) as follows:

Let us denote by B(*) the set of all elements z € B such that there exists a
sequence {Zn},ecnuioy Of elements belonging to B with the property o = z and
f(zn) = z,-1 for each n € N. Further, we put B = {z € B: f~!(z) = #}. Now
we define a set B C B for each ordinal A by induction. Let A > 0 be an ordinal.
Assume that we have defined B®) for each ordinal & < A. Then we put

BN ={zeB-|JBY: )< |J B}

<A a<A

The sets B) (where A is an ordinal or A = o) are pairwise disjoint. For each
x € B, either z € B(™) or there is an ordinal A with 2 € B™. In the former case
we put s(z) = 0o, in the latter we set s(z) = A. We put A < oo for each ordinal .
Suppose that R(B) # 0. If B = C(B), then we put h(B) = 0. If B # C(B), then
we define h(B) = 1+ sup {s(z) : z € B — C(B)}.
Notice that the definition of s(x) implies that if B # C(B), then

h(B) =1+ sup{s(z): z € B— C(B), f(z) € C(B)}.

Remark. Let us remark that we considerably apply results of M.Novotny [7],[8]
concerning homomorphisms of monounary algebras. E.g., without further reference
we will use that if (A, f) and (B, f) are monounary algebras, then
(1) if ¢ is a homomorphism of (A, f) into (B, f), then s(e(x)) > s(z) for each
T € A,
(2) if ¢ is a homomorphism of (A, f) into (B, f) and x € A belongs to a cycle
C, then ¢(r) belongs to a cycle D C B such that |D| divides |C]|.

Notation 2.3. We will denote by (Z, f) and (N, f) the monounary algebra such
that f(i) =i+ 1 for each i € Z or i € N, respectively.
Further, for a cardinal k let (Ny, f) be a fixed monounary algebra such that

Ne=NuD, NnD=0, |D| =k,

a+1 ifa€eN,

f(”’):{l ifaeD.



Fic. 1

Definition 2.4. Let (A, f) € U and let {y; : j € J} be a nonempty system of
mappings of A into L such that for any z,y € A we have
y = flz) <= (V) € J)(p;(y) = fp;()).

Then {p; : j € J} is said to be an a-realizer of (A4, f).
If no a-realizer of (A, f) exists, then we set

a-pdim (A4, f) =0.
Further, suppose that there exists some a-realizer of (A4, f); then we put
a -pdim (A4, f) = min{|J| : {y; : j € J} is an « -realizer of (A, f)}.
This cardinal is called a-pseudodimension of (A, f).
This definition immediately yields the following two assertions:

Lemma 2.5. Let (A, f) € U and suppose that {¢; : j € J} is an a-realizer of
(A, f). For j € J, the mapping ¢; is a homomorphism of (4, f) into (L, f).

Lemma 2.6. Let (A, f) € Y and let T be a nonempty system of homomorphisms
of (A, f) into (L, f). Then T is an a-realizer of (A, f) if and only if the following
implication is valid for each z,y € A

*) (Ve € T)(e(y) = o(f(2)))) = y = f(z).
Corollary 2.7. If (A, f) € U and there exists an injective homomorphism of (A, f)
into (L, f), then a-pdim(A4, f) = 1.
Lemma 2.8. Let (A, f) and (L, f) be connected monounary algebras. If there
exists an a-realizer of (A, f), then R(A) = R(L).
Proof. Suppose that T is an a-realizer of (A, f).

a) First assume that R(L) = m € N. Then there exists x € A such that

o(f(x)) € C(L). Put y = f™*(x). For p € T we get
e(y) = e(fm M (2)) = [ (p(x) = (@) = o(f(2)).

Since T is an a-realizer, (%) of 2.6 yields that y = f(x), i.e., f™(f(z)) =
f(z). Therefore R(A) divides m. From 2.5 it follows that R(L) divides R(A)
(because each ¢ is a homomorphism of (A, f) into (L, f)), thus we obtain
R(A) = R(L).

b) Now suppose that R(L) = 0. According to 2.5, R(A) = 0, too. O
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Theorem 2.9. Let (A, f) and (L, f) be connected monounary algebras such that
R(A) = R(L) # 0. An o-realizer of (A, f) exists if and only if h(A) < h(L).

Proof. Let T be an a-realizer of (A, f). Let a € A—C(A) be such that f(a) € C(A).
There exists z € C(A) with f2(x) = f(a). Put ¢ = f(z). Then f(c) = f(a) € C(A).
First suppose that ¢(a) € C(L) for each ¢ € Y. This implies that for ¢ € T we
have

pla) = p(c) = o(f(x)),

thus by (x), a = f(z), a contradiction. Hence there exists 1) € T such that b =
t(a) ¢ C(L). Since 1 is a homomorphism, the element f(b) is cyclic and

s(a) < s(y(a)) = s(b).

Therefore h(A) < h(L).

Conversely, assume that h(A) < h(L). If h(A) = 0, then let ¢y be an arbitrary
isomorphism of A onto C'(L). It is obvious that T = {¢} is an a-realizer of A. Now
let h(A) # 0. Let u € A — C(A). Then there is a € A — C(A) with f(a) € C(A)
and u € f"(a) for some n € N U {0}. The relation h(A) < h(L) implies that
there is b € L — C(L) such that f(b) € C(L) and that s(a) < s(b). Let b be a fixed
element with this property. Obviously, s(u) < s(b). By [8], Thm., p.157 there exists
a homomorphism v, of (A, f) into (L, f) having the following properties:

(1) tu(u) =10,
2) if v € Upenugoy [T (w) U {f¥(u) : k € N}, then ¢, (v) € C(L).

Denote T = {1, : v € A— C(A)}. Let us verify that T is an a-realizer of (A, f)
according to (x). Assume that z,y € A and that 1, (y) = ¥, (f(x)) for each 1), € T.

a) If f(z) ¢ C(A), then take u = f(z). We get 1, (y) = 1, (w). Since ¥ 1 (1, (u))
is a one-element set {u} by (2), this implies that y = u, i.e., y = f(x).
b) Let f(z) € C(A). If y € C(A) then ¢, (y) & C(L), hence 1, (y) # v, (f(z)),
a contradiction. Thus y € C(A). Take an arbitrary ¢ € Y. Then ¢ is an
isomorphism of C(A) onto C(L), thus the relation ¢(f(z)) = ¢(y) yields
that f(z) =
Therefore T is an a-realizer of (A, f). O

Theorem 2.10. Let (A, f) and (L, f) be connected monounary algebras such that
R(A)=R(L)=0.Let P={u€e A:|f~ (u)] > 1, f~%(u) # 0}. An a-realizer of
(A, f) exists if and only if one of the following conditions is satisfied:
(a) (A, f) =2 (N, f)or (A, f)=(Ny,f) for some k € Card;
(b) (A, f)=(Z, f) and there is a subalgebra of (L, f) isomorphic to (Z )
(c) P%ﬂandforeachuEA q1,q2 € f~1(u), q1 # qz such that f~1(q;) #
there are v € L and distinct elements ¢1,t; € f~!(v) such that s(f’“(u))
s(f¥(v)), s(q:) < s(t;) for each k € NU {0}, i € {1,2}.

0
<

Proof. Let T be an u realmer of (A, f). First suppose that P # (. Take u € P,
v € f72(u), g2 € f~'(u) = {f(z)}. Let 1 = f(z). Since Y is an a-realizer, we
obtain that there is ¢ E T such that ¢(g2) # ¢(q1). Put v = ¢(u). Then s(f*(u)) <
s(e(f*(w) = s(f*(v)), s(ai) < s(p(a:)) for each k € N U{0}, i € {1,}, hence
(c) is valid. Now let P = (. Then (A, f) is isomorphic to one of the algebras
(Z,f),(N, f),(Ng, f) for some k € Card, i.e., either (a) is valid or (A, f) = (Z, f).

04



Each ¢ € T is a homomorphism, thus if (A, f) 2 (Z, f) then (Z, f) is isomorphic
to some subalgebra of (L, f). Therefore one of the conditions (a) — (c) is satisfied.

Conversely, let one of the conditions (a) — (c) be valid. If (a) or (b) is valid,
then there exists a homomorphism g of (4, f) into (L, f); put T = {go}. Let
7,y € A, po(y) = wo(f(x)), y # f(z). If (A, f) is isomorphic to (N, f) or to (Z, f),
then each homomorphism of (A, f) into (L, f) is injective. Let (A, f) be (up to
isomorphism) (N, f) for some k € Card. Further, the relation @o(y) = wo(f(z))
implies that {y, f(z)} € D, which is a contradiction, since f(z) € N — D.

Let (c) hold. Ifu € P, p € f~(u), g € f~*(u) —{f(p)} then take ¢ = f(p), 42 =
q; by (c) (according to [8], as in the proof of Thm.2.9) there exists a homomorphism
Vupg Of (A, f) into (L, f) such that

(1) wupq(u) =,

(2) wnpq(Q) # 'wupq(f(?]))-
Let T the set of all homomorphisms of the form ,,,. We will show that T is
an ca-realizer of (4, f). Let z,y € A and suppose that p(y) = @(f(z)) for each
¢ € T. Put 2 = f(z). From the connectedness we infer that f™(y) = f"(z) for
some m,n € NU{0}; we can assume that m,n are the smallest nonnegative integers
with this property. Since T # 0 and ¢(y) = p(2) for ¢ € T, we get that m # 0
and n # 0. Denote u = f™(y), p = f* (), ¢ = f™ ' (y). In view of the relation
Pupg € T we have

(3) wupq(y) = 'r/)upq(z)'

This implies
fm(wupq(z)} = fm(wupq (y)) = 'pu;pq(fm(y)) = ":lbupq(u) = 'wupq(f“(z)) = f“(%pq(z)),

hence m = n. Assume that y # 2. Next,

Yupq(q) :wrmq(fn_l(y)) = fn—l(wupq(y))a i.e., Yupg(y) € f_(ﬂ—l)(tpupq(q))-
Similarly we obtain Yupe(f(p)) = Yupe(F(F*71(2)) = f* 7 (Yupe(f())),
e, Yupg(f(2)) € F 1 (1hupg(f(p). In view of (3) we get

f_(n—l)("f"um(qn n fr(n"”(wupq(f(lﬂ))) # 0,

which is a contradiction to (2). This concludes the proof. O

3 a-PDIMENSION AND A PRODUCT OF STICKS

In this section we deal with realizers of type (n,k), n € N,k € NU{0}. Further,
we find the value of (1, k)-pseudodimension of a direct product of sticks.

Lemma 3.1. Let n € N,k € NU{0}. An (n, k)-realizer of a connected monounary
algebra (A, f) exists if and only if R(A) = n and f*(a) € C(A) for each a € A.

Proof. The assertion is a corollary of 2.9. O

Theorem 3.2. Let n € N,k € N U {0}.

a) If k =0o0rn =1,k =1, then (n, k)-pdim (A, f) = 1 for each monounary
algebra such that an (n, k)-realizer exists.

b) Let k=1,n > 2. If m € {1,2,...,n}, then there exists (A4, f) € U such that
(n,k)-pdim (A, f) = m. If m € N,m > n, then (n, k)-pdim (4, f) # m for
each (A, f) elU.

¢) If k > 2,m € N, then there exists (A, f) € U such that (n, k)-pdim (4, f) =
m.
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Proof.

a) Assume that an (n, k)-realizer of (A, f) exists. If k = 0, then |A| = |C(A)| =

n by 3.1 and there is an isomorphism ¢y of A onto Z,. Then 2.7 implies .
that (n,0)-pdim (A, f) = 1. If n = 1, k = 1, then 3.1 implies that there
is ¢ € A such that f(a) = ¢ for each a € A. Put ¢(c) = 01, ¢(a) = 1 for
each a € A — {c}. Then {¢} is a (1, 1)-realizer of (A, f) and (1, 1)-pdim
(4,f) =1

From the assumption it follows that L = Z, U {1}.

Let me {1,...,n}. Weput A= Z,U{l,...,m}, f(in) = (i +1),, for each
i€ Z, f(l) =1, foreach I € {1,...,m}. For j € {1,...,m} we define a
mapping ¢; : A — L as follows: ¢;(in) = (i — j)n for each i € Z, ¢;(j) =
1, ¢;j(l) =l =1—j), foreachl € {1,...,m} — {j}. (cf. Fig.2.)

r—*
(m-1), my o (Mm*1) (m-1) my g (m+1)

(AD) (L5

Fic. 2

It is easy to verify that ¢; is a homomorphism for each j € {1,...,m}.
Denote T = {g; : j € {1,...,m}}. Let z,y € A, ¢;(y) = ¢,;(f(z)) for
each j € {1,...,m}. We have w;l(l) = {j} for each j, thus y # j for each
J- Thus y € Z,,. Next, f(z) € Z,, hence in view of the fact that any ¢,
is a bijection of C(A) onto C(L), the relation ¢;(y) = ¢;(f(z)) implies
that y = f(x). Therefore T is an (n,1)-realizer of (A, f) and (n,1)-pdim
(4, f) <m.

Suppose that Y’ is an (n,1)-realizer of (A, f). Let 7 € {1,...,m}. If
Y(j) € Z, for each ¢ € Y’ then

P(7) = Y7 — 1)) = &(f((7 = 2)n)),

J= f((.j - 2)1’1):

which is a contradiction. Thus there exists v; € T’ such that 9;(j) = 1. If
Y =1y for j,1 € {1,...,m}, then v;(I) = 1 = 1;(j), which implies

¥3(in) = %;(f(5) = f(¥;(5)) = f(1) = 0y
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Similarly, ¢;(ln) = On. Further, we have

On = ¥5(ln) = U5 (f1 77 (Gn)) = £ (W50n)) = F77(0n) = (L= ),

thus [ = j. Hence |Y’| > m, therefore (n,1)-pdim (4, f) = m.

Let m > n and suppose that there is (4, f) € U with (n, 1)-pdim (4, =
m. Thus there is an (n,1)-realizer T of (A, f) with [Y| = m. According to
3.1 we have R(A) = n and f(a) € C(A) for each a € A. Up to isomorphism,

A=2Z,UDyUDyU---UD,,

flin) = (i+ 1), for each i € Z,
f(d) =1, foreachd € Dy, L € {1,...,n}.
Let j € {1,...,n}. Define a mapping ¢; : A — L as follows:

@;j(in) = (i = j)n each i € Z,

1 ideDj)
p;(d) = N .
(I—=1-3)n ifde Dy, I#7.

It is easy to verify that {¢; : j € {1,...,n}} is an (n,1)-realizer of (4, f),
hence (n,1)-pdim (A, f) < n, which is a contradiction.

Let k > 2,m € N. There exists t € N such that 2™~1 <t +1 < 2™ We
denote by (A, f) a monounary algebra such that A = Z, U {ay,...,a;} U
{by,...,b:} (suppose that all these elements are distinct and they do not
belong to Z,,), where f(i,) = (i+1), for each i € Z, f(a;) = On, Flby) =a
foreach i =1,...,t.

There exist 2™ distinct m-tuples of the elements (n — 1),,,1. Thus there
exists a set Q = {q1,...,q} of m-tuples of the elements (n — 1)n, 1 with
QI =t, ¢ ((n—1)n...,(n— 1)) for each q € Q. For j € {1,...,m},
1€ {1,...,t} let g(j) be the projection of g into the j-th coordinate. Let
j € {1,...,m}; we will define a mapping ¢; as follows. For | € {1,...,t}
we put

@;(in) = in for each i € Z,

wjila) = a(d),
o(0) = { 2 if a(4) =1,

(n—2), otherwise.
It is easy to verify that {¢; : j € {1,...,m}} is a set of homomorphisms
and that it is an (n, k)-realizer of (4, f) (cf. Example 1).
Next suppose that Y is an (n, k)-realizer of (4, f),T = {¢1,..., ¥}, r =
|Y| < m. For I € {1,...,t} consider an r-tuple p) such that for j €

{1,2,...,7}
. 0 ifYj(a) € Zn
W4y = J ’
) { 1 otherwise.
Let L€ {1,...,t}. If p(j) = O for each j € {1,...,7}, then ¢;(a;) € Zy, for
each j € {1,...,7}; then ¢;(a;)= ¥;((n = 1)n) = ¥;(f((n — 2)n)) and the
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definition of an (n, k)-realizer implies that a; = f((n—2),,), a contradiction.
Therefore each r-tuple p¥) does not consist of zeros only.

Since 9; is a homomorphism, v;(a;) = 1 or ¥;(a;) € Z,. If ,I' € {1,...,1}
and j € {1,...,r}, then either

(1) Vi) = yjlay) or
(2) vila) = 1,¢;(ar) = (n — 1), or
(3) vilar) = (n = D, ¥j(ar) = 1.

By the assumption, » < m — 1, 2" — 1 < 2™~! — 1 < ¢, thus there exist [,!’ €
{1,...,t}, 1 # U’ such that p¥) = p{t'). Then p)(j) = p)(j) foreach j € {1,... 7}
Then we obtain that the cases (2) and (3) yield a contradiction, thus Yila) =
¥j(ap) foreach j € {1,...,r}. This implies that for each j € {1,...,7}, v¥;(f(b)) =
Vjlar) = Yj(ar). According the fact that T is an (n, k)-realizer we get f(b;) = ay,
which is a contradiction.

Thus we have shown that (n, k)-pdim(A4, f) = m. (]

Example 1. Let n =2 and k > 2. For m = 3 we will define (A, f) such that (2, k)-
pdim(4, f) is equal to m. Let us follow the proof of theorem 3.2¢). The relation
22 <t+1<2%implies t € {4,5,6,7}. Let t = 4.

0
/AN
JEIN

(D
FiGc. 3

There exists 2° of 3-tuples of elements 1,15: (1,1,1), (1,1, 15), (1,15, 1), (12,1,1),
(1,12,12), (12,1,13), (12,12,1), (12,12, 13). Next we choose four elements of them
(t=4), eg., let g1 =(1,1,1), g2 = (1,1,12), g3 = (1,12,1) and g4 = (15,1,1). Put
Q = {q1,92,93,914}. We can define three (m = 3) mappings ¢, @2, @3.

O2f{ 12| ai|az|az| ag| by| ba| bz | by
w1 02f 121 1 1 151212 (2 ]0;
w2 02 12 1 1 12 1 2 2 02 2
w3 | 02 1o 1 | 12| 1 |1 [2102]2 |2

It can be verified that {1, @2, @3} is a (2, k)-realizer of algebra (A, f) and (2, k)-
pdim(A4, f) = 3.
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Theorem 3.3. Let (A, f) be a direct product of sticks (A1, f), (A2, f),.. ., (Am, f)
of types ky, ko, ..., ky, such that [{i € {1 m} tki =1} < 1. If k > k; for each
i€ {1,...,m}, then (1,k)-pdim (A, f) =

Proof. Let (L, f) be a monounary algebra of type k, k > k; for eachi € {1,... m}.
We can suppose that L = {0,1,...,k}, A; = {0,1,... &},

L fi-1 ifj#0,
fm_{o ifj =0

in L and in A; for i € {1,...,m}. For j € {1,...,m} we define a mapping
@j + A1 X -+ x Ay — L such that @;((a1,...,am)) = a;. Put T = {p; : j €
{L,...,m}}. Ifz,y € A, ¢;(y) = ¢;(f(x)) for each j € {1,...,m}, then y = f(x).
Thus T is a (1, k)-realizer of (A, f) and (1, k)-pdim (A, f) < m.

Suppose that T is a (1, k)-realizer of (A, f), |Y’| < m. Denote 0 = (0,0,...,0) € A.
Obviously, ¢(0) = 0 for each ¥ € T'. We have |f~1(0)] = |{a = (al, cy )
a; € {0,1} for each ¢ € {1,...,m}}| = 2™. Next, ifa € f~ 1(0), then ¢ (a E {0 1}
for each ¢ € T'. Since ZITl < 2™, there are a,b € f~1(0), a # b such that
Y(a) = (b) for each v € Y’. Without loss of generality, in view of the assumption
that [{i € {1 .ym} k= 1} <1 we get that f~1(b) # 0; let x € f~'(b). Then
¥(a) = ¢¥(f(z)) for each ¢ € T'. The set T is a (1, k)-realizer, of (A, f), thus (x)
implies @ = f(z) = b, which is a contradiction. Therefore (1, k)-pdim (A4, f) = m.
O

Lemma 3.4. Let (B, f) be a monounary algebra fulfilling the condition

(c) if b € B, then there is b’ € B with f(b) = f(b'), f~(b') = 0.
Let (E, f) be a 1-stick. Then (B, f) x (E, f) fulfils (¢) and if (1, k)-pdim(B, f) =
then (1, k)-pdim((B, f) x (E, f)) = p

Proof. Without loss of generality, E = {0,1}. First we show (¢) for the algebra
(B, f)x(E, f). Let (b,e) € BxE. By (c), thereis b’ € B with f(b) = f(b'), f~1(¥') =
(. Take (V',e) € B x E. Then

F((¥€)) = (F(¥), fe)) = (f(b), f(e) = F((b,e)),

FHE €)= {(z1,22) s 1 € FHY), 22 € f7(e)} = 0.

Further suppose that (1, k)-pdim(B, f) = p and that Y is a (1, k)-realizer of (B, f).
For ¢ € T we define a mapping @ : B x E — L as follows. Let (b,e) € B x E, b’
be the element corresponding to b in view of the condition (¢). We put

w(b) if e = 0,

B((b,¢)) = { S

T = {@: ¢ € T}. To prove that T is a (1, k)-realizer of (B, f) x (E, f) as assume that
(z,€), (y,4) € B x E and that @(f((z,e))) = ¢((y,7)) for each g € Y. For any

@ € T we have
¢(f((z,e))) = &((f(2),0)) = (f()).
If 7 =0, then
?((4,7)) = &((1,0)) = »(y),
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thus the fact that z,y € B and that T is a (1, k)-realizer of (B, f) implies that
y = f(z), hence

(v,9) = (f(2),0) = f((,0)) = f((z,e)).
Let j =1.Toy € B thereisy’ € B with f(y) = f(v'), f~}(¥')=0. Forany ¢ € T,

@((,9)) = (v, 1)) = 0y),

ie., w(y') = ¢(f(z)) for each ¢ € T. Since Y is a (1, k)-realizer of (B, f), this
implies that y’ = f(z), which is a contradiction, because f~!(y’) = @. Thus j
cannot be 1. Therefore

(lsk)'pdlm((Bw f) X (Ev f)) S (]-: k)'pdlm(Bw f)

The converse relation is obvious, thus

(l!k)'pdln]((Buf) X (E:f)) = (l,k)-pdlm(B,f) a

Corollary 3.5. Let (A, f) be a direct product of sticks (Ay, f), ..., (An, f) of types
ki,k2, ... km and assume that [{i € {1,...,m} 1 ki =1} =t > L If k > k; for
each i € {1,...,m}, then (1,k)-pdim (A, f) =m —t + 1.

Proof. The assertion is a consequence of 3.3 and 3.4; we can proceed by induction.
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SOME ERROR ESTIMATES IN THE NEWTON METHOD

PETER MALICKY

ABSTRACT. For the numerical solution of the equation f(z) = 0 by the Newton
method the inequality |zn—1 — zn| < § is often used as a stopping rule, where § > 0
is prescribed. We show that this inequality yields no information about |z, — g,
where zp is a root, because the inequality |zn — zo| < |Zn—1 — Zn| is not true in a
general case. We give several simple estimates for |z, — zg|. Particularly, we give a
sufficient condition under which |z, — zg| < |2n-1 — znl.

We consider the equation f(x) = 0, where f is a convex or concave strictly
monotone function of the class C! on the interval (a,b) such that f(a)f(b) < 0
and min(|f'(a)|,|f'(b)|) > 0. To find a numerical solution z, of this equation the
Newton method is often used. Namely, put

b if f is convex and increasing or concave and decreasing
T = o . . .
a if f is convex and decreasing or concave and increasing
and

f(@n-1)

f’(In—l)

Tp =Tp_1 — forn>1.

Then we obtain a monotone sequence (z,)52; which converges to the root .
The inequality |z,_1 — z,| < J is often used as a stopping rule, see [2, p. 87].
This rule is only formal, i.e. it does not imply |z, — z¢| < §, because the estimate
|xn — 20| < |Tn-1 — xy| is false in a general case. This fact is illustrated on Figure
1.

To disprove this estimate we also consider the equation tan ¢ = z, or equivalently
tanz — z = 0, on the interval (m, %’5) Put

flz) =tanz — z.
Since
f(r) <0and lim f(z)= 400,
:C/'S—"
2

2000 Mathematics Subject Classification. 65H05.
Key words and phrases. Newton method, estimate of error, false position method, bisection
method.
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FIGURE 2 Equation tanz = z

62



F1GURE 3 Eguation tanz —xz =0

our equation has a root in the interval (m, i"«r)

2
The derivative .
(z) = —1=tan?4
fiz) cos?z b

is positive and increasing on (m, %ﬁ) Therefore, f is an increasing and convex
function on this interval. We solve this equation by the Newton method starting
with z; = %” — 10~%. The results are presented in Table 1.

We see that the estimate |z, — zo| < |z, — Tn—1] is false. For the behaviour of
the sequence (z,)5, note that
z cos?

sinz  sin’z

Tp = g(Tn-1), where g(z) =

The point 3’21 is not a root of our equation, but it is a repulsive fixed point of the

function g, because
3
"= )=2>1.
/(%)

For any z; € (o, 3F) we obtain a sequence converging to o, but if the initial point
x is closed to ST" then also z,, is closed to 321 for many n. Particularly, if we take
T = ézﬁ — 1079, then we obtain an example which shows that the convergence of
the Newton method may be slower than the convergence of the bisection method.

Remark. All values in this paper were evaluated onto 18-20 significant digits and
then all outputs were rounded onto 10 significant digits.

For the evaluation of xo with a given accuracy 6 there are several possibilities.
The simplest way is the evaluation of z,, until the inequality f(z,, —8)f(z,+8) <0
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Ln Tp-1 — ITn Ln — Lo
4.712288980 0.218879522
4.712189028 | 0.000099953 | 0.218779570
4.711989263 | 0.000199764 | 0.218579805
4.711590298 { 0.000398965 | 0.218180841
4.710794622 | 0.000795677 | 0.217385164
4.709212237 | 0.001582385 | 0.215802779
4.706083007 | 0.003129230 | 0.212673549
4.699964094 | 0.006118913 | 0.206554636
4.688264213 | 0.011699881 | 0.194854755
4.666864413 | 0.021399800 | 0.173454955
4.630993761 | 0.035870652 | 0.137584303
4.580235510 | 0.050758252 | 0.086826052
4.528239646 | 0.051995864 | 0.034830188
4.499076575 | 0.029163071 [ 0.005667117
4.493560666 | 0.005515909 { 0.000151208
4.493409566 | 0.000151100 | 0.000000108
4.493409458 | 0.000000108 | 0.000000000
4.493409458 | 0.000000000 | 0.000000000

G0 =1 O Ot b QO b = 3

et e e e R gy SR,
00 1 S U s W= O WO

TABLE 1

is satisfied. The second possibility is a combination of the Newton method with a
modified method of false position, [1, p.183], i.e. together with z,, we evaluate also

&n by
& =a and

f(xn)(zn — Eﬂ‘l)
f('rn) - f('gn—l)

Then we have &, < zg < z,, (when the function f is increasing and convex). It
means that the inequality x, — &, < § guarantees z, — xo < J. Table 2 contains the
results of evaluation of &, and z,, for the equation tanz = z starting with &, = 4.3
and r; = 4.7.

forn>1.

én =Tn —

€n I Ty —&n
4.300000000 | 4.700000000 | 0.400000000
4.320114416 | 4.688331848 | 0.368217432
4.354413674 | 1.666984472 |1 0.312570798
4.404248369 | 4.631183287 {0.226934918
4.456982727 | 4.580473096 | 0.123490370
4.487397534 | 4.528429052 | 0.041031518
4.493247036 | 4.499138109 | 0.005891073
4.493409340 | 4.493563964 | 0.000154625
4.493409458 | 4.493409570 { 0.000000113
4.493409458 | 4.493409458 | 0.000000000

O W0~ U AW S

-

TABLE 2 Left and right estimates of the root
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For the comparison we evaluate &, by the (simple) method of false position, i.e.

b))
= e
b=47 and £ =43.

where

£n
4.300000000
4.310325422
4.320114062
4.329392330
4.338185494
4.346517706
4.354412045
4.361890542
4.368974227
4.375683153

OO0~ U Wby —3

[

TABLE 3 Simple method of false position

Tables 2 and 3 show that the convergence of the modified method of false position
convergence is faster then the convergence of the simple method. Roughly speaking,
the Newton method accelerates the convergence of the modified method of false
position.

Another left estimates &, of the root may be evaluated by the following scheme,
see [4, p.180]. Put

LH=a and
gnzgnﬁl_%:j_l)) forn>1.

The results are contained in Table 4.

n €n In Tn — ’En
1{4.300000000 | 4.700000000 | 0.400000000
214.301166132 | 4.688331848 | 0.387165716
314.305311541 | 4.666984472 | 0.361672931
414.318465687 | 4.631183287 | 0.312717600
514.352138102 | 4.580473096 | 0.228334994
614.410902541 | 4.528429052 | 0.117526511
7
8
9
0
1

4.466942647 [ 4.499138109 | 0.032195462
4.490428002 | 4.493563964 | 0.003135962
4.493368097 | 4.493409570 | 0.000041473
4.493409450 | 4.493409458 | 0.000000008
4.493409458 | 4.493409458 | 0.000000000

1
1

TABLE 4 Another left estirnates of the root
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The another possibility of the estimate of |z, — zo| is given by the following
theorem, cf. [1, p.163] and [4, p.183].

Theorem 1. Let f be a conver or concave strictly monotone function of the class
C' on the interval (a,b) such that f(a)f(b) < 0, |f'(a)] > 0 and [f'(b)} > 0. Let
2o € (a,b) be the root of f and the sequence (x,)%., be of the Newton method. Then

A ’

IITL - .’13[)' S

where A = min(|f"(a)],|f'(b)]) .

Proof. Since f is strictly monotone, f’(a) and f(b) have the same sign. Moreover,

min f'(z) = min(|f'(a)], | f'(b)]) ,

r€(a,b)

because f is convex or concave. Therefore,

|f ()l = f(2zn) = f(zo)| = |f'(E)l|zn — zo| > A(lzn — 20l ,
where £ is between z,, and z;.
Ezample. Take values from Table 1 and a = 4.45. Then a < z¢, because f (a) < 0.

Since A = f’(a), we obtain

< f(z18) ~13.10"10

0<z13—x0 < F(4.45)

Finally, we prove the following result.

Theorem 2. Let f be a convex or concave strictly monotone function of the class C'?
on the winterval (a,b) such that f(a)f(b) < 0, |f'(a)] > 0 and |f'(b)| > 0. Let
xg € (a,b) be the root of f and the sequence (x,)3, be of the Newton method. Then

0 S l-rn —;EO‘ g (&:ﬁz*ﬂl - 1) ]Invl - xnl < ("g - 1) |33nf1 - "L"l'l,l )

where
A= min(|f(a)], |f'(b)]) and B = max(|f'(a)l,[f'(b)]) -
Particularly,

lTn — mo| € |21 — xn| whenever B < 24 or f'(z,_1) <24.

Proof. Without loss of generality we may assume that the function f is increasing
and convex. We have

flen1) = fl(@na)(@n-1 — zp)
f@no1) = f(xn-1) — f(zo) = f’{G)(mn—l —xp) = f’(g)(zn—l —Tn) + f’(‘g)(ln — Zo),

where g < £ < 21—y .

Therefore,
f’(‘f){rn - xO) = f'(:En—l)(In*] - In) - f’(g)('rn—l - In)
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and

f’(ﬂ"'n—l)

Ty = To = e (Tno1 — Tn) = (Tn-1 — Tn) = (ﬂﬂiﬁ:_l_)_

f1(6) f(€)

Since f is convex and a < zg < & < ZTp-1 < b, we have f'(a) < f'(§)
and f'(z,—1) < f'(b). So, we obtain the desired inequality.

1) (@t = 22).

Ezample. Take values from Table 1 and a = 4.45. We obtain

f’(-TlT)

< — <
0Sms =20 (f’(4.45)

- 1) (I]_';' - 5813} S 45 . 10-10 .

(By Table 1 we have x;7 — z15 = 0. However, both values x;7 and x5 are rounded.
Therefore, we have used r17 — 215 < 107°.)

Remark. If the inequality B < 2A is not satisfied, then the interval (a,b) is too
wide. We may use the bisection method until this inequality is satisfied and then
the Newton method may be used with a true estimate z,, — 29 < Zn_1 — Zn.
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