LINE DIGRAPHS OF COMPLETE BIPARTITE SYMMETRIC DIGRAPHS ARE RATIONAL

JÁN BEKA

ABSTRACT. A digraph D is divisible by t if its arc set can be partitioned into t subsets, such that the sub-digraphs (called factors) induced by the subsets are all isomorphic. If D has q arcs, then it is t-rational if it is divisible by t or t does not divide q. D is rational if it is t-rational for all $t \ge 2$. In this note, we show that graphs $L(K_{n,n}^*)$ are rational.

1. Introduction

An isomorphic factorization of a digraph D is a partition of its arc set into subsets such that the sub-digraphs (called factors) induced by the subsets are mutually isomorphic. If there exists an isomorphic factorization D into t factors, we say that D is divisible by t. For given t and a given digraph D having precisely q arcs, an obvious necessary condition for the divisibility of D by t is that t divides q. This is called the divisibility condition for D and t. D is t-rational if D is divisible by t or the divisibility condition for D and t is not satisfied, otherwise D is t-irrational; D is rational if it is t-rational for all $t \ge 2$, otherwise D is irrational, in which case D is t-irrational for some $t \ge 2$.

The problem which concerns us is to find values of r and t for which all r-regular digraphs are t-rational. Wormald [6] has shown that for fixed t and r such that $2 \le t \le r$, almost all r-regular digraphs are not divisible by t, and for fixed $t \ge 2$ almost all regular tournaments also are not divisible by t. Further, in [6] it was proved that all 1-regular digraphs are rational. For r-regular graphs, some results in the direction were achieved in [1, 2, 3, 4, 5, 6].

The line digraph L(D) of a digraph D(V,A) has the arc set of D as its vertex set, and there is an arc from xy to zw in L(D) if y=z. The aim of this paper is to prove the divisibility of digraphs $L(K_{n,n}^*)$ by t for any t dividing the number of its arcs.

2. Result

Let $K_{n,n}^*$ be a complete bipartite symmetric digraph with partite sets V_1 and V_2 , where $|V_1| = |V_2| = n$. Then the line graph digraph $L(K_{n,n}^*)$ is a digraph with $2n^2$ vertices, $2n^3$ arcs and regular of degree n. We shall prove the following theorem:

²⁰⁰⁰ Mathematics Subject Classification. 05C70; Secondary 05C20. Key words and phrases. isomorphic factorization, line graph.

Theorem. Let n > 1 be any positive integer. Then the line graph $L(K_{n,n}^*)$ is rational.

Proof. Assume $t|2n^3$ for any positive integer t>1. We show that then $L(K_{n,n}^*)$ is divisible by t.

Let $K_{n,n}^*$ denote the complete bipartite symmetric digraph with partite sets $V_1 = \{x_1, x_2, \dots, x_n\}$ and $V_2 = \{y_1, y_2, \dots, y_n\}$, and let

$$\alpha_1 = (x_1 y_1 x_2 y_2 \dots x_n y_n)(x_1 y_2 x_2 y_3 \dots x_n y_1) \dots (x_1 y_n x_2 y_1 \dots x_n y_{n-1})$$

$$(y_1 x_1 y_2 x_2 \dots y_n x_n)(y_2 x_1 y_3 x_2 \dots y_1 x_n) \dots (y_n x_1 y_1 x_2 \dots y_{n-1} x_n) =$$

$$= \varepsilon_1 \varepsilon_2 \dots \varepsilon_n \gamma_1 \gamma_2 \dots \gamma_n$$

be the vertex permutation of $L(K_{n,n}^*)$. Let α_2 denote a permutation of arcs of $L(K_{n,n}^*)$ that is induced by the permutation α_1 . The induced arc permutation α_2 is seen to have the property that the length of every cycle is n, and that the number of these cycles is equal to $2n^2$. Thus induced permutation α_2 has the expression of the form of a product of cycles

$$\alpha_2 = \prod_{i=1}^n \prod_{j=1}^n \varepsilon_i \gamma_j \cdot \prod_{j=1}^n \prod_{i=1}^n \gamma_j \varepsilon_i.$$

Define now a new digraph $K^*(A, B)$ with partite sets $A = \{u_1, u_2, \ldots, u_n\}$ and $B = \{v_1, v_2, \ldots, v_n\}$. Let every vertex $u_i(v_i)$ correspond to the cycle $\varepsilon_i(\gamma_i)$, $i = 1, 2, \ldots, n$, and let the vertex $u_i(v_j)$ be connected by an arc with the vertex $v_j(u_i)$ if and only if a cycle $\varepsilon_i \gamma_j(\gamma_i \varepsilon_i)$ belongs to α_2 . It is evident that the digraph $K^*(A, B)$ is isomorphic to $K_{n,n}^*$. Next, let $\overrightarrow{K}(X,Y)$ denote a complete bipartite digraph which contains all arcs of which start-vertex is from X and end-vertex is from Y.

The exact construction of t isomorphic factors of $L(K_{n,n}^*)$ depends on the parity of t.

Case 1. Let t be even and let $t|2n^3$. Then t=2r for some positive integer r, and therefore r divides n^3 . Let $\gcd(r,n^2)=r_1$. Consequently, there exist positive integers b and c, such that b|n, c|n, and $r_1=bc$. Next, let $r|r_1=d$. Then obviously d|n.

Divide $K^*(A, B)$ into two isomorphic digraphs $\overrightarrow{K}(A, B)$ and $\overrightarrow{K}(B, A)$. Owing to this it is sufficient to construct a decomposition of $\overrightarrow{K}(A, B)$ into r isomorphic sub-digraphs.

Firstly, construct the decomposition of $\overrightarrow{K}(A,B)$ into r_1 isomorphic sub–digraphs. Let $A = \bigcup_{k=1}^{b} A_k$, $B = \bigcup_{s=1}^{c} B_s$, $|A_k| = n/b$, and $|B_s| = n/c$, where the sets A_k and

 B_s are mutually disjoint. Define r_1 sub-digraphs of $\overrightarrow{K}(A,B)$ in the following way: $G_{ks} = \overrightarrow{K}(A_k,B_s)$ for every ordered couple $(k,s) \in \{1,2,\ldots,b\} \times \{1,2,\ldots,c\}$. Sub-digraphs G_{ks} are all isomorphic because there exists an isomorphism between $G_{k_1s_1}$ and $G_{k_2s_2}$ induced by mapping $(k_1,s_1) \to (k_2,s_2)$. By the backward application of the previous correspondence on the digraphs G_{ks} , we get the decomposition of $L(K_{n,n}^*)$ into r_1 isomorphic sub-digraphs, denote them by F_{ks} . To complete the proof it now suffices, without loss of generality, to decompose F_{11} into d isomorphic sub-digraphs. Let one part of the complete bipartite digraph F_{11} contains vertices

of cycles $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{n/b}$ and second part contains vertices of cycles $\gamma_1, \gamma_2, \dots, \gamma_{n/c}$. Denote by α_2/F_{11} the reduced induced arc permutation which contains only those cycles in α_2 which correspond to arcs belonging to F_{11} . Then

$$\alpha_2/F_{11} = \prod_{i=1}^{n/b} \prod_{j=1}^{n/c} \varepsilon_i \gamma_j$$

is the product cycles having lengths which are multiples of d as d|n. Choose now from each cycle of the permutation α_2/F_{11} an arc h_{ij} that occupies the first place in given cycle and put

$$E = E(F_{111}) = \{ (\alpha_2/F_{11})^{ud}(h_{ii}); u \ge 0 \}.$$

Then $\{E, (\alpha_2/F_{11})(E), \ldots, (\alpha_2/F_{11})^{d-1}(E)\}$ is a partition of the arcs of F_{11} . This constitutes an isomorphic factorization of F_{11} , as the sub-digraph F_{111} induced by E is isomorphic to the sub-digraphs of F_{11} induced by each of $(\alpha_2/F_{11})(E), \ldots$ Isomorphisms between F_{111} and these sub-digraphs are provided by the corresponding powers of α_1 . Hence F_{11} is divisible by d. In consequence of preceding follows that the digraph $L(K_{n,n}^*)$ is divisible by t.

Case 2. Let t be odd and let $t|2n^3$. Then t divides n^3 . Let $(t, n^2) = t_1$ and let $t/t_1 = d$. Then obviously d must divide n. Since $t_1|n^2$, then there exist positive integers b and c such that b|n, c|n, and $t_1 = bc$. Consider subsets A_k and B_s that have the same meaning as in the Case 1.

Suppose b>1 and c>1. Define for every ordered couple $(k,s)\in\{1,2,\ldots,b\}\times\{1,2,\ldots,c\}$ digraphs $G_{ks}=\overrightarrow{K}(A_k,B_s)\cup\overrightarrow{K}(B_{s+1},A_k)$ where the addition s+1 is taken modulo c with residues $1,2,\ldots,c$. It is seen that every digraph G_{ks} is isomorphic to the directed "path" \overrightarrow{P}_3 with "vertices" B_{s+1},A_k and B_s , whereupon these paths are arc-disjoint. Then digraphs F_{ks} obtained from G_{ks} by analogous fashion as stated above provide an isomorphic factorization of $L(K_{n,n}^*)$ into t_1 factors. Take now the digraph F_{11} and decompose it into d isomorphic sub-digraphs. Let one part of the bipartite digraph F_{11} contains vertices that are elements of cycles $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{n/b}$ and the second part contains vertices that are elements of cycles $\gamma_1, \gamma_2, \ldots, \gamma_{n/c}, \gamma_{n/c+1}, \ldots, \gamma_{2n/c}$, and let the induced reduced permutation α_2/F_{11} contains only those cycles from α_2 for which there exists a corresponding arc in F_{11} . Then

$$\alpha_2/F_{11} = \prod_{i=1}^{n/b} \prod_{j=1}^{n/c} \varepsilon_i \gamma_j \cdot \prod_{j=n/c+1}^{2n/c} \prod_{i=1}^{n/b} \gamma_j \varepsilon_i,$$

where all cycles of α_2/F_{11} have lengths which are multiples of d. From each cycle $\varepsilon_i \gamma_j$ and $\gamma_j \varepsilon_i$ in α_2/F_{11} choose the first arc h_{ij} and e_{ji} , respectively, and put

$$E = E(F_{111}) = \{ (\alpha_2/F_{11})^{ud}(h_{ij}), (\alpha_2/F_{11})^{ud}(e_{ji}); u \ge 0 \}.$$

The system $\{E, (\alpha_2/F_{11}(E), \dots, (\alpha_2/F_{11})^{d-1}(E)\}$ is a partition of the arc set of F_{11} and sub-digraphs induced by these subsets provides an isomorphic factorization of F_{11} . Thus F_{11} is divisible by d und in consequence of the preceding the digraph $L(K_{n,n}^*)$ is divisible by t.

Suppose now b>1 and c=1. Then d=1 and t=b. Define in this case b subdigraphs of $K^*(A,B)$ in this way: $G_k=\overrightarrow{K}(A_k,B)\cup\overrightarrow{K}(B,A_{k+1})$ for $k=1,2,\ldots,b$. The addition k+1 is taken modulo b with residues $1,2,\ldots,b$. Note, that subsets A_k have the same meaning as in Case 1. As above, the gained sub-digraphs F_k are all isomorphic because each of them is isomorphic to the directed "path" \overrightarrow{P}_3 with "vertices" A_k , B and A_{k+1} , and these directed "paths" are arc-disjoint. Hence $L(K_{n,n}^*)$ is divisible by t. Since for every t dividing $2n^3$ the digraph $L(K_{n,n}^*)$ is divisible by t, then $L(K_{n,n}^*)$ is rational, which completes the proof.

In conclusion, we note that analogous theorem for non-oriented graphs $L(K_{n,n})$ will be proved in the forthcoming paper.

REFERENCES

- [1] Beka, J.:, Isomorphic factorization of r-regular graphs into r-parts (to appear).
- [2] Beka, J.:, t-rational regular graphs (to appear).
- [3] Ellingham, M. N. and Wormald, N. C.:, Isomorphic factorization of regular graphs and 3regular multigraphs, J. London Math. Soc. (2) 37 (1988), 14-24.
- [4] Ellingham, M. N.:, Isomorphic factorization of regular graphs of even degree, J. Austral. Math. Soc. (Series A) 44 (1988), 402-420.
- [5] Ellingham, M. N.:, Isomorphic factorization of r-regular graphs into r-parts, Discrete Math.
 69 (1988), 19–34.
- [6] Wormald, N. C.:, Isomorphic factorization VII: Regular graphs and tournaments, Journal of Graph Theory, 8 (1984), 117-122.

(Received October 18, 2001)

Department of Algebra and Number Theory
Faculty of Natural Sciences
Constantine the Philosopher University Nitra
Tr. A. Hlinku 1
SK-949 74 Nitra
SLOVAKIA

E-mail address: jbeka@ukf.sk