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A NOTE ON THE IMPROPER
KURZWEIL-HENSTOCK INTEGRAL

ANTONIO BoccuTo AND BELOSLAV RIECAN

ABSTRACT. A connection is studied between the improper Kurzweil-Henstock inte-
gral on the real line and the integral over a compact space.

INTRODUCTION

In [5] two possibilities are mentioned of defining the improper Kurzweil-Henstock
integral on the real line (see also [2] for a more general range). In {1] and [6] the
Kurzweil-Henstock construction has been examined for a general compact range. It
is natural to consider one-point compactification of the real line. Therefore we work
with the compactification and we prove a convergence theorem in compact spaces
describing the situation from the real case.

KURZWEIL-HENSTOCK INTEGRAL IN COMPACT TOPOLOGICAL SPACES

Let IN be the set of all strictly positive integers, IR the set of the real numbers,
IR™ be the set of all strictly positive real numbers. Let X be a Hausdorff compact
topological space. If A C X, then the interior of the set A is denoted by int A.

We shall work with a family F of compact subsets of X closed under the in-
tersection and a monotone and additive mapping A : F — [0, 4+oc]. The additivity
means that

(1) MAB) + MA[B) = MA) + A(B)

whenever A, B, A|JB € F.
By a partition (detaily, (F, M)-partition ) of a set A € F we mean a finite collec-
tion {(Uy,t1),..., (Uk,tx)} such that

(i) ul,... ,ukE.F,
k
(i) |t =4,

=1
(ii)) AU (U;) = 0 whenever i # j,
(iv) el (i=1,... k).
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A finite collection {(Us,t1),... , (U, ti)} of subsets of A € F, satisfying conditions
(i), (iii) and (iv), but not necessarily (ii), is said to be decomposition of A. We shall
assume that F separates points in the following way: to any A € F there exists a -
sequence (Ay)n of partitions of A such that

(i) An41 is a refinement of Ay,
(i) to any z,y € A, x # y, there exist n € IN and B € A, such that z € B and
y ¢ B.
We note that this assumption is fulfilled if the topological space X is metrizable or
it satisfies the second axiom of countability (see [6]).

A gauge on a set A C X is a mapping § assigning to every point z € A a
neighborhood é(z) of z. If D = {(Ur,t1),... , (U, tx)} is a decomposition of A and
& is a gauge on A, then we say that D is -fine if U; C §(t;) for any i € {1,2,... ,k}.

We obtain a simple example putting X = [a,b] C IR with the usual topology,
F =the family of all closed subintervals of X, A([e,8]) =8 -a,a <a < B <bh
Any gauge can be represented by a real function d : [a,b] — IR™, if we put 6(z) =
(z — d(z),z + d(z)).

Another example is the unbounded interval [a,+o0] = [a,+00) | J{+00} con-
sidered as the one-point compactification of the locally compact space [a,+00).
The base of open sets consists of open subsets of [a,+00) and the sets of the
type (b, +00) J{+oc}, @ < b < 400. Any gauge in [a, +oo| has the form d(z) =
(z — d(z),z +d(x)), if x € [a, +00] (N IR, and §(400) = (b, +00] = (b, +00) U{+oc},
where d denotes a positive real-valued function defined on [a,+c0), and b denotes
a real number.

Let us return to the definition of Kurzweil-Henstock integral (K H-integral) on
X. IfD = {(U,t1),.-., Uk, tk)} is a decomposition of a set A, and f: X — IR,
then we define the Riemann sum as follows:

k
S(£,D) = f(t)AU),
i=1

if the sum exists in IR, with the convention 0 - (+00) =0 (=o0) = 0.
We note that the fact that F separates points guarantees the existence of at
least one &-fine partition D such that S(f, D) is well-defined for any gauge 0 (see

(6], [8])-

Definition 2.1. A function f : X — IR is inlegrable on a set A if there exists
I € IR such that Ve > 0 there exists a gauge ¢ on A such that

(2) IS(f,D) 1| <¢

whenever D is a é-fine partition of A such that S(f,D) exists in IR. We denote

1= 1

(see also [6], Definition 1.8, p. 154).



THE CONVERGENCE THEOREM
We now prove the following:

Theorem 3.1. Let X = Xy J{zo} be the one-point compactification of a locally
compact space Xo. Let f : X — IR be a function such that f(zo) = 0. Let (An)n
be a sequence of sets, such that A, € F, Ay, C intApy1, Anyr \int A, € F,

o0
MAR\intAy) =0 (n =1,2,...), U Ap = Xo. Let f be integrable on A, (n =
n=1
1,2,...) and let there exist in IR an element I such that, Ve > 0, there exists an
integer ng such that

/Afﬂr‘ge VAEF, AD Apn,.

Then f is integrable on X andf f=1r
X

Proof. Let € be an arbitrary positive real number, and ng € IV be as in the hy-
potheses of the theorem. Put Ay = 0, B, = A,,41\int A, (n=1,2,...). Proceeding
analogously as in [6], Lemma 1.10, and as in [2], we get that f is integrable on every
subset of A, belonging to 7 (n =1,2,...) and thus, in particular, f is integrable
on B, (n=1,2,...). Therefore, Vn € IN, there exists a gauge d, on B,, such that

(3) f - S(f: Dn)

Bn

€

= on+3

for any d,-fine partition D, of B,,. From (3) and Henstock’s Lemma (see also [6],
Lemma 2.1., pp. 158-159; [5], Theorem 3.2.1., pp. 81-83), it follows that

£
S 2n.+2

(4) /U I-5U,E)

i=1 1

for each d,-fine decomposition &, = {(Vi,t1),...,(Vn,tn)} of B,. Evidently
B[\ Bns+1 = 4An\int A, Vne .

Therefore
By = (Bn () Ba1) | J(int B,) | J(Bx ((Bns1) VYn

Moreover, it is easy to check that

(5) B; N By = ) whenever |j — 1| > 2
and that
(6) (int Bp) N (int Bpsy) =0 Vn € N,

Now define a gauge § on X by the following formula:
( Su(z) [ (int By)ifz € int By,

(7) 8(z) = 5n(x)ﬂan+1(x)ﬂ(int,4,.+1)ifa:eBRQBM, (n=1,2,...)

(Xo\ An,) {0 }ifz = .
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Let D = {(U1,t1), ..., (Uk,tx)} be a d-fine partition of X. There exists (U, ti,) €
D, with iy € {1,2,...,k}, such that z( € U;,. We shall prove that t;, = xo. Namely,
in the opposite case,

To € Uiy T 6(ti,) C Onltiy)

for some n. But 6,(t) € Xy for t # xg. We have obtained zy € X, that is a
contradiction.
Since f(xz¢) = 0, the Riemann sum S(f, D) has the form

S flt) M),
i=1,... k,i#ig
and t; € Xp ('E =1,..., k1 -‘,éi[]) Let
A= B,
neT

where
(8) T={neIN:3ie{l,... k},i#i: BnNl; #0}.

By (7) , and since D is a §-fine partition of X, we get that

(9) AD Ay,

Lf—[‘gs

We claim that, if i4;, 1 # ig, has nonempty intersection with at least two of the
int By,'s, then necessarily there exists n € IN such that the point ¢; corresponding
to U; belongs to B, N B, 1. Indeed, if ¢; € int B,, for some n, then, from (7) and
the fact that D is a §-fine partition of X, we'd have

By hypothesis we have

(10)

U, Co(t;) CintBy

this is impossible, by virtue of (5) and (6). From this and since

(Bt () Ba) (\(Ba[)Bns1) =0 Vn,

it follows that, for every i = 1,2,... |k, i # ip, the B,’s having nonempty inter-
section with U; are at most two, while the B,’s which have nonempty intersection
with U;, can be infinitely many (even all the B,,’s). Thus we proved that the set T
in (8) is finite.
For n € T define a decomposition &, of B,, in the following way:
gn ={(ui,t1’} 1 € int Bn}
(H{@h () Bn,ts) : ti € Bu ) Bua}

U{(z’{ian;tz) 1t € BﬂﬂBH-l‘l}'
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Then, by construction, we have:

(11) S(£,D) =Y S(f,€n)

neT

by additivity of A and since A, \ int A, = Bn()Bn41 C int A,41 and A(A, \
intA,)=0vne V.
Similarly,

Since Dy, is d,-fine, we have (3). From (3), (10), (11), (12), and (9) we obtain:

I5(/,D) - 1I| =

> S(fiEn) -1

neT

Z(S(f,sn)-fu uf)+ZTfU f-1
Ui C int Baiziglhs ne

<

-"_eT L, C |nt8n,i¢|0u|

€
E:S(f,c‘?n)—/ f+/f—[§§ — < 26
271+2
neT Ui, c int By, izgigUi A neT
From this the assertion follows. [
APPLICATIONS

The following results are consequences of Theorem 3.1:

Proposition 4.1. ([5], Theorem 2.9.3., pp. 61-63) Let f : [a, +-00] — IR be such

that f(4+00) = 0, f be integrable on [a,b] for any b > a, and let there exist in IR
the limit
lim
b—+o0 [a,b]

Then f 1s integrable on [a, +00], and

f= lim f
-/[a,+00] b—+o0 [a,b]

Proposition 4.2. (see also (5], Theorem 2.8.3., pp. 57-59 and Remark 2.8.4, p.57)
Leta,be R, a<b, f:[a,b] = R, f be integrable on [a,z] for any a < z < b, and
let there exist in IR the limit
lim
xz—b~ [a,z]

Then f is integrable on [a,b], and

f f= lim [ f.
] T=b" Jlaa)
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Proof. We observe that [a,b] = [a,b) | J{b} can be considered as the one-point com-
pactification of [a,b). The only difference is that we did not assume f(b) = 0. Of
course, one can put g(x) = f(z) — f(b), and use Theorem 3.1 with respect to the -
function g. Then we have

g= lim 9,
n/{a.,bI z—b" [a,z]

and hence

f=f(b)(bfa)+] g=

[a,b] [a,b]
= lim f(b)(z —a)+ lim g=
z—b= z—=b" J{a,x)
= lim f (g + f(b)) = lim 7.
z—b" Jig,z] z—b" Jia,z)

This concludes the proof. 0
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