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JOIN AND INTERSECTION OF HYPERMAPS

ANTONIO BREDA D’AZEVEDO AND ROMAN NEDELA

ABSTRACT. Hypermaps are generalisations of maps - 2-cell decompositions of closed
surfaces. The correspondence between hypermaps and quotients of the group A freely
generated by three involutions is well-known. In this correspondence hypermaps cor-
respond to conjugacy classes of subgroups of A, and hypermap coverings to the
subgroup containment.

Let H and K be two hypermaps. We shall introduce and study two binary oper-
ations - join and intersection, defined on hypermaps. The corresponding operations
in the subgroup representation is the intersection of two subgroups of A and the
subgroup closure in A. We investigate basic properties of the join and intersection,
particular attention is paid to the study of orthogonal hypermaps, final sections are
devoted to the study of the relationship of some algebraic and topological properties
of hypermaps and the join and intersection. As a byproduct we get a method of com-
parison of two hypermaps which led us to the definition of the shared cover index.
This transpired to be a generalisation of the chirality index defined in [3]. In fact,
the chirality index of an oriented regular hypermap H is just the shared cover index
of H with its mirror image.

1. INTRODUCTION

A topological map is a 2-cell decomposition of a compact connected surface. A
hypermap is a certain abstraction of a topological map linking different fields of
mathematics including combinatorics, group theory, geometry of Riemann surfaces,
algebraic geometry and Galois theory. For a survey explaining these relations we
refer the reader to [9,10]. Formally, a hypermap is a 4-tuple (F;rg,r1,72), where
F is a set of flags and r;, i = 0,1,2 are fixed point free involutory permutations
acting on F such that (rg,ry,r2) is transitive on F.

It is known that any hypermap can be viewed as a quotient of the universal
hypermap given by the action of the group A = {rg,r1,r9;7¢ =¥ =712 = 1) on
itself by left multiplication. This gives rise to a correspondence between subgroups
of A, called hypermap subgroups in this context, and hypermaps. In particular,
normal subgroups of finite index in A determine hypermaps which automorphism
group acts regularly on the set of flags. Using the representation of hypermaps via
hypermap subgroups it is easy to see that for any two regular hypermaps H, K
there is a least regular common cover H V K, called the join of H and K, satisfying
the following property: if a regular hypermap A covers both H and K then it covers
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H V K. Similarly, we define H A K to be the largest regular hypermap covered by
‘H and K, called here the intersection of hypermaps. Although both constructions
are known [18,2,3], no systematic study of their properties (from the point of view
of theory of hypermaps) was done, except the paper of S. Wilson [18] where the
investigation is restricted to joins of maps.

The introduction is followed by a section where we develop some necessary defi-
nitions, notations and mention some basic facts on hypermaps and their represen-
tations. In Section 3 we introduce the join and intersection of two hypermaps and
prove some fundamental results about them. In Section 4 we study the structure of
the monodromy group of the join and intersection of two regular hypermaps, this
is equivalent with the study of the corresponding automorphism groups. In Section
5 we study the orthogonality of two hypermaps, an interesting phenomenon related
with the join and intersection of them. Final Sections are devoted to an investiga-
tion of orientability, reflexibility and self-duality of regular hypermaps in relation to
the join and intersection. Several ideas and results from (3] and [18] are generalised
there.

2. HYPERMAPS AND SUBGROUPS OF A

A topological hypermap H is a cellular embedding of a connected 3-valent graph
X into a closed surface S such that the cells are 3-coloured (say by black, grey and
white colours) with adjacent cells having different colours. Numbering the colours
0, 1 and 2, and labelling the edges of X with the missing adjacent cell number, we
can define 3 fixed points free involutory permutations r;, ¢ = 0, 1, 2, on the set F
of vertices of X; each r; switches the pairs of vertices connected by i-edges (edges
labelled 7). The elements of F are called flags of H and the group G generated by
ro, 1 and 3 is called the monodromy group Mon (H) of the hypermap H. The cells
of H coloured 0, 1 and 2 are called the hypervertices, hyperedges and hyperfaces,
respectively. Since the graph X is connected, the monodromy group acts transi-
tively on F' and the orbits of (rg,71), (r1,72) or (rg,72) on F determine hyperfaces,
hypervertices and hyperedges, respectively. Let k = ord(rory), m = ord(rir2) and
n = ord(rary) be the orders of the respective elements in the monodromy group.
The triple (k,m,n) is called the type of the hypermap. Maps are hypermaps satis-
fying condition (rgr2)? = 1. In other words, maps are hypermaps of type (p,q,2)
or of type (p,p, 1).

It is known that all information on the topological hypermap H is coded in the
three associated fixed points free permutations acting on F (see for instance [4, 6,
11, 12, 14, 15]) . Thus we define a hypermap to be a 4-tuple (F;rg,r1,72), where
ri, i = 0,1,2 are fixed point free involutions acting on F such that the action of
Mon (H) = (rq,71,72) is transitive. Let H = (F;rg,r1,72) and K = (F';to,t1,12).
A homomorphism H — K is a mapping 7 : F — F' such that t;m = mr;, for
each i = 0,1,2. Due to the transitivity of the action of Mon (K) a hypermap ho-
momorphism is necessarily surjective, thus homomorphisms between hypermaps
are alternatively called coverings. An easy but fundamental observation estab-
lishes that given covering m : H — K there is an induced group epimorphism
7* : Mon (H) — Mon (K) taking r; — t; for ¢ = 0,1, 2. Homomorphisms of hyper-
maps correspond to branched coverings of topological hypermaps mapping i-cells
onto i-cells for 4 = 0,1,2. A bijective homomorphism H — K is an isomorphism,
we write H =2 K in this case. An automoerphism H — H is a permutation of flags
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of H commuting with the involutions r;, for each ¢ = 0,1,2. In what follows, we
shall always let the elements of the monodromy group of a hypermap H having left
action on the flags, while the automorphisms of H will act from ‘right’.

It is well-known (and easy to see) that the action of the automorphism group of
a hypermap on its flags is semi-regular (i. e. the stabiliser of a flag is trivial). In the
case the automorphism group Aut (H) acts regularly on the flag-set of a hypermap
H, the hypermap H is called regular.

Besides the monodromy group G = Mon(H) = (rg,r1,72) of a hypermap we
consider its even word subgroup generated by G* = (p, A), where R = r;ry and
L = rory. Obviously, it is a subgroup of index at most two. If [G : G| = 2 the
hypermap H is orientable. The category of oriented hypermaps is formed by triples
(D; R, L) where R, L are permutations generating a group (the oriented monodromy
group) acting transitively on the set of darts D. The notions of homomorphism, of
isomorphism and of automorphism are defined in the obvious way. An oriented map
is regular if its automorphism group acts regularly on the set of darts.

Let us denote by

A ={po,pr,pa; g =17 =75=1)

the free product of three two-element groups.

The associated (infinite) hypermap U = (A; pg, p1, p2), with p; (i = 0,1,2) act-
ing by left multiplication, will be called the universal hypermap. It follows that
the monodromy group of any hypermap H is an epimorphic image of A and this
epimorphism induces an action of A on flags of ‘H. Hence H can be represented
as a hypermap (A/H;r{,r{,75), where H is a stabiliser of a flag in the action of
A, A/H is the set of left cosets of H and the action of r/ is defined by the rule
ri(zH) = ryzH for i = 0,1,2. The group H of finite index is called the hyper-
map subgroup of H. The above defined hypermap corresponding to a hypermap
subgroup H will be denoted by U/H and will be called an algebraic hypermap. A
routine calculation shows that two subgroups H; and Hy of A determine isomor-
phic hypermaps if and only if they are conjugate. Hence, the representation of a
hypermap by a hypermap subgroup is not unique, this is because in an irregular
hypermap two flag stabilisers may be different although they are always conjugate.
More generally, H covers K if and only if there exist ¢ € A such that H9 < K. As
concerns properties of algebraic hypermaps the following (well-known) statement is
worth to mention explicitly. Recall that given groups H < G the normaliser Ng(H)
is a subgroup of G consisting of g € G such that HY = H.

Proposition 2.1. Let H be an algebraic map with a hypermap subgroup H < A.
Then Aut(H) = Na(H)/H.

Proof. Let ¢ be an automorphism of H taking H onto gH. We show that the
assignment A : ¢ +» gH defines the required isomorphism. Since ¢ is an automor-
phism of H, we have hgH = h(Hy) = (hH)p = ghH = gH for every h € H.
Thus g normalises H. By its definition A is a homomorphism. The semi-regularity
of the action of the automorphism group implies that A is injective. To see that it
is surjective, let us denote by ¢, the mapping *H + zgH. This is a well-defined
automorphism if and only if for every h € H, we have hgH = gH. But the latter
statement means g € Na(H). O
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It follows that a hypermap H is regular if and only if the associated hypermap
subgroup is normal (see also [7,6]). Hence H is uniquely determined in this case. In
what follows we (as a rule) denote by H < A the hypermap subgroup associated .
with a regular hypermap H. To establish a one-to-one correspondence between the
normal subgroups of finite index of A and regular hypermaps we need to extend the
family of all regular hypermaps by considering a trivial hypermap being the one-
flag hypermap with the trivial action of the three defining involutory permutations.
We shall use 1 to denote the trivial hypermap. The hypermap subgroup of the
trivial hypermap is A. Let H and K are regular hypermaps. Then H — K if
and only if K > H. Hence there is an isomorphism between the set of regular
hypermaps partially ordered by the relation "to be a cover”, and the set of normal
(torsion free) subgroups of finite index ordered by the subgroup relation. In what
follows this correspondence will be extensively employed. In fact, the whole paper
is devoted to a detailed investigation of this fundamental correspondence. Let us
remark that coverings between regular hypermaps are necessarily regular (see [13]),
i. . the group of covering transformations acts regularly on each flag-fiber. If H — K
are regular hypermaps with the hypermap subgroups H < K then the covering
is defined by mapping m : ©H + zK and the covering transformation group is
isomorphic to the kernel Ker w of the above group epimorphism 7 : A/H — A/K.

Similar statements about the correspondence between oriented hypermaps and
conjugacy classes of subgroups of finite index of the free 2-generator group At < A
can be established. In particular, there is one-to-one correspondence between the
isomorphism classes of oriented regular hypermaps and normal subgroups of finite
index in A*.

The reader interested to get more information on maps, hypermaps and related
topics is referred to [4, 5, 6, 9, 10, 11, 15, 16]. As concerns the related parts of
theory of permutation groups an old but popular monograph is [17].

3. JOIN AND INTERSECTION OF TWO HYPERMAPS

Let H =U/H and K = U/K be algebraic hypermaps. Set H VK =U/(H N K)
and H A K = U/{H,K). The hypermaps H v K, H A K will be called join and
intersection of H and K, respectively.

The following two propositions are direct consequences of definitions.

Proposition 3.1. Let H =U/H and K = U/K be algebraic hypermaps. Then
if both H and K are finite then HV K and H A K are finite,
if both H and K are regular then HV K and H A K are regular as well,
if H — K is a covering then HVK =H and HAK = K.
if a hypermap X = U/X covers both H and K then it covers HV K,
if @ hypermap X = U/ X is covered by both H and K then it is covered by
HVK,

Proposition 3.2. If H and K are reqular hypermaps then HV K and H A K are
well-defined binary operations on isomorphism classes of hypermaps.

Proof. The respective hypermap subgroups are unique. [J

It follows from the above propositions that for any two regular hypermaps H and
K there is a unique regular hypermap Y = H V K satisfying the following property:
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if ¥ - Hand X — K then A" covers the join V. Thus it make sense to speak on the
least common cover of two regular maps H and K. Similarly, any hypermap covered
by two regular hypermaps is covered by H A K and so we can view the intersection
as the largest common quotient of H and X,

An irregular hypermap can be represented by two different hypermap subgroups
H and H?Y for some g € A. Thus the join and the intersection does not preserve
isomorphism classes of hypermaps. Hence, they are binary operations on algebraic
representations of hypermaps and not on the isomorphism classes. Since the inter-
section of normal subgroups as well as their product HK = (H,K) is a normal
subgroup, we have not such a problem provided we restrict ourselves to the fam-
ily of regular hypermaps, so we can speak on a join and intersection of (abstract)
regular hypermaps. In a general case we shall always assume that with a given
hypermap H a particular representative H < A of the respective conjugacy class
of hypermap subgroups is associated. The latter is equivalent with considering a
rooted hypermap, meaning a hypermap with a specified flag (the root of it). This
approach is taken in [18].

The following lemma lists the properties of the join and intersection which are
trivial consequences of the definitions. In particular, it follows that algebraic hy-
permaps form a lattice isomorphic to the lattice of all subgroups of A and regular
hypermaps form a lattice isomorphic to the lattice of all normal subgroups of A.
The ordering on regular hypermaps is given by hypermap coverings.

Lemma 3.3. Let X', Y and Z be algebraic hypermaps (regular hypermaps). Let U
and 1 be the universal and trivial hypermaps. Then

XVQYVI)=(XVvY)VZ,

XVy=YVv4,

XVU=Uand ¥ V1 =4,

ANDPVE) - (XAY)V(XAZ).

Interchanging joins and intersections in the above statements we get a dual
version of the above lemma. In particular, we have

XVVAZ)—=(AVI)A(XVZE).

Let H be a hypermap. Denote by |H| the number of its flags. Of course if H is
a regular hypermap we have |[H| = |[Mon (H)| = |A/H|. The following statement
relates the monodromy groups of the join and intersection of hypermaps with the
monodromy groups of the original hypermaps.

Proposition 3.4. Let H and K be reqular hypermaps. Then the monodromy group
of HV K is a subgroup of the direct product Mon(H) x Mon (K) and we have

Mon(HAK)= Mon(HVK)/(H/HNK x K/HNK),
where H/H N K x K/H N K 1is an internal direct product. Moreover,

IHVK]-[HAK]=[H]- K]

Proof. We show that the mapping ¢ : g(H N K) — (¢H, gK) is a monomorphism
A/(HNK)— A/H x A/K. Indeed, for any z,y € A

Y((zHNK)(yH N K)) = Y(zyH NK) = (zyH,zyK) =

17



(zH,zK)(yH,yK) = («H N K)Y(yH N K).

Now let ¢(zH N K) =1 = (H,K) for some z € A. Then (zH,zK) = (H,K),
and consequently x = 1. Hence, ¢ is a monomorphism.
By the third isomorphism theorem

HK/HNK=H/HNK xK/HNK=HK/K x HK/H.
Using this we get

HVK|HAK|=|A/HNK||A/HK|=|A/HK||HK/K x HK/H||A/HK| =
|A/HK||HK/K||A/HK|[HK/H| = |A/K||A/H| = |K|[H].
By the second isomorphism theorem we obtain
Mon (HAK)=A/HK = (A/HNK)/(HK/HNK) =
Mon(HV K)/(H/HNK x K/HNK).
O

The equality |HVK|-|HAK| = |H|-|K|, combined with the well-known statement
in elementary number theory establishing

M- K] = ged([H], [K]) - lem([H], 1K),

may suggest that |H Vv K| = lem(|H], |K|), or equivalently
[H A K| = ged(JH|,|K|). However, this is not true in general. In general, we can

only claim that lem(|H]|, |K]) divides |H VK|, and |H AK]| divides ged(|H|, |K|). The
above two equalities imply

(HV Kl ged([H], |K])
lem(|H|, K/ HAK|
This observation led us to a new concept allowing us to relate two hypermaps.

Given two regular hypermaps H and K the integer

__HVK]  ged(H]|K])

Clem(IH KD T HAK]

will be called the shared cover indez of H and K. Clearly, if one of H, K covers the

other then s(M,K) = 1. Generally, it can be equal to any divisor of ged(|H|, |K|).
Replacing hypermaps by oriented hypermaps one can see that the concept of the

shared cover index applies in the category of oriented regular maps as well. Here it

can be viewed as a generalisation of the chirality index studied in [3]. Recall that

by the mirror image of an oriented hypermap H = (R, L) we mean the hypermap

H" = (R™',L~'). The integer x(H) = H/(H N H") is called the chirality index of

H, see [3].

s(H,K)

Proposition 3.5. Let H be an oriented regular hypermaps and H" is the mirror
image of it. Then s(H,H") = k(H), where k(H) is the chirality indezx of H.
Proof.

™ T H HT'
SHHy = YL MV R |A/H O

S lem(HL D - T oy [EHOH = R(H).

O
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4. MONODROMY GROUPS OF THE JOIN AND INTERSECTION OF TWO HYPERMAPS

Throughout this section all the considered hypermaps will be regular. In the
above section we have derived some information on the structure of the monodromy
groups of HV K and H A K. In what follows we shall consider the problem how to
calculate the above monodromy groups by using the action of monodromy groups
of H and K. Let A = (rg,...,7x) and B = (sg,...,s:) be two k-generated groups.
Let us define their monodromy product A x,, B to be the subgroup of the direct
product generated by (r;, s;), where 7 =0,1,..., k. Note that S. Wilson calls it the
parallel product in [18]. Further, denote by 7 : Ax,, B — A my: Ax,, B —> B
the natural projections erasing the second and first coordinate, respectively.

Theorem 4.1. Let H = (A;rg,r1,72) and K = (B; s, 81, 82) be reqular hypermaps.
Then Mon(H V K) = Mon(H) Xum Mon(K) and Mon(H A K) = Mon(H) %,
Mon(K)/Ker maKer .
Proof. Let A = (Rg, Ry, Ro; RE = R? = R? = 1). Recall that the hypermap sub-
group of H can be reconstructed as a stabiliser H = STABAa(z¢) of a flag 2y and
similarly for K, K = STABA(yo). Denote by v : H — (A/H; RyH,R1H, Ry H)
the isomorphism of hypermaps and by ¢ : MonH — A/H the induced group
epimorphism sending r; — R;H, for ¢ = 0,1, 2. Similarly, denote by 15 the isomor-
phism K — (A/K; RyK, R1 K, Ry K) of hypermaps and by 1} the respective group
epimorphism taking s; — R; K. Then we have an isomorphism ¥ : A/H x,,, A/K —
Mon (H) XmMOH (K:) taklIlg (RiH, R;K) — ((w;)*l(R:H), (’l,bg)—l(R,_K)} = (TH Si)-

In the proof of Proposition 3.4 we have already verified that the mapping @ :
A/HNK — A/H x,, A/K, taking g(H N K) onto (gH,gK), is an isomorphism
of groups. Now the composition ¥ establishes an isomorphism Mon (H v K) —
Mon (H) %, Mon (K).

Regarding the intersection of H and X, by Proposition 3.4 we have

Mon(HAK)=Mon(HVK)/(H/HNK x K/HNK).

In view of what we have proved it is enough to see that ¥® sends K/H N K onto
Ker my, and H/H N K onto Ker 7. Indeed,

Ye(K/HNK) =¥Y({(gH,K)|g € K}) =

{(w, 1)|(w,1) € Mon (H) X, Mon (K)} = Ker .
Similar calculation verifies the statement V®(H/H N K) = Kerm;. O

We say that a covering H — K of regular hypermaps is smooth if both hypermaps
are of the same type. Smooth covers of hypermaps correspond to unbranched covers
of their topological equivalents.

Proposition 4.2. Let H and K be regular hypermaps. Then

(a) the hypermap MV K smoothly covers both H, K if and only if the types of H
and K are equal.

(b) if both H and K smoothly cover the intersection H A K then they have the
sarmne type.

We shall see later that the above implication (b) cannot be reversed.
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5. ORTHOGONAL HYPERMAPS

Two regular hypermaps H, K will be called orthogonal if HK = A. We shall use
HLK to denote the orthogonality of H and K. Let G, H be two groups. A common
epimorphic image of G and H is a group @ such that there are epimorphisms G — @)
and H — Q. Let H = (ro,71,72), K = (s0,51,82) and Q = (to,t;,t2) be groups.
We say that QQ is a monodromic common epimorphic image of H and K if both
the assignments r; — ¢; and s; — ¢; (for i = 0,1, 2) extend to group epimorphisms
H—-Qand K — Q.

The following theorem gives several characterisations of the orthogonality.

Theorem 5.1. Let H and K be regular hypermaps. Then the following condilions
are equivalent:

(i) HLK,

(ii) H A K is a trivial hypermap,

(iii) H and K have no nontrivial common gquotients,

(iv) the monodromy groups Mon (H) and Mon (K) have no common monodromac

eptmorphic images,
(v) Mon(H vV K)= Mon(H) x Mon(K).

Proof. (i) < (11) Since the flags of the intersection are the elements of A/HK, the
intersection is a trivial hypermap if and only if HK = A,

(72) & (7i7). If H A K is nontrivial then it forms a non-trivial common quotient.

Vice-versa if there is a non-trivial common (possibly irregular) quotient Q then
there are g,h € A such that A > Q9 > K and A > Q" > H. By normality
of both H and K we get A > Q° > K, A > Q® > H for any z € A. Hence
Qpa =U/ ﬂzE A QF — Q is a non-trivial regular common quotient. However, since
Qa is covered by ‘H A K, thus the intersection is a non-trivial hypermap.

(1) <> (v). By Proposition 3.4 Mon (H V K) < Mon (H) x Mon (K). The second
part of Proposition 3.4 implies that the equality holds if and only if H LK.

(4i1) < (2v) If there is a common quotient Q for H and K then the coverings
H — Q and K — @ induce, respectively, monodromy epimorphisms Mon (H) —
Mon (Q) and Mon (K) — Mon(Q). Vice-versa, if () is a monodromic common
epimorphic image, then representing the hypermaps via hypermap subgroups we
get that the assignments ¢H — ¢Q, gK — ¢(, where g ranges in A extend to group
epimorphisms. However, the same mappings establish coverings U /H — U/() and
U/K — U/Q. The statement follows. [OJ

Denote by O the two-flag hypermap with ro = r; = 9 being equal to the non-
trivial involution interchanging the two flags. It is easy to see that the hypermap
subgroup of @ is A™.

Proposition 5.2. Let H and K be (regular) hypermaps. If H and KC are orthogonal
then at least one of the hypermaps H and K is nonorientable.

Proof. Assume both H and K are orientable. The orientability implies that both
H < A*, K < AT are subgroups of the even-word subgroup A" of A. Then
O = U/AT is a common non-trivial quotient, a contradiction. O

In general, it can be difficult to see the orthogonality of hypermaps. In what
follows we give some sufficient conditions implying the orthogonality of hypermaps.
The following proposition is a straightforward consequence of Theorem 5.1.
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Proposition 5.3. Let H and K be regular hypermaps. If the monodromy groups
of H and K have no nontrivial common epimorphic images then the hypermaps H
and K are orthogonal.

Thus a regular hypermap with a non-abelian simple monodromy group is or-
thogonal to any other hypermap.

Numerical conditions implying the orthogonality may be useful in constructions.
We shall present a sample of them.

Proposition 5.4. Let H and K be reguler hypermaps of types (mg, my,mz2) and
(ng,n1,nq). Let one of them, say H, be non-orientable.

If for any two i,j € {0,1,2} the integers m;, n; and m;, n; are respectively
coprimes then the hypermaps H and K are orthogonal.

Proof. Let the monodromy groups be generated by the triples of involutions

Mon (H) = (rg,r1,72) and Mon(K) = (sg, s1,82). Denote by R; = r;r;11 and
Si = 8i8i+1, 1 = 0,1,2. By the assumption, two of ged(R;, S;), i = 0,1,2 are equal
to 1. Without loss of generality we assume gcd(Ro, Sp) = 1 and ged(R2,S2) = 1.
Then the following equality for the even word subgroup of the monodromy product
holds true:

(Mon (M) % Mon (K))* = (Ro, Ra) Xm (So, S2) = Mon *(H) X, Mon * (K).

To prove the orthogonality of H and K we show that the projections of the lat-
ter group into the coordinate factors contain isomorphic copies of the even-word
subgroups of the original hypermaps. Since the orders of Ry and Sy are coprime,
(Ro,1) and (1,Sp) are elements of the cyclic group ((Rg, Sp)). For the same rea-
son we see that (Rz,1) and (1, S2) belong to ((Rz,S2)). Now observe Mon *(H) =
((Ry,1),(R2,1)), and similarly we get Mon *(K) = ((1,5), (1, S2)). Hence we have
that Mon (M Vv K) contains a subgroup G = Mon *(H) x Mon *(K). Since H is
non-orientable, Mon *(H) = Mon (H). By Theorem 4.1 the monodromy group of
the intersection

Mon (H A K) = Mon (H) %, Mon (K)/Ker moKer m;.

Since Mon (H) x Mon *(K) < KermyKerm the intersection is either trivial or
a 2-flag hypermap. However, the only (regular) 2-flag hypermap is @ which is
obviously not covered by ‘H. Hence, the intersection is the trivial hypermap and we
are done. [

A cellular embedding of a graph into a surface is called a regular embedding if
the corresponding map is regular.

Proposition 5.5. Let H and K be regular maps determined by reqular embeddings
of two non-bipartite graphs with coprime valency. Then H L K if and only if at
least one of H, K is non-orientable.

Proof. 1f both embeddings define orientable maps then they both cover @, and
consequently, they are not orthogonal.

Let one of the maps associated with the embeddings of graphs is non-orientable.
With the same notation as above we have RZ = 1 = S2, because the hypermaps
are maps now. Since the valences of the maps are coprime we have that (Ri,1)
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and (1,5;1) belong to the monodromy product of the even word subgroups. Since
the graphs are non-bipartite there are identities of the form Hf’:l RT“Ry = 1,
[Tm, S7*S2 = 1, where k and n are some odd integers. Replacing above R; by
(Ri1,1), Ry by (R2, S2), S1 by (1,51) and S; by (Rg, S2) we get that the involutions
(Rz2,1) and (1, S2) are elements of the monodromy product. Hence the even-word
subgroup of the monodromy product is the direct product of the even-word sub-
groups of the original maps. Now we can complete the proof as above. [0

There are oriented versions of the above propositions. We shall state them with-
out proofs

Proposition 5.6. Let H and K be oriented reqular hypermaps of types
(mg,my, ma) and (ng,ny,na).

If for any two i,j € {0,1,2} the integers m;, n; and m;, n; are respectively
coprimes then the hypermaps H and K are orthogonal.

A cellular embedding of a graph into an orientable surface is called orientably
regular if the corresponding oriented map is regular.

Proposition 5.7. Orientably regular embeddings of non-bipartite graphs with co-
prime valency determine a couple of orthogonal oriented maps.

6. ORIENTABILITY, REFLEXIBILITY AND SELF-DUALITY

Topological and algebraic properties of mraps, as for instance, the orientability,
the reflexibility and the self-duality have their counterparts in the associated alge-
braic representations. The aim of this section is to discuss the above properties and
concepts in a relation with the join and with the intersection of two hypermaps.

6.1 Orientability.
An algebraic hypermap H = U/H is orientable if H < A%, where AT =
(ryr2,r2rg) is the even word subgroup of A (which is an index two subgroup).
The following statements are direct consequences of the definitions so we shall
omit the proofs of them.

Proposition 6.1. Let H and K be regular hypermaps with the respective hypermap
subgroups H and K. Then
if both H and K are orientable then both H v K and H A K are orientable
as well,
if one of H, K is orientable and the other not then HV K is orientable while
H A K is nonorientable,
if both ' H and K are nonorientable then H A K is nonorientable as well.

Proposition 6.2. Let ‘H be a regular hypermap. The following statements are
equivalent:

H is orientable,

H covers O,
H=HVO,
O=HAO.

It follows that M is nonorientable if and only if H L O and the algebraic coun-
terpart to the well-known construction of the antipodal double cover over a nonori-
entable hypermap H is the construction of the join H Vv O (cf. [18]). Let us remark
that in the case of maps the first three items of Proposition 6.2 are covered by [18].
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6.2 Reflexibility.

A regular oriented hypermap K = U™ /K is reflexible if K™ = K. Note that
since K is a normal subgroup of A*, we have K™ = K™ = K. The hypermap
K" = U* /K™ will be called the mirror image of K. Clearly, the join KV K™ and
the intersection X A K" are reflexible hypermaps. In general, we have the following

Proposition 6.3, Let K be an oriented reqular hypermap. Then

the join KKV K" is the least reflexible regular oriented hypermap covering K,
the intersection K A K" is the largest reflexible regular oriented hypermap
covered by K.

As it was already noted, see Proposition 3.5, the integer k(K) = s(K,K") =
ml?’\%?[a called the chirality index in [3], can be used to measure of how much a
given hypermap is far from being mirror symmetric. Moreover, the way how two
hypermaps with the same chirality index are chiral can be of different quality. More
precisely, for any oriented regular hypermap we have coverings HVH" — H —
HAH". It is proved in [3] that the two associated groups of covering transformations
are isomorphic and their size is equal to the about mentioned chirality index which
coincides with the shared cover index s(H,H”). The associated group is called
the chirality group of M. It is proved in [3] that any finite abelian group can be
isomorphic to the chirality group of a regular hypermap. Members of several infinite
families of non-abelian groups are proved to appear as chirality groups as well (see

3])-

6.3 Self-duality.

Let o be a permutation of {0, 1,2}. Clearly, o induces an outer automorphism &
of A mapping r; — ris. A o-dual of H is the hypermap U /& (H) with the hypermap
subgroup &(H). It may happen that H = §(H), in this case H is called o-selfdual.
If H is o-self-dual for all 6 possible permutations ¢ of the index-set we shall say
that H is totally selfdual. Similarly as for the reflexibility we have the following
statement.

Proposition 6.4. Let K be a regular hypermap and let o is a permulation of
{0,1,2}. Then
(1) the join KKV K7 is the least o-selfdual reqular hypermap covering K,

(2) the intersection K A K% is the largest o-selfdual regular hypermap covered
by K.

In particular, if S3 denotes the group of all permutations of {0,1,2} then
U/ Nyes, K? is the least totally selfdual hypermap covering K. Similarly,
U/l es, K is the largest totally selfdual hypermap covered by K.

7 G-SYMMETRIC MAPS AND HYPERMAPS

The results of the previous section are just particular instances of a more gen-
eral approach. Let Out (A) be the outer automorphism group of A. Recall that
Out (A) = Aut(A)/Inn (A), where Inn (A) denotes the group of inner automor-
phisms of A acting by conjugation on A. The outer automorphism group Out (A)
was described by L. James in [8]. It follows that Out (A) = PSL(2,Z2) and it is
generated by the 6 permutations permuting the three generators r¢, r; and ry and
one twisting automorphism taking ry +— rorgre, 1 — 71, 79 +— r2. The orbit of
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the action of Out (A) on a hypermap H is finite and can be constructed by making
o-duals and applying the twisting operator repeatedly.

Let G < Out (A) be a subgroup. If H is a regular hypermap then for each ¢ € G
the hypermap H® = U/H? is also regular. We say that H is G-symmetric if it
is invariant with respect to G, i. e. H = H? for every ¢ € G, or equivalently,
H = H? for every ¢ € G. The join V¢€G'H¢ and the intersection A, . H? are
clearly G-symmetric hypermaps for any regular hypermap M. By the definition H
is G-symmetric if and only if H =V, H? or equivalently, H = Ngeg H?. We
have the following statement.

Proposition 7.1. Let H be a regular hypermap and G < Out(A). Then
the join \/¢EG H? is ihe least G-symmetric regular hypermap covering H,

the intersection A $€G H? is the largest G-symmetric reqular hypermap couv-
ered by H.

We can use the covering transformation groups of the coverings
V¢ec H® - Hand H — /\¢€G H? to measure of how much a given regular hyper-
map is far from being G-symmetric. Clearly, H is G-symmetric if and only if these
coverings are trivial. In the case |G| = 2 we can say something more.

Proposition 7.2. Let ¢ € Out(A) (¢ € Out(A™)). Let H be a regular hypermap
(an oriented regular hypermap). Then the groups of covering transformations of
coverings HV H? — H and H — H A'H? are isomorphic. Let this common group
be denoted by C(H, H?). The order of C(H, H?) is the shared cover index s(H, H?).
Proof. The first covering is defined by the epimorphism = : A/HN H? — A/H
taking o(H N H?) — zH for any x € A. Clearly, the kernel Kerw & H/H N H?.

The second covering is defined by the epimorphism ¢ : A/H — A/HH? taking
zH — xHH?. Now the kernel is Kero = HH¢/H.

By the third isomorphism theorem we have

Kero = HH®/H =~ H/H N H® = Ker .

To complete the proof of the statement we proceed similarly as in the proof of
Proposition 3.5

Cged(ML M) M |A/H]

¢ -
S = R 7e] T HAH?| ~ [AJHH?|

= |HH®/H| = |Kero|.

O

It follows that if G < Out (A) is of order two, the two covering transformation
groups of the covering HV H? — H — H A H? are isomorphic. In the special case,
when G < Out (A™) is the group acting on an oriented map H by taking its mirror
image H" we get, as a corollary, Theorem 3 of [3]. In this case the chirality group
mentioned in the previous section coincide with the group C(H, H?).

If a regular hypermap H is G-symmetric for G = Out(A) we say that H is char-
acteristic. In this case any automorphism of A leaves the hypermap subgroup H
invariant. Hence H is a characteristic subgroup of A. Vice-versa, a characteristic
subgroup H < A of finite index determines an Out (A)-symmetric regular hyper-
map. Consequently, drawings of hypermaps sharing this property can be viewed as
pictures of the characteristic subgroups of finite index of A. Since the structure of
Out (A) was described by L. James in [8] we have the following:
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Theorem 7.3. Let H = (F;ro,71,72) be a hypermap. The following statements
are equivalent:

H is reqular and Qut (A)-symmetric (that is, H is characteristic),
H=U/K, where K is a characteristic subgroup of finite indexz,

H is regular and isomorphic to each of the following three hypermaps
(Fira,7m1,10), (Fi10,72,71) and (F;rargra,r1,72).

A similar statement can be formulated in the case of oriented hypermaps by
using the fact Out (A*) = (Out (A), p) where p is the automorphism mapping an
oriented hypermap onto its mirror image p : (D; R, L) — (D; R™1,L™1), see [8].

Finally we stretch that if H; and Hy are two G-symmetric hypermaps for some
G < Out(A) then the join H; V Hy and the intersection H; A Hy are also G-
symmetric hypermaps.

Example. Let us examine characteristic subgroups H of A of small index via
the corresponding A-symmetric regular hypermaps H. Since H is totally selfdual
such a hypermap is of type (n,n,n) for some integer n > 1. There is just one
non-trivial regular hypermap of type (1,1,1) and it is @ = A/A™. Obviously AT
is characteristic. Also it is easy to see that we have only one A-symmetric regular
hypermap H of type (2,2,2) - this is actually the only characteristic map. Its
topological hypermap arises by colouring the opposite faces of the cube by the same
colour (see Fig. 1). Consequently, A/H = Cj is elementary abelian and H = D [2].

FIGURE 1

As concerns type (3,3,3) we shall argue as follows. Clearly, H is one of the
toroidal hypermaps classified by Corn and Singerman in [6]. The smallest represen-
tative of the family is the hypermap H5 drawn on Fig. 2.
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FIGURE 2

It has 6 flags and one hypervertex, hyperedge and hyperface, respectively. As all
the regular toroidal hypermaps of type (3,3,3) it is totally selfdual. However, it is
easy to see that the three involutory generators satisfy the relation rorgry = ry.
Hence, the twisting operator takes Hy, = (F;ro,r1,r2) onto (F;ry,r,r2). The
latter hypermap is clearly not isomorphic to H; since it has type (1,3,3). Take
two hypermaps A and B from the orbit of A with the respective types (1,3, 3) and
(3,1,3). By Proposition 5.6 the corresponding oriented hypermaps are orthogonal
and so AAB = O. Hence O is the largest A-symmetric hypermap covered by both
A and B, and consequently, by Hs as well. The covering Hy — O = Hy A A is a
3-fold covering. Hence, Hy V A = K is a A-symmetric regular hypermap of type
(3,3,3), and the covering K — Hz is a 3-fold covering. Consequently, K has 18 flags.
By [6] there is precisely one such hypermap M3 of type (3,3,3) depicted on Fig.3.
Since the oriented hypermaps A and B are orthogonal, the even word subgroup is
isomorphic to the direct product C'3 x C3. The monodromy group of H3 is then a
semidirect product of (C3 x C3) by Cs.

We can prove that this is a unique A-symmetric regular hypermap of type
(3,3,3). As a curiosity let us mention that the underlying 3-valent graph is known
as the Pappus graph, which is related to the well-known Pappus configuration, a
popular example of a finite geometry.

FIGURE 3

Since the join of two characteristic hypermaps is again characteristic the hyper-
map Hy = DV Hj of type (6,6,6) is also a characteristic hypermap. By Proposi-
tion 5.6 the oriended hypermaps corresponding to D and Hj are orthogonal. Hence
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the even word subgroup of the monodromy group of H is the direct product C3 x C3
and it is of size 36. Consequently, H, is a characteristic hypermap of genus 10.

To find a A-symmetric regular hypermap of type (4,4,4) we checked the list
of regular hypermaps of genus 2 in [1]. There is precisely one regular hypermap
Hs of type (4,4,4) and genus 2. The hypermap is totally selfdual (see Fig. 4). A
direct computation verifies the relation (rorgrer;)* = 1, hence the twisting operator
applied on Hj gives a regular hypermap of type (4,4,4) with the same number of
flags. Since the orientability is preserved, it is a hypermap on an orientable surface
of genus 2. Since there is just one regular hypermap of type (4,4,4) on the surface
of genus 2, it must be H;s. Consequently, Hj; is A-symmetric.

FIGURE 4

The join Hg = Hjs V Hy is a characteristic hypermap of type (12,12,12). By
Proposition 5.6 the corresponding oriented hypermaps are orthogonal, hence the
even word subgroup is the direct product of the even word subgroups of factors.
Consequently, the size of the (full) monodromy group [Mon (Hg)| = 144 and the
genus is 28.

If we restrict ourselves to maps then the characterisation of the outer automor-
phism group Out (A(oco,00,2)) done by Jones and Thornton [12] can be useful.
Recall that A(co,00,2) = (ro,r1,72;78 = r? = r2 = (ror2)? = 1) is a monodromy
group of the universal map covering any map. The outer automorphism group
is isomorphic to S3 and is generated by two operations (see [12]), first one de-
fined by (F;ro,71,72) — (F;72,71,70) and second one defined by (F;rg,r1,72) —
(F;rora,m,r2). First one is known as the duality operation while the second one co-
incide with the Petrie operation. A more detailed discussion on Out (A(co, o0, 2))-
symmetric regular maps can be found in Section 5 of [12]. Theorem 3 in [12] is
similar to our Theorem 7.3.
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