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APPLICATIONS OF LINE OBJECTS IN ROBOTICS

ANTON DEKRET AND JAN BAKSA

ABsTrRACT. In this paper the Lie algebra of the Lie group of Euclidean motions in
E3 is explained as the vector space Ag of couples of vectors in E3. All subalgebras
and all 3-dimensional subspaces of Ag which are orthogonal to themselves according
to the Klein form and their kinematic interpretations are described. Vector fields in
E3 determined by elements of Ag and their kinematic and dynamic interpretations
are investigated

1 INTRODUCTION

Line Pliicker‘s coordinates inspire applications of couples of vectors in robotics.
First of all in this paper the Plicker's coordinates, basic structure properties such
as the Klein and Killing forms, the Lie bracket in the algebra Ag of all couples
of vectors in Euclidean space F3 are recalled. The algebra Ag is isomorphic with
the Lie algebra of the Lie group of all isometries preserving orientation in Ej.
All subalgebras of Ag and all 3-dimensional subspaces which are orthogonal to
themselves according to the Klein form are described. Mechanical engineers use the
notion of screws as a useful tool for solving of robotic problems. The roots of this
notion are in 19 century, Ball [1]. We describe the set of screws as a projective
5-dimensional space P¢ of all 1-dimensional subspaces in Ag, so the sum of two
screws has not sense. We show that the Lie bracket in Ag induces both a map
PY x P — P¢ and a map 8 x # — [ defined on couples of nonparallel lines
in E3, where 3 is the manifold of proper lines in E3. Inspired by [2] and [4] we
introduced vector fields in E3 induced by elements of Ag and give their kinematic
and dynamic interpretations. This work does not give quite new original results
except the description of subalgebras of Ag and of their kinematic interpretations.
Perhaps it will be useful from the point of view of explanation which is close to
the papers [5] and [3]. We prefer the algebra of vector couples to the dual number
and dual quaternion technique because of the cleaner geometrical and mechanical
interpretation.

2 PLUCKER LINE COORDINATES, VECTOR COUPLES, SCREWS

Let V3 be the vector space associated to the Euclidean space Ej. The scalar
or vector or mixed product of vectors in V3 will be denoted by @.b or @ x b or
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(a x E).E respectively. Let (0,€;,€;,€3) be a Cartesian coordinate system in FEj.
Let p = AB be a line determined by its two different points A, B. The couple of
vectors § = AB,m = OA x5 = OA x OB is called Pliicker line coordinates. In
cartesian coordinates, 3 = (s; = by —ay,82 = by —az,s3 = bz —a3), m = (m; =
aghy — byaz, my = agby — a1bs, m3 = a;by — byay). Plicker line coordinates will be
called canonical if [|5]| = v/33 = 1. Let us note that Pliicker coordinates (3,7m)
satisfy the equality 5./m = 0.

Remark 1. Let (zy, 21,32, x3) be homogeneous coordinates in E3, where the equal-

ity 9 = 0 means improper points (points in infinity). Let [A, B]T denote the matrix

{ag 41 92 43| hen Pik = a;by — agd; 4,k = 0,1,2,3 are the homogeneous
by by by b3

Plicker coordinates of a line p = AB. They satisfy the equality det[A, B; A, B]T =

Po1P23 + Po2Pa1 + pospiz = 0 which corresponds with the condition 3.7 = 0 in

Pliicker coordinates (3, ).

Pliicker coordinates of a line p is a couple of two vectors (5,7m), 5 # 0, 5./ = 0. It
is easy to see that the point C,OC = (5 x 7)/5%, is the orthogonal projection of the
coordinate origin 0 into p. If we change determining points of a line p then we get
a couple (K3, km). Changing the origin 0 we obtain a couple (3,m' = m + 00 x 3).
It means that the vector 7 of the Pliicker coordinates (5, 7) depends on the origin
0 but the scalar product 3.7 does not depend on 0.

Vice versa, an ordered couple of vectors (3,m), 0 # 5, m € V3, determines the
line p in the direction 5 and passing through the point C,0C = 3 x m/3%. This
line will be called the line of the couple (3,77). The line of a couple (0,77) is the
unproper line p of all parallel plains the normal vector of which is 7. There is not
any line of the couple (0,0). We use p = «((5,7)) for (5,m) # (0,0).

Let us remind that the set of all ordered couples (3,7) € V3 x V3 has a real
vector space structure where

k1(51,m1) + ko(32,M2) = (k151 + ka2, ki + koimip)

Lema 1. Let p be the line of couple (3,7), 5 # 0. Then every couple (3',m') with
the line p is of the form 3' = ks, m' = km +us, 0 # k, v € R.

Proof. The line p is the line of a couple (3',7') if and only if 3 = k5 and OC = OC.
Comparing OC' = £ ";’; = Eam = kT with OC = 2% we get m' = ki +
us. U

The set 3, of all couples (35,/m), § # 0 with the same proper line p is two-

parametric. If X; = (3;,/m;) = (ki5, ki + u;3) € f,, i = 1,2, then for k # 0 a]'-so
kX, € ﬂp and for k; + ky # 0 also X; + X5 € 3,. Denote R(VJ x V3) := {(3,m)
Vi x V3; 3% # 0}. We say that X; = (3;,/m;) € R(Va x Vi), i = 1,2, are L—equwalent
iff there are 0 # k, w € R such that 5, = k3, My = k7, + u,i.e. iff there is a line
p, that Xy, Xy € §,. Denote 3 the space of all L-equivalence classes in R(V3 x V3).
There is a one-to-one correspondence between the set of all proper lines in F5 and
the set 3. Then J is a 4-dimensional manifold. Let 7, : R(V3 x V3) — 3 be the map
where (5, m) is the class of L-equivalent elements determined by (3, 7i7). Certainly
m 2 R(V3 x V3) — B is a fibre manifold, fibre 77! (p) = 3p of which have an almost
vector space structure, 1. e. under the conditions introduced above kX and X, + X,
belong to the same fibre as X; and Xs.
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An ordered couple (3,7), 3 # 0 is called the Pliicker's couple if 5.7 = 0. It is
said to be canonical if also 52 = 1.

Lema 2. Let (3,m), 5 # 0 be a Plicker‘s couple. Let p be the line of (5,/m). Then
(3,7Mm) 1is the Plicker‘s coordinate of p.

Proof. Let us remind two well known equalities

(1) ax |
(2) (a x
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Definition 1. FEvery 1-dimensional subspace in V3 x V3 will be called a screw. Every
couple X = (3,m) # (0,0) determines the screw (X) where (M) denotes the vector
space spanned on a set M C V3 x V3. The couple X is called a representative of the
screw (X). A screw (X) is called proper or improper if 3 # 0 or 3 = 0 respectively.

It is clear that if X is a representative of (X} then every representative of (X)
is of the form kX, k # 0, and then all representatives have the same line of couple
which will be called the line of (X).

It immediately follows from the definition of screws that the set Pg of all screws
is a projective 5-dimensional space. Let w2 : V3 x V3 — PJ be a such map that
mo(X) = (X). It means that 3 is a 1-dimensional vector fibration.

Let X = (3,7), 5 # 0, be a couple of vectors. Denote h := (5./m)/5%. It is easy
to prove the following property.

Lemma 3. The number h does not depend on a choice of a representative of the
screw (X).

Definition 2. The number h = (3.m) /5% will be called pitch of the screw (X), X =
(3,/m), 5# 0. If 5 =0 we put h = co.

Let us recall that hs is the orthogonal projection of 7 into 3.

Corollary of Lemma 2. Two proper screws which have the same screw line are
both of the form {(3,mm)) and ((3,m + u3)), 5 # 0, u # 0. It means that the set of
all screws with the same screw line form one-parametric family. If h is the pitch of
the first screw then the pitch of the second one is h + u.

Remark 2. It is conspicuous that a proper screw is determined by its line and by
its pitch k. This property is often taken as the definition of screws, see for example

14, [5].

Remark 3. Let us emphasize that the sum of two screws has not any sense because
sums of different representatives have not to belong to the same screw.
A proper screw ((3,7)), 5 # 0, is called the Pliicker's screw if h = 5.7 = 0.
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Lemma 4. There is a unique Plitcker's screw in the set of all proper screws with
the same screw line.

Proof. Let ((3,7)), § # 0 be a screw with the screw line p. Then every screw with
the screw line p is of the form ((3,7 + us)). But this screw is the Pliicker‘s one iff
5.(m+us) =0,i. e iff u=—(5.m)/s* = —h. It completes our proof.

It is clear that there is a one-to-one correspondence between the set P? of
Pliicker's screws and the space of all lines in E3, i. e. between the spaces P and f3.

Remark 4. 1t is clear that the line p of a couple (3,7), § # 0 depends on the choice
of origin O. If O' is another origin then the line p' of the couple (3,7) is the image

of p in the translation determined by the vector 00

3. LIE ALGEBRA OF VECTOR COUPLES

Vector space V3 x V3 of all couples (5,7) is closely connected with geometry of
lines in E3. Remind that § € V3 is the direction of the line p of a couple (5,/Mm) and
does not depend on coordinate systems. In contrary b depends on the choice of the
origin 0, but 5.m is independent on 0.

So in the space V3 x V3 there are natural scalar and vector bilinear forms which
gives useful information about geometrical and physical objects connected with
lines in F3. Remind them.

a)Klein scalar bilinear form KL:

Let X; = (5;,7;) € V3 x Va,i=1,2. Then

KL(Xl, Xz) = §1.My + §2.7M

It is a symmetric regular bilinear scalar form on V3 x V3 of the signature
(+,+,+,—,—,—). Its quadratic form will be written in the form
KL(X) = %KL(X,X) = §.m. Vectors X, X, € V3 x V3 will be called KL-
orthogonal if KL(X;, X2) = 0.

A subspace B C V3 x V3 is called KL-orthogonal to a subspace A C V3 x Vj
if KL(X,Y) = 0 for every X € A and every Y € B. There is a unique subspace
AK which is totally KL-orthogonal to a subspace A C V3 x V3, 1. e. if any vector
subspace B is KL-orthogonal to A then B ¢ Ak,

From the definition of KL-orthogonality it follows

1) A couple X = (5,7m), 5 # 0 is KL-orthogonal to itself if and only if is a
Plicker‘s couple.

2) If couples X, Y are KL-orthogonal then kX, uY are also KL-orthogonal.

So we can introduce KL-orthogonality in the case of screws. We say that two
screws (X), (Y) are KL-orthogonal if X, Y are KL-orthogonal. Then (X) is KL-
orthogonal to itself iff is a Pliicker‘s screw.

Lemma 5. Let py, py be two non-parallel lines in E5. Then p; and pa are crossing
if and only if their Pliicker‘s screws are KL-orthogonal.

Proof. Let X; = (3;,m;), 5% = 1, 3;.7; = 0, 55 # k31, i = 1,2, be a representative
of the Pliicker's screw the line of which is p;. The line p; is passing cross the point
C;,0C; =5, x Tit;. Then the lines py, po are crossing if and only if 0 = C,C,.(5, x
52) = (52 x g — 31 x T1).(51 X S2) = (use the equality (2)) = (32.5,)(2.52) —
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(71251 )53 — 52(711.52) + (M1.51)(51.82) = —(51.7M2 + 52.7;) = —KL(X1, X2). It
completes our proof.

b) Killing scalar bilinear form K:
Let X; = (5;,7;) € Va3 x V3. Put

K{Xl,XQ) = 31.32

It means that K is a symmetric singular bilinear form on V3 x V3. Its corresponding
quadratic form will be written in the form K(X) := K (X, X) = 32. Then the line
of X is improper iff K(X) = 0.

c) Lie bracket - vector bilinear form on V3 x Vj:
The vector product @x b of @, b € V3 is an example of the Lie bracket of two vectors.
It is a skew-symmetric vector bilinear form on V3. The well known and useful Lie
bracket in V3 x V3 is defined as follows.

If X; = (8;,m;) € V3 x V3, 1= 1,2, then we put

[Xl,XQ] = (?1 X 82,81 X Tlig — 83 X )
It is easy to show that the Jacobian identity
(X1, [ X2, X3]] + [X3, [ Xy, Xo]] + [X2, [X3, X1]] = 0

is satisfied. Thus the vector space V3 x V3 becomes a Lie algebra.

The vector space V3 x V3 endowed with the Klein form KL, Killing form K and
by the Lie bracket will be rewritten by Ag instead V3 x V3. It is well known that this
Lie algebra Ag is isomorphic with the Lie algebra of the Lie group of all orientation
preserving isometries in Ej.

The following properties immediately follow from the definition of Lie bracket.

(1) If the line py of Xg = (§a,72), 52 # 0, is parallel with the line p; of X; =
(31,7), 51 # 0, i. e. if Fp = kT, k # 0, then [X1, X2] = (0,5, x (kg —77,)
and thus the line of [X, X3] is improper.

(2) If X5 € {Xl), i.e. X3 =+kkX, and X4 € (Xz), X4 = uXy, then [X3,X4] =
ku[X1, X3]. It means that [X3, X4] € ([X1,X2]). Thus we get the map
P¢ x P? — PZ, ({(X1),(X2)) — ([X1,X2]). Let us recall the representa-
tion ad : Ag — L(Ag) of the Lie algebra Ag in the vector space L(A4g) of
all linear maps on Ag defined by the rule adx(Y) = [X,Y]. So we have a
representation ad” of Ag in the set of maps on PY, ad% ((Y)) = ((X,Y]).

(3) Quite analogously it is easy to see that the Lie bracket preserves the L-
equivalence classes, i. e. if X;,Y; € B, 1 = 1,2, and p is the line of [X;, X3]
then [¥1,Y2] € ;.

(4) By direct calculation we get K L(X 1, (X, X2]) = 51.(51 X Mg — S2 x ™) +
(81 % 32).m1 = 0. Therefore the Lie bracket [X;, X;] is KL-orthogonal to
X;, i = 1,2 and thus also the screw ([X;, X»]) is KL-orthogonal to (X;),
i=1,2

Lemma 5. Let p; be the line of X; = (8;,m;), 5 # 0, i = 1,2, 32 # k3. Then
the line p of [X1, X2] is the axis of the lines py, p2, i. e. p intersects py and p2
orthogonally.

Scratch of proof. We can suppose that 3% = 1, i = 1,2. Certainly p is orthogonal
to pi, i = 1,2. The line p; is passing through C;, OC; = 5; x 7; and the line p goes
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through C,0C = (3| x 52) x (3) X Tig — 5 x 711 ) /(51 % 52)2. Using the equality (1),
5.52 = cosa, (5, x 52)% = sin v it is easy to see that CiC.(51 x (31 x52)) =0, i

e. that p and p, are crossing. Analogously p and p, are also crossing. [

Corollary 1. Let L be the manifold of all proper lines in E3. Then according to
property 3 the Lie bracket in Ag induces the map from L x L into L in which
the image of two non-parallel lines py, pa is the line p which intersects py and py
orthogonally.

Corollary 2. The line p of a couple k1 X1 + ko X5 orthogonally intersects the line
p of [X1, Xa| because [X1, k1 Xy + ko Xa] = ka[X1, X2 and thus (by Lemma 5) p
orthogonally intersects p.

Lemma 6. Let X; = (3;,;), i = 1,2, §; x 55 # 0 be two Pliicker’s couples. Then
(X1,X2] is a Plicker's couple if either the lines p, pa of X1, X respectively are
orthogonal or X;, X are KL-orthogonal.
Proof. [X1, Xo] = (3) X 83,5 X My — 35 x my). Then [X, X3] is a Pliicker's couple
iff 0 = (31 x 32).(8) x g — 8 x 1) = s7(52.7Ma) — (32.51)(51.72) — (51.52) (3.7, ) +
55(31.M1) = —(31.52) (5172 + 52.7;). O

Recall that the Lie algebra Ag has two basic subalgebras:
VY ={(5,0),5 € Va}, Vi = {(0,m),m € V3}, Ag = V{ @ V7.
The line of (5,0) goes through origin 0 and the line of a couple (0,77) is improper.
If X1, Xz € V{ then [X, X3] = (0,0). If Xy € V', Xy € V{ then [X1, Xo] € V7. It
means that V§’ acts on V5 by the Lie bracket; in detail, adx, (X2) = [X1, X3] € V7.
In the next part of this chapter we will try to describe all subalgebras in Ag, i. e.
all vector subspaces A in Ag for which [4, 4] C A.

1. Every 1-dimensional subspace A; C Ag is a subalgebra because [ X, X3] = 0
fO[' X2 = k.Xrl.

2. Let Ay C Ag be a 2-dimensional subspace. Let X; = (5;,m;), i = 1,2, is a
base in Ay. Then [X1, Xo] = (51 x 52,3 X g — 52 x ;) belongs to A, if
and only if §; X §p = k13 + k932, 51 X T — So x My = kymy + koo, The
former equality is satisfied iff §; x 33 = 0, i. e. iff 5 = k3;. There are two
cases:
a)ifs, =0, then 3, =0, i. e. A4y C VY.

b) Let 3, # 0. As ki = 0 = ky then 5, x (fny—kmm;) = 0,i.e. Ty = kin, +u3s,,
1. e. there is a proper line p in E3 such that A; = (8,) is the vector space
spanned on 3,. We get

Lemma 7. A two-dimensional subspace As C Ag is a subalgebra if and only if
either Ay C V7 or if Ay = (B,) for a proper line p.

Remark 5. If Ay is not a subalgebra, (i. e. if X, X3 is a base in Ay and [X, X»] ¢
Az), then the proper line of all couples X € A, form two-parametric family 7(Az)
of lines which orthogonally intersect the line of [Xy, X;]. This line can be called
axis of Ay. Recall that in differential geometry of lines a two-parametric family of
lines is called a congruence of lines.

3. In this part we will investigate two problems: Under what conditions a 3-
dimensional subspace A3 C Ag is a subalgebra and under what conditions Aj is
totaly KL-orthogonal to itself, i. e. A3 = AX.
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Let p; : Ag = V3 x V3 — V3 be the projection on the i-th factor, i = 1,2, i. e.
;M (gu m) =3, P2 (E! ﬁ’L_) = m.
There are cases for Ag:
a) p1(As) =0 € V3. Then A3 = Vy is a subalgebra. As KL(Vy, V) = 0 then
Az = AK i e. A is totaly KL-orthogonal to itself.
b) dim py(As) = 1, dim p2(A3) = 3. Always we can choose a base X; =
(31,m1), X2 = (0,/m2), X5 = (0,M3) in Az, where V3 = (71, g, iiis),
E% ?é 0. Then [Xl,XQ] = (6,'5-'1 X mz), [XI;XS} = (6,3]_ Xma), {XQ,X:;] = ﬁ,
KL(X,) = s§.my, KL(Xa) = 0, KL(XI,XQ) = §1.Tm9, KL(XL,X;:,) =
51.7m3, KL(Xq, X3) = 0.

It gives

Lemma 8. A 3-dimensional subspace Az, dimp, Az = 1, dimpyAs = 3 is a subal-
gebra if p1(Ag) is orthogonal to pa(A3 N VY) in V3. The equality AX = A cannot
be satisfied.

c) dimp1(Az) = 1, dimpa(As) = 2. There is in A3 a base X;(5,,0), X, =
(0,7m2), X3 = (0,M3). Then for X;, X; and KL(X;, X;) we obtain the same
equalities as in b) except KL(X;) = 0.

So we have

Lemma 9. A 3-dimensional subspace As, dimp,(As) = 1, dimpa(A3) = 2, is a
subalgebra iff is KL-orthogonal to itself, i. e. iff pi(As) is orthogonal to py(As) in
Vs.

(31,m1), Xy = (52,M2), X3 = (0,713), where 3, 5, are independent. Then
(X1, X2] = (51 % Sa,-). If A3 is a subalgebra then 5, x 53 = k13, + ko5o.
It is impossible. We get KL(X,) = 5,.71, KL(3;) = 5.7, KL(X3) = 0,
KL(Xy, X2) = §1. 7 +711.39, KL(X;,X3) =3,.m3, KL(X2,X3) = 52.m3.
If dimp2(A3z) = 1 then we can choose 7y = 0 = mp. Then AX = A4 iff
ma = k3, x 5p. If dimpa(A3z) = 2 we can put ; = 0. Then Agf = Ay iff
m2 = k281 X 52, M3 = k35 x 53. It is impossible. If dimpy(Az) = 3 then
M1, Mg, M3 we can chose as an orthonormal base in Vi. Then A¥ = Aj iff
§1 =Ty X M3, 82 = My X M3, My = 51 X 5z, i. e. iff 5§ = —TMy, 82 = M.
We get

d) dimp,(Az) = 2, dimpa(A3) > 1. Always we can choose a base X; =

Lemma 10. A 3-dimensional subspace A3, dimpy(A3) = 2, dimpa(As) > 1, is not
a subalgebra. If dimpe(A3) = 1 then AY = Az iff p2(As) is orthogonal to pi(As)
in Vs. If dimpy(As) = 2 then AX # As. If dimpy(As) = 3 then AKX = Az iff
Az = (=g, T,), (M1, My), (0,M3)) where 7y, Ty, M3 is an orthonormal base in
V3. To every 2-dimensional subspace Vo = (51,33) C Vj there is a unique Az =
((31,82), (52, —51), (0,31 x 82)) such that AX = Az. A3 does not depend on choice
of orthonormal base 51, 3s.

e) dimpi(As) = 3, dimpz(A3) = 1. Choosing a base X; = (51,0), X2 = (52,0),
X3 = (83,7m3) it is easy to show that A3 is not subalgebra and AK £ Ag.

f) dim(A3) = 3, dimpy(A3) > 2. We can chose a base X; = (31,m), X3 =
(32,m2), X3 = (33,73) where 31, 55, 33 are orthonormal: 5, x S = §3,
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5] X §3 = —5, 52 X 83 = 5. Let 7y = Zm{gj, i = 1,2,3. Calculating
j=1
[X;, Xi] we obtain. A subspace Aj is a subalgebra if and only if

(3) m}:mg:mgmo,mg+m§=0,m‘f+m§=0,m?+m%=0

As KL(X;)=m},1=1,2,3, KL(X;, X3) = m2+ml, KL(Xy,X3)=m}+m3,
KL(X3,X3) =m3 + mj therefore the equahty AKX = Az is sat1sﬁed iff (3) is true.

The equalities (3) give: iy = —m?8, +miss, gy = mi% —mis3, Mg = —mIE +
m%ﬁg.
Put 77 := m33s 3z 2= Tl —_ = = = —_
ut m = my8; + myS2 + mis3. Then My =35) x M, My =35 x M , Mg = §3 X M.

The rauk r of the system (71, gz, M3) is 2. We have proved.

Lemma 11.. A vector subspace Az, dimp;(A3) = 3, dimpy(As3) = 2 is a subalgebra
if a one of the following equivalent conditions is satisfied:

1. AX = A4

2. Ay 15 the subspace of couples (3,5 xm), 5 € V3 and 7 # 0 is a given vector.

If dim py (A3) = 3, dim pz(A3) = 3 then Aj is not subalgebra and AX # Aj.
4. Let A4 be a 4-dimensional vector subspace in Ag. There are cases:

a) dimp1A4 = 1, dimpy Ay = 3. Choosing a base X; = (5,,0), X; = (0,7),
t=2,3,4 and calculating [X;, X;] we get

Lemma 12. A 4-dimensional vector subspace A4, dim p1(Aq) =1, dimpe Ay = 3
15 always a subalgebra.

Let us remark that A4 N Vy = V7 in this case.

b)dimp; Ay > 2, dimpp A4 > 2. Always we can choose a suitable base and show
that A4 cannot be a subalgebra.

5. In the case when Aj; is a vector subspace always there are bases by which can
be shown that As cannot be a subalgebra.

Let us introduce survey of all subalgebras in Ag:

1. All 1-dimensional vector subspaces have the subalgebra structure.

2. A 2-dimensional vector subspace A, is a subalgebra if either Ay = () for
some line p or A; C V.

3. A 3-dimensional vector subspace A3 is a subalgebra in the cases
a) A3 = Vsp, Ag = VE;
b) dimp;(A3) = 1, dimpa(A3) = 3 and p1(A3) is orthogonal to pa(AsN VYY)

in Vs
¢) dimp;(A3) = 1, dimpy(A3) = 2 and p;(As) is orthogonal to p2(Az) in
Vs
d) A3 = {(5,5 x m) € Ag,5 € V3,70 # 0 is a given vector}
4. A 4-dimensional vector subspace A4 is a subalgebra iff dimp, 44 = 1,

dimpy Ay = 3.

Remark 6. Let w(A); denote the set of all proper lines of couples (3,7) € A,
(5,m), 5 # 0. It is easy to see that in the cases 3b, 3c, 4 7(A)y is a set of all lines
parallel with the direction p;(A). A line of 7(Aj3)s from the case 3d goes through

the point C,0C = 5255”—") Es — m. Therefore m(Asz)y is the set of lines p
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going through points C on the sphere S? with the center M, OM = — %ﬁ and with
radius r = %\/F? Ifs/m #0,i e OC # —m then p is in the direction 5 and so
it is unique. If 5.7 = 0, i. e. OC = —m then every line p going through C and
orthogonal to m belongs to m(A3)s. So m(A3)y is a two-parametric family of lines
in Ej, 1. e. it is a congruence of lines. Recall that in the case of a general vector
subspace Aj, m(As3)y is a 3-parametric family of lines in E5 that is called a complex
of lines.

4. CANONICAL VECTOR FIELDS IN E3 INDUCED By Ag

Recall that a vector field on a differentiable manifold M is a rule & by which a
tangent vector {(z) at * € M is determined for every z € M. In the case of M = E
£(x) € Vs.

Definition 3. Let X = (5,7) € Ag and 0 be a given point in Ey. This couple X
and 0 determine a vector field { x ) by the following rule:
a) If5=0 then £x,0)(Y) = for any Y € Ej3,
b) Let 3 # 0. Let h3 be the orthogonal projection M into 3, i. e. h = (3.m)/52.
Let OC = (5 x ) /5°. Then

(4) Ex,0)(Y) =35 xCY + h5,Y € Es.
This vector field will be called the field of X.
Lemma 13. The value of the field of X at 0 is i, £x (0) = 7.

Proof. If X = (0,m), i. e. 5 = 0, then assertion is true. If 5 # 0 then using (1) we
get

§x,0)(0) =3 x CO + h3 = —3 x (5 x M) /3% + h3 = —[(5.m)5 — 5°m) /5% + h3 = m.
O

Corollary 3. For the value of the vector field §x,0) atY € E3 we get {x o)(Y) =
§xCY +hs =5 x (CO+0Y)+hs = §x CO0+5x 0Y +hs, i. e

(5) ExoY)=3x0Y +m

It immediately gives:
a)
(6) Ekx,0)(Y) = k§(x,0)(Y)
b) If two couples X; = (5;,m;) = 1,2, have the same line of couple, i. e. if
8§y = kgl, MMy = kﬁl + us then
§(x2,0) = k€(x, 0) + us)
Remark 7. 1f we change origin, if we choose 0' instead of 0 then from (4) or from
(5) we get
E§xo(Y)=3xCY +hs=3x (C'C+CY) + hs = §x0)(Y)+3xCC or
§xon(Y)=35x0Y 4+m =3 x (0 0+0Y)+m = &x,0)(Y) +3 x 0'0 respectively.
Let C'E;3 denote a set of all vector fields on Ej. It is a real vector space.
Let £ : V5 — CFE3 be a map defined by the rule EX) = §(x,0)-
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Proposition 1. The map £ : Ag — £(Ag) C CEj is an isomorphism of vector
spaces.

Proof. By the equality (6) ( X) = kE(X).
Let X; = (5;,/M;), ¢ = 1,2. According to the definition of ¢ we consider the
following cases:
a) 51 =0 =352 : {(X1 + X2)(Y) =Ty + Mz = &(X1)(Y) + £(X2)(Y).
b) 5 =9 5o # q: (X1 4+ Xo)(Y) =32 x0Y + 71 + 711 = £(X1) (V) +&(X2)(Y).
¢) 51 40,55 = 0 : analogously £(X; + Xo)(¥) = £(X1)(Y) + £(Xa) (V).
0,5

d) 51 # 0,52 # 0: §(X1 + X2)(Y) = (31 +52) x 0Y + (71 + ) = {(X1)(Y) +
§(X2)(Y). _

We have proved that £ is a linear map. We will show that ker £ = 0. Let { (X) =

0 € CE; 1f5=0then 0 = £(X)(V) =, i e &= (0,0). If 5% 0 then 0 =

EX)Y) =35x0Y +7 for all Y € Ej. It is possible only if 5 = 0, m = 0. It

completes our proof. O

The vector subspace £(Ag) will be denoted as SCE; := £(Ag). On the vector
space SCE3 by the isomorphism £ the following bilinear forms are induced:

a) Klein form SKL(£(X1),£(X2)) = KL(X1, X2),

b) Killing form SK(£(X1),£(X2)) = K(X1, X2),

c) Lie bracket [£(X1),£(X2)] = €[ X1, X2

Let X; = (3;,™m;), ¢ = 1,2, be two couples. Then the isomorphism £ inspires the
following shapes for the above introduced forms.

Proposition 2.
a)SKL(E(X1), (X2
b)SK(€(X1),£(X2))
cJlE(X1),E(X2)] =5, (Xz) 5o % &(X1)

Proof. Using the equalities (1) and (6) we get successively

a) §1£(X2) +§2.§(X1) = 51.(§2 XW+m2)+§2.(§1 xﬁ?erl) = §1.Ma+382. M =
KL(Xy, X3).

b) §1.52 = K(X1, X2)

C)_:_S"l X{(Xz) — 83 X E(Xl) = 5] X (Eg XW‘sz) — 89 X (§1 XW+ﬁ1) =
(51.0Y )59 — (3 .52)0_}7+§] X Mg — (32.07)§1+ (51 .EQ)W“ So XMy = E([Xl , XQD a

/--.

E(Xz) +52.6(X1)

Remark about trajectories of the vector field £(X). Let us remind that a trajectory
of a vector field is a curve the tangent vectors of which are values of the vector field
in points of this curve. So if ¥ = Y(¢) is the equation of a trajectory of the field
£(X) then

Y = Ex,0)(Y (1))

Using the equality (5) we can this equation to rewrite as follows

(7 0 —s3 s 1 my
vz | = | s3 0 =s y2 | + | ma |-
s —82 51 0 Y3 ms

It is a system of differential equations the solution of which are trajectories of

the vector field £(X).
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5. KINEMATIC INTERPRETATION OF THE FIELD £(X) OF A COUPLE X

In this chapter we use a notation X = (w, b) instead (5,m). We will distinguish
two cases.

a)If w = 0 then the value of the vector field {(X) is b at any Y € E3. We can
interpret this values as the instants velocities of equable straightforward motions
(translation motions). The trajectories of this motions are lines in the direction b.

2. Let w # 0. Recall that the line p of the couple (w, b) € Ag is going through the
point C,0C = @ x b/W? in the direction W. Let us consider the equable screw mo-
tion in E3 which is composition of two motions: the first part is the rotation around
the axis p with the constant angle velocity W and the second one is the translation
motion in Ej3 in the direction @ with the constant velocity hw, h = (w.b)/w?. (We
will say that the line p is the axis of this equable screw motion). The velocity 7 of
this motion at a point Y satisfies the equality

7=wxCY + hw.

According to (5) ¥ is the value of the vector field £(X) at Y € E3. We have
proved.

Theorem. Let X = (w,b) € Ag. Then the vector field £(X) is the velocity field of
the following motions:

If W = 0 then it is a translation motion with the velocity b.

Ifw # 0 then this motion is the equable screw motion around the line p of the couple
X with constant angle velocity W and with translation constant velocity hw,h =

(w.D)/w*.

Remark 8. fw.b =0, W # 0, i. e. if KL(X) = 0, K(X) # 0, i. e. if X = (w,b)
is a Pliicker's couple then £(X) is a field of velocities of the clean rotation around
the line of X with constant angle velocity w. Couples X belonging to the same
Pliicker's screw (X)) determine rotations around the line of (X') with different angle
velocities. When K L(X) # 0, K(X) # 0 then the trajectories of the field £(X) are
screw curves the axis of which is the line of X. The motions determined by the
couples of a screw (X}, KL(X) # 0, K(X) # 0, are equable screw motions around
the line of (X) with the same pitch h. In general two cauples X1, Xo, K(X3) # 0,
with the same line p of couple, i. e. X; € 3, determined equable screw motions
around p with different angular velocities and pitches.

Remark 9 (about pitch h). By definition & = (w.b)/w? and then v = |h|||@, |@|?* =
w.w, is the translation velocity of the motion determined by X = (@, 5), w # 0.
Then [h| = £, w = ||@||. So |h] is the translation length according to revolution
with angle of radian around the line p of the couple X. It will be called specific lift.
If A > 0 then we say that both motion parts, rotation and translation, have positive
orientation, (If the rotation is in the direction of fingers of the right hand then the
translation is in the direction of the thumb.), and in the opposite case h < 0 we
say about negative orientation.

Remark 10 (about influence of a c.’e_oice of a origin 0). If we use a point 0' instead
0 then the line of a couple X = (w, b) is the line p = 7(p) where 7 is the translation

determined by the vector 00'. Now C' = 7(C), O'C" = (@ x b)/w? = 0C. The veloc-
ity of the equable screw motion around p' with angular velocity @ and translation
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velocity @ in a point Y is

Exoy(Y) =T xCY + ki =w x (C'C + CY) + hwo = £(x 0) + W x OC.

Remark 11 (about subgroups of motions induced by couples of the Lie subalgebras
of Ag). 1t is well known that to every Lie algebra A there is a Lie group G(A) the
Lie algebra of which is just A. By our investigations in the 3-th chapter there are
9 types of subalgebras.

a) Ay = (X), X = (5,/m) # (0,0). If = 0 then the corresponding group G(A;)
is the group of all translations with constant velocities k7. If § # 0 then G(A,;) is
the group of all equable screw motions around the line of X with the same pitch h.

by) Az = (B,) for a line p, i. e. Ay = {(kwW, kb+uw), @ # 0,k,u € R}. The group
G(As) induced by Aj is the group of all equable screw motions around p including
all translations in the direction of p and rotations around p.

by) If Ay C Vi, Ay = ((0,7m,), (0,72)) then corresponding group is the group of
all translations with the velocities T € A,.

c1) If A3 = VJ or Az = VJ then the corresponding group is the group of all
translations in Ej3 or of all rotations about origin 0.

c2) Az C Ag with properties: dim(p; A3) = 1, dim(paA3z) = 3, p1(A3) is orthog-
onal to pa(A3 N VY ). Then (w,0) ¢ A3 and there is (, b)e A3, w#0#Db. Let p
be the line of (,b). Then G(As3) is generated by all equable screw motions around
lines parallel with p except the one going through origin 0 and by all translations
with velocities ¥ orthogonal to p.

c3) Az C Ag with properties: dim(p; A3) = 1, dim(pA3) = 2, p1(A3) is orthog-
onal to pa(Asz) in V3. Then (w,0) € A; and G(A3) is generated as in the case
¢ including equable screw motions around the line going through origin 0 in the
direction .

cs) A3 = {(W,W x M) € Ag,w € V3, # 0 is a given vector}. Then G(A3) is
generated by all equable rotations around the lines going through points C,0C #
—m, of the sphere S, (describing in the Remark in the end of the 3-d chapter) and
around all lines orthogonal to 7 going through C,0C = —m.

d) Ay C Ag with properties: dim(p, A4) = 1, dim(p2A4) = 3. Then Vi C A4 and
G(A4) is generated as in the case C3 including all translations in Ej.

5. DYNAMIC INTERPRETATION OF A VECTOR FIELDS £(X)

Firstly we recall effects of a force on a rigid body. Let a force f affects on a rigid
body Q at a point C' € Q. The line p = (C, f ) going through C in the direction f
is called the line of f. The result of effect of f at a point ¥ € Q does not depend
on a choice of a point C on the line p of f. A measure of this effect is moment of
the force f at Y, i. e. the vector YC x f. Denote m := OC x f the moment of f at
origin 0. We get a Pliicker‘s couple (f,7 = OC x f) the line of which is just the
line of f.

Remind further, that the effect of a couple of forces (f, —f,7) with its arm 7 is
the same at every point Y € €. A measure of this effect is moment 7 x f of the
couple of forces.
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Let X = (f,m) € Ag be a couple of vectors. Let £(X) be the vector fields
on E3 determined by X. The above considerations inspire the following dynamic
interpretation of the vector field £(X).

a) If X = (0,7) then £(X) is the vector field the value of which in every point
Y € Q is the moment 7 of some couple of forces.

b) Let X = (f,7) be a Pliicker's couple, i.e. f.m = 0. The line p of X we
interpret as the line of a force f. Then £(X) is the vector field the value
of which in a point Y is the moment YC x f of the force f at Y, where
0C = (f x ﬁ)/?z, i. e. C is the orthogonal projection of the origin 0 into
p. The value of this field in 0 is n = OC x f.

¢) Let X = (f,m) is not Pliicker's couple, i. e. f.7n # 0. Recall that hf h =
(fm)/ 7 is the orthogonal projection i into f. Then the vectors f, 7 —hf
are orthogonal in V3 and (f,m) = (f,7 — hf) + (0, hf) where (f,7m — hf)
is a Pliicker's couple. So the vector field £(X) is the sum of the vector fields
‘f({fvﬁ - hf)) and 5((Oahf)): i e

EX)Y)=YC x f+hf=¢((f,m~hf))+E&((0,hf)).

This means that the value of the field £(z) in a point Y is the sum of the moment
of the force [ at Y and the moment hf of some couple of forces.

Values of the vector field £(X) interpreted by moments of forces can be called
dynamic effects of a couple X.

Recall that in literature the following notions are used. Elements of the Lie
algebra Ag, i. e. couples X = (3,7), are called motors. If the vector field {(X) of a
motor X is interpreted as a vector field of velocities then X is called twist.

If £(X) is interpreted as a vector field of moments then X is called wrench.
If two wrenches X, Xy € Ag belong to the same screw, i. e. if X5 = kX, then
£(X,) = k€(X)), 1. e. the dynamic effect of X3 is a multiple of the dynamic effect
of X;. In general if wrenches X;, X3 have the same line of couple, i. e. if Xy =
(kf,, ki, + ufi) then the dynamic effect of X, is the sum of a multiple of the
dynamic effect of X and of a moment of some couple of forces.

Remark 12. (about a twist-wrench interpretation of K L(X, X3)):

Let a twist X; = (W,b) € Ag determined an equable‘ screw motion of a body
2 around the line p; of X; with angle velocity W and with translation velocity
hw. Then b is the velocity of origin 0. Let Xy = (f,Mm) € Ag is a wrench, i. e.
f is a force the line of which is the line of X2 and £(X2) is a such vector field
that £(X)(Y) = YC3 x f + hf is the sum of the moment of f at ¥ and of
the moment hf of some souple of forces. Recall that £(X2)(0) = 7. The value
KL(X,,X3) = f.b+ w.7i can be interpreted as follows. We can say that f.b is a
translation effect of f and .7 is a rotation effect of [ at the origin 0 of the body Q
moving by a equable screw motion. Then K L(X;, X3) can be called a power given
to the solid €2, moving under the twist X, by the wrench Xy per unit of time.

Remark on a motion of the effector of a robot.. We consider the effector of a robot
as a rigid solid 2. The moving effector determines in €2 the vector field of velocities
of points Y € Q) at any time ¢. This vector field is the vector field of velocities of a
equable screw motion around an instantaneous axis and thus it is determined by a
couple X (t) = (@(t),b(t)) € Ag. So a moving effector determines a curve t — X (t)
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in Ag. Vice versa, a curve X (t) in Ag states a movement of a effector the trajectories
of which are solutions of the non-autonomous differential system

Y= Ex(0),0Y ¥ =T(t) x T+ b(2).
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