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THE LATTICE OF VARIETIES OF ORGRAPHS

ALFONZ HAVIAR AND GABRIELA MONOSZOVA

ABsTRACT. In [5] we investigated varieties of orgraphs (i.e. oriented graphs) as
classes of orgraphs closed under isomorphic images, suborgraph identifications and
induced suborgraphs, and we studied the lattice of varieties of orgraphs. We paid
particular attention to varieties containing no nontrivial tournament. In this paper
we pay attention to the part of the lattice of varieties of orgraphs which consists of
varieties generated by sets of notrivial tournaments.

1. INTRODUCTION

A useful tool for investigations of some properties of graphs is a choice of suitable
closure operators and examinations classes of graphs closed under these operators.
For example, classes of graphs closed under induced subgraphs are called hereditary
in [12] and induced hereditary in [3], and were considered in several papers. Classes
of graphs closed under other operators are considered, for example, in [2] and [6]. In
the paper [5] were considered classes of orgraphs closed under isomorphic images,
suborgraph identification and induced suborgraphs.

By an orgraph we mean directed graph G(V, E) without loops with the following
property:

for every two distinct vertices u,v € I/, at most one of the edges uv and vu
is an arc from E.

We briefly write uv instead of [u,v] for vertices u,v € V.

We can associate to every orgraph G(V, E) the graph G*(V*, E*) by omitting
the orientation of all edges, i.e. ’

V*=V and {u,v} € E* if uwe Forvu € E.

An orgraph G(V, E) is called

- weakly connected if G*(V*, E*) is connected,

- a weak cycle if G*(V*, E*) is a cycle,

- a tournament if G*(V*, E*) is a complete graph.

Let us recall that by a suborgraph identification of orgraphs G;, G2 we mean
gluing of the orgraphs G;, G» in their weakly connected induced suborgraphs G1, G,
which are isomorphic (we choose an isomorphism between G{ and G} and identify
the corresponding vertices of G} and Gj [7]).

In this paper we follow the notation of [5]. If K is a set of orgraphs we denote
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- by I'(K) the smallest class of weakly connected orgraphs containing the set K
and closed under suborgraph identifications ,

- by S(K) the class of all weakly connected induced suborgraphs of orgraphs
from K,

- by I(K) the class of all isomorphic images of orgraphs from K.

Definition 1.1. A set K of orgraphs closed under isomorphic images, induced
weakly connected suborgraphs and suborgraph identifications is called a variety;
that is K is a variety if

I(K) CK, S(K) CK and I'(K) C K.

Obviously, I, S, T" are closure operators on the system of all sets of weakly
connected orgraphs. By [4, Theorem 5.2] we obtain the next statement.

Theorem 1.1. The set of all varieties of orgraphs with set inclusion as the partial
ordering is a complete lattice (denoted by L(I,S,T)).

We denote by V(K) the smallest variety of orgraphs containing a given set K of
orgraphs. We will say that V(IK) is generated by the set K.

The following lemma and corollary play an important role in investigations of
varieties of orgraphs.

Lemma 1.2. Let G(V, E) be a weakly connected orgraph which is neither a tour-
nament nor a weak cycle. Then there erist two nonadjacent vertices u,v € V' such
that G — {u,v} is a weakly connected orgraph.

Proof. The statement immediately follows from [8] or [10, page 208]. O

Corollary 1.3. If G(V, E) is a weakly connected orgraph which is neither a weak
cycle nor a tournament, then G is isomorphic to a suborgraph identification of two
proper weakly connected suborgraphs of G.

Proof. By Lemma 1.2 there are two nonadjacent vertices u,v € V such that G —
{u,v} is weakly connected. Let f be the identity on the suborgraph G — {u,v}. The
orgraphs G; = G — {u} and Gy = G — {v} are proper weakly connected induced
suborgraphs of G, and obviously G = G, Uf G,. O

Whenever uv is an arc of an orgraph G(V, E) , the vertex u is called an adjacent
vertex to v and v is called an adjacent vertez from u. An outdegree (an indegree) of
a vertex v € V in the orgraph G(V, E) is the number of vertices adjacent from v
(to v). When outdegree of a vertex v is 7 and indegree of v is j, we will say that v

is of type Lrg% and write simply v;, when no confusion can arise.

A tournament will be denoted by 7n(V, E) or briefly by 7n. We say that a tour-
nament Tn(V, E) is of type T(01:02:0%) . < 0iy1 foreach i = 1,...,k — 1, if
V = {v,...,u} and 01, 03, ..., oy are the outdegres of the vertices vy, va, ...,
vk, respectively. When the tournament 7n is of the type 7 (91:92:29%)  we more
precisely write Tn=(v{"" v{"2’ .. v{’*"). Let us note that the notation 7(°1:022)of
k-vertex tournament is ambiguous for k > 5. We identify a tournament with its
type if k < 4. The tournament 711 was denoted (as the weak cycle) by C3 o)
and the tournament 7(*12) was denoted by C(z,1y in [5]. We say that a tournament
Tn(V, E) is nontrivial if |V| > 3.

According to [5] we denote
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- by C(4,1) the weak cycle with two adjacent vertices of the types v, v9 and three
vertices of the type v} (see Figure 1a),
- by C(3,2) the weak cycle with two nonadjacent vertices of the types vZ, vJ and

three vertices of the type v} (see Figure 1b).
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Figure la-b

We denote by 0 the smallest element of the lattice L(/, S, ") and by 1 the greatest
element of the lattice L(/, S, T").

In the paper [5] we showed that the interval [0, V(C(32))] of the lattice L(1,S,T)
is isomorphic to the lattice 3 @ D¢ where @ is the linear (ordinal) sum of the 3-
element chain and the lattice D%, where D9 is the dual lattice of the lattice D
of all nonnegative integers with the divisibility relation as the partial ordering. A
variety of orgraphs belongs to the interval [0, V(C(3 2))] iff it contains no nontrivial
tournament.

In the next section we pay attention to the interval [V(C(‘;‘l), 1] of the lattice
L(I,57T).

In [5] we used a characteristic of a weak cycle. Let C(V, E) be a weak cycle of the
length n. If all arcs of C have the same orientation, we say that the characteristic
of C is n. On the other hand, if arcs of C have not the same orientation, we choose
an arc vw € E, and we call all arcs of C having the same orientation as vw positive;
the other arcs are negative. The characteristic ch(C) of the weak cycle C is |p — n|,
where p is the number of all positive arcs of C and n is the number of all negative
arcs of C.

The next lemmas were proved in [5] and will be used in this paper. First, we
denote analogously as in [5]

- by C1,1,...1) a weak cycle containing no vertex of the type v},

- by C(n,0), n > 3, an n-vertex weak cycle containing only vertices of the type v},

- by C(3,1) the weak cycle with two adjacent vertices of the type vi, one vertex of
the type v§ and one vertex of the type v3.

Lemma 1.4. Let V be a variety of orgraphs. Let C be a weak cycle different from
weak cycles of the type Cy1,1). If C € V and C' 15 a weak cycle for which

ch(C") = ch(C), C'+#Cs) and C' # Cay

(i.e. the characteristics of the weak cycles C, C' are the same and C' is not a tour-
nament) then C' € V, too.

Lemma 1.5. Let V be a variety generated by a weak cycle Cin ), n > 3, or by
C(3.1), or by C(3,2). Let G be an orgraph containing no nontrivial tournament as an
induced suborgraph . Then G € V iff the characteristic of each weak cycle of the
orgraph G 1s a multiple of the characteristic of the generating weak cycle.
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2. VARIETIES CONTAINING SOME NONTRIVIAL TOURNAMENTS

By Corollary 1.3 every variety of orgraphs is generated by a set of weak cycles and
tournaments. Therefore the next lemmas related to minimal nontrivial tournaments
(minimal with respect the relation of being a subtournament) will prove useful.

Lemma 2.1. A tournament Tn does not contain the subtournament TV if and
only if the tournament Tn is of the type T(O1k),

Proof. We prove the statement by induction on the number of vertices of tourna-
ments.
The statement is evidently true for 3-vertex tournaments.
Let the statement be true for any k-vertex tournaments.
1. Let Tn = (i oM, .. ,'u,(ck)) be a tournament of the type 71k We prove
that Tn does not contain the tournament 7 (1)), Omitting of the vertex v\ of 7n
(the outdegree of the vertex v is k) we obtain k-vertex tournament 7n of the type
7L k=) Fvidently any 3-vertex subtournament of the tournament 7n is either
subtournament of the tournament 77 or a subtournament containing the vertex vy.
The tournament T contains no subtournament of the type 7L (by induction
hypothesis) and the indegree of the vertex vy is zero, therefore the statement follows.
2. Let Tn be a k+1-vertex tournament of type different from the type 7 (0:1:-*).
We prove that 7(11:1) s its subtournament. Omitting a vertex v of Tn we obtain
k-vertex tournament 7+
a) If 7 contains the subtournament 7 (111 then 7(311) is the subtournament of
the tournament 7n, too.
b) If 7 contains no subtournament of the type 7(111) then 7/ is a tournament of
the type T(©1k=1) by induction hypothesis. Let T = (u(go),uﬁl), o Uy BT,
If there exist two vertices u;,u; € V(%), i < j, such that u;v € E(Tn) and
vu; € E(T) then the tournament (v, u;,u;) = 7Y is the subtournament of 7n.
Otherwise, the tournament (v, uwg,uy,...,ux_1) or {ug,u,...,Ug—1,v) OF
(U0, U1y -+, Uy U, Ug1)s - - s Uk—1)y 0 < 5 < k — 1, is of the type 71 a con-
tradiction. O

It is easy to verify that the next statement is true.

Lemma 2.2. The tournament T2 is a subtournament of every nontrivial tour-
nament Tn # T(LL1),

Now, we focus our attention to varieties containing at least one nontrivial tour-
nament.

Lemma 2.3. Let M be a set of orgraphs . If a nontrivial tournament Tn is not a
suborgraph of any orgraph from M then Tn ¢ V(M) (i.e. Tn does not belong to the
variety generated by the set M).

Proof. Tt immediately follows from the following fact. If 7n is neither a suborgraph
of an orgraph G; nor a suborgraph of an orgraph Gs, then obviously 7n is not a
suborgraph of any suborgraph identification of the orgraphs G; and Ga. [

Lemma 2.4. The variety V(T2 contains every weak cycle C # C(z0), and it
covers the variety V(C3,2))-
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Proof. First we recall that 712 = Cy 1y and Czg) = 7Y, The weak cycle
C(s,2) belongs to the variety V(7T(©12)) by Lemma 1.4, and therefore the vari-
ety V(T(®1?) contains every weak cycle C # C(30) by Lemma 1.5. The variety
V(T(0-1.2)) contains only one tournament (by Lemma 2.3) and the statemant fol-
lows. O

Corollary 2.5. Every variety V > V(T(012) is generated by a suitable set of
tournaments.

Proof. The variety V > V(T (®12) is generated by a set M = M; UM, where M is
a set of weak cycles and My is a set of tournaments (and we suppose 7111 € M,
if C(3,0) € My). We can assume that the set My of tournaments is closed under
subtournaments (and so 712 € My). It follows V(M;UMj;) = V(M;) by Lemma
24, 0O

Corollary 2.6. Let M, My be sets of nontrivial tournaments closed under non-
trivial subtournaments and let V(M;) > V(T©12) and V(M) > V(T12),
The variety V(M,) is covered by the variety V(Mz) if and only if there exists a
tournament TnY such that My = My U {Tn"} and T ¢ M.

Now we investigate relations between varieties which contain the tournament
T(11,1)

Lemma 2.7. a) The variety V(T H51)) covers only one variety V(C(q1)).-
b) The variety V(T(l'l‘l},C(:;’z)) covers only two varieties V(T M1V and V(Cs,2)-
¢) The variety V(T MUY C g ) is covered by the variety V(T (111 T(0.1.2))

Proof. a) The variety V(T (1)) = V(C3)) does not contain any nontrivial tour-
nament Tn # 7001 and the weak cycle C(a,1) belongs to V(7ML by Lemma
1.4. On the other hand the tournament 7 (":1:!) does not belong to the variety Cian
by Lemma 2.3. A weak cycle C belongs to the variety V(7 (1:1'1)) if and only if the

characteristic of C is a multiple of the number 3 (by Lemma 1.5) and the statement
follows.

b) The variety V(711 C(5 ) does not contain nontrivial tournament Tn #
711 and contains every weak cycle C # C(a,1y (the weak cycle Cpp ) = T(1:2)
is the tournament). Let us recall again that the variety V(7 (1)) contains a weak
cycle only if and only if its characteristic is a multiple of the number 3 and the
variety V(C(3 7)) contains every weak cycle C # C(3 ), by Lemma 1.5.

¢) The variety V(7 (311 7(0:1.2)) contains only two nontrivial tournaments 7 (1:1:1)
and 712 and all weak cycles, and the above considerations yield the state-
ment. (O

Thus, we have proved the next statement.

Theorem 2.8. The lattice L(1,S,T") consists of the interval [0,V (C32))] (con-
taining all varieties without nontrivial tournaments) and order filter with two min-
imal elements V(TWID) and V(T @12 (see Figure 2). The pair of varieties
(V(TEID [ Ciy 00), V(TO12))) is the splitting pair of the lattice L(I,S,T) (i.e. for
every variety V either V. < V(TWID €y 5) or V > V(T01.2))),
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Figure 2

In Figure 2, the generators are used to denote the corresponding varieties, where
tournaments are denoted by their types. Since some different tournaments with at
least 5 vertices have the same type we depicted all 5-vertex tournaments in Figure

3 (by [11)).
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(Upward arcs are shown; downward arcs are implied)

In [5] we showed that the sublattice (the interval) [0, V(C(32))] of the lattice
L(I,S,T) is distributive. Now we will strengthen the statement.

Theorem 2.9. The lattice L(I,S,I") is distributive.

Proof.

a) First, we show that the sublattice (the interval) [V(C(4,1)),1] is a distributive
lattice. Let M, M be sets of nontrivial tournaments closed under subtournaments
and let V, = V(M;), Vp = V(M) be varieties generated by the sets M, and M,
respectively. By the above lemmas we have

VivVy= V(Ml UM‘Z) and Vi AV, = V(Ml n Mg) if M; N M, % 0.

Notice that M; N My = @ if one of these sets is {’T(i’l‘l')} and the other contains
only tournaments of the type 7% ¥ It implies that the sublattice [V (7 (®:1:2)) 1]
of the lattice L(I, S,T) is distributive. Therefore the sublattice [V(C(4 1)), 1] is also
distributive as is easy to check.

b) We show that the lattice L(I,S,T') contains neither the pentagon N5 nor the
diamant Mj.

Suppose, on the contrary, that the diamant M3 is a sublattice of the lattice
L(I,57T). At least two noncomparable elements of M3 belong to the interval
[V(C(4.1),1] or to the interval [0, V(C(32)]. It follows that the sublattice My is
a sublattice of the interval [V(C4 1)), 1] or of the interval [0, V(C(3 )], and both
mentioned intervals are distributive lattices, a contradiction.

Suppose, on the contrary, that the pentagon Nj is a sublattice of the lattice
L(I,5T). Let a,b,c be elements of N5, a < ¢, a || b, ¢ || b, ¢ covers a. Then both
elements a, ¢ belong either to interval [0, V(C(32))] or to interval [V(C(41)),1].
Since the intervals [0, V(C(32))] and [V(C(4,)),1] are distributive the element b
belongs to the other interval. There are only two possibilities: @ = V(C4,1)) and
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c=V(TOID) and b € [0, V(C(3.2))] (for example b = V(Cs,0))) or b=V (C3,0)) €
[V(C(QJ)), 1] and a,ce [O,V(C(SJQ))] (fOI‘ example Cc = V(C(5]g)), a = V(C(m,u))). In
this case we have bVa < bVcor bAa < bAc (see Lemma 1.5), a contradiction. [J
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