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ON o-PSEUDODIMENSION OF MONOUNARY ALGEBRAS

DANICA JAKUBIKOVA-STUDENOVSKA AND GABRIELA KOVESIOVA

ABSTRACT. In this paper the notion of a-realizer is defined. There are found neces-
sary and sufficient conditions under which an a-realizer of a connected monounary
algebra exists. Next we deal with a-pseudodimension of a product of some special
types of monounary algebras.

1 INTRODUCTION

Let U be the class of all monounary algebras and let @ = (L, f) be a fixed
element of U. To each (A, f) € U we assign a cardinal which will be denoted by
a-pdim(A, f); we say that this cardinal is the a-pseudodimension of (A, f).

Our definition is in accordance with that used by V. Noviak and M. Novotny [6]
(cf. especially Example 6.4 of [6]).

The most of results concern the case when both (A, f) and (L, f) are finite
connected monounary algebras.

First we study a-realizers of (A, f) € U. There are found necessary and sufficient
conditions under which an a-realizer of a connected monounary algebra exists. Next
some special types « are dealt with and we determine a-pdim(A, f) in the case when
(A, f) is a direct product of sticks.

After the World War 11, O.Boruvka formulated a problem concerning matrices
commuting with a given matrix, that led to study homomorphisms of monounary
algebras. His problem stimulated the investigation of these algebras; monounary
algebras were investigated e.g. by M.Novotny [7],(8], O.Kopecek [3], E.Nelson [4],
D.Jakubikové-Studenovska (1],{2]. The concept of pseudodimension was introduced
in [5] for ordered sets. Later it was extended by Novék and Novotny [6] to the
concept of a-pseudodimension of arbitrary relational structures.

For the terminology and definitions cf. Section 2.

2 a-REALIZER

In this section we start with defining of the notions we will use below. Then we
investigate a-realizers of (A, f).
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Definition 2.1. Let n € N,k € N U {0}. The algebra of the type (n,k) is the
monounary algebra (B, f), where B = Z, U{m € N : m < k} (where Z, =
{0,,...,(n—1),} is the set of all integers mod n),

f(in) = (i + 1), for each i € Z, f(1) = 0,,,

f(m)=m —1foreach m e N,1 <m < k.
In the case when n = 1, the algebra (B, f) is called a stick or a stick of type k.

Notation 2.2. Let (B, f) be a connected monounary algebra. We denote by C(B)
the set of all cyclic elements of (B, f) and R(B) = |C(B)].

The degree s(z) of an element z € B was defined in [7] (cf. also [1]) as follows:

Let us denote by B(®) the set of all elements z € B such that there exists a
sequence {Z,}nenufo} of elements belonging to B with the property zo = z and
f(xn) = -y for each n € N. Further, we put B = {z € B: f~!(z) = 0}. Now
we define a set B(*) C B for each ordinal A by induction. Let A > 0 be an ordinal.
Assume that we have defined B(®) for each ordinal & < A. Then we put

BY ={zeB-JB“: fx)c |J B}

a< a<A

The sets BY) (where A is an ordinal or A = oo) are pairwise disjoint. For each
x € B, either z € B(®) or there is an ordinal A with z € B™). In the former case
we put s(x) = 00, in the latter we set s(x) = A\. We put A < oo for each ordinal .
Suppose that R(B) # 0. If B = C(B), then we put h(B) = 0. If B # C(B), then
we define h(B) = 1+ sup {s(z) : z € B — C(B)}.
Notice that the definition of s(x) implies that if B # C(B), then

h(B) =1+ sup{s(z) : z € B — C(B), f(z) € C(B)}.

Remark. Let us remark that we considerably apply results of M.Novotny [7],[8]
concerning homomorphisms of monounary algebras. E.g., without further reference
we will use that if (A, f) and (B, f) are monounary algebras, then
(1) if ¢ is a homomorphism of (A4, f) into (B, f), then s(¢(z)) > s(z) for each
T €A,
(2) if  is a homomorphism of (A, f) into (B, f) and = € A belongs to a cycle
C, then ¢(x) belongs to a cycle D C B such that |D| divides |C|.

Notation 2.3. We will denote by (Z, f) and (N, f) the monounary algebra such
that f(i) =i+ 1 for each i € Z or i € N, respectively.
Further, for a cardinal k let (N, f) be a fixed monounary algebra such that

Ne=NuUD, NAD =90, |D| =k,

{a+1 ifae N,

J(a) = 1 ifa€e D.
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Definition 2.4. Let (A, f) € U and let {¢; : j € J} be a nonempty system of
mappings of A into L such that for any z,y € A we have

y = flx) &= (Vi € J)(;(y) = flp;(z)).

Then {¢; : j € J} is said to be an a-realizer of (4, f).
If no a-realizer of (A, f) exists, then we set

a-pdim (A4, f) = 0.
Further, suppose that there exists some a-realizer of (A, f); then we put
a -pdim (A4, f) = min{|J| : {¢; : j € J} is an « -realizer of (4, f)}.
This cardinal is called a-pseudodimension of (A, f).
This definition immediately yields the following two assertions:

Lemma 2.5. Let (A, f) € U and suppose that {¢; : j € J} is an a-realizer of
(A, f). For j € J, the mapping ¢; is a homomorphism of (4, f) into (L, f).

Lemma 2.6. Let (A, f) € i and let T be a nonempty system of homomorphisms
of (A, f) into (L, f). Then T is an a-realizer of (A, f) if and only if the following
implication is valid for each z,y € A

(*) (Vo € T)(e(y) = ¢(f(2))) = y = f(z).
Corollary 2.7. If (A, f) € U and there exists an injective homomorphism of (A, f)
into (L, f), then a-pdim(A4, f) =1.
Lemma 2.8. Let (A, f) and (L, f) be connected monounary algebras. If there
exists an a-realizer of (A, f), then R(A) = R(L).
Proof. Suppose that T is an a-realizer of (A4, f).

a) First assume that R(L) = m € N. Then there exists z € A such that

¢(f(x)) € C(L). Put y = fm*1(x). For p € T we get
p(y) = oS () = f™ () = ™ (p(f(2))) = o(f(2)).

Since Y is an a-realizer, (*) of 2.6 yields that y = f(x), i.e., f™(f(z)) =
f(z). Therefore R(A) divides m. From 2.5 it follows that R(L) divides R(A)
(because each ¢ is a homomorphism of (A, f} into (L, f)), thus we obtain
R(A) = R(L).

b) Now suppose that R(L) = 0. According to 2.5, R(A) = 0, too. O
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Theorem 2.9. Let (A, f) and (L, f) be connected monounary algebras such that
R(A) = R(L) # 0. An a-realizer of (A, f) exists if and only if h(A) < h(L).

Proof. Let T be an a-realizer of (A, f). Let a € A—C/(A) be such that f(a) € C(A).
There exists z € C(A) with f2(z) = f(a). Put ¢ = f(x). Then f(¢) = f(a) € C(A).
First suppose that ¢(a) € C(L) for each ¢ € Y. This implies that for p € T we
have

p(a) = ¢(c) = ¢(f(2)),

thus by (%), @ = f(z), a contradiction. Hence there exists 10 € T such that b =
Y(a) ¢ C(L). Since 1 is a homomorphism, the element f(b) is cyclic and

Therefore h(A) < h(L).

Conversely, assume that h(A) < h(L). If A(A) = 0, then let g be an arbitrary
isomorphism of A onto C(L). It is obvious that T = {p¢} is an a-realizer of A. Now
let h(A) # 0. Let u € A — C(A). Then there is a € A — C(A) with f(a) € C(A)
and u € f~"(a) for some n € N U {0}. The relation h(A) < h(L) implies that
there is b € L — C(L) such that f(b) € C(L) and that s(a) < s(b). Let b be a fixed
element with this property. Obviously, s(u) < s(b). By (8], Thm., p.157 there exists
a homomorphism 1, of (A, f) into (L, f) having the following properties:

(1) T'Dﬂ(u) = bv
(2) if v ¢ Unenugoy f ™ () U{f*(u) - k € N}, then ¢ (v) € C(L).
Denote T = {1, : u € A— C(A)}. Let us verify that T is an a-realizer of (4, f)
according to (*). Assume that z,y € A and that 1, (y) = ¥, (f(z)) for each v, € T.
a) If f(x) ¢ C(A), then take u = f(z). We get ¢, (y) = 1, (u). Since v ! (1, (u))
is a one-element set {u} by (2), this implies that y = u, i.e., y = f(z).
b) Let f(x) € C(A). If y & C(A) then v, (y) & C(L), hence ¥, (y) # ¥, (f(z)),
a contradiction. Thus y € C(A). Take an arbitrary ¢ € T. Then ¢ is an
isomorphism of C(A) onto C(L), thus the relation ¢(f(z)) = ¢(y) yields
that f(z) =y

Therefore T is an a-realizer of (A, f). O

Theorem 2.10. Let (A, f) and (L, f) be connected monounary algebras such that
R(A) =R(L)=0.Let P={ue A:|fY(u)| > 1, f~%(u) # 0}. An a-realizer of
(A, f) exists if and only if one of the following conditions is satisfied:
(a) (A, f) = (N, f)or (A, [f)=(Ny,f) for some k € Card,;
(b) (A, f)=(Z, f) and there is a subalgebra of (L, f) isomorphic to (Z, f);
(c) P -;aé 0 and for each u € A, q1,92 € f~'(u), q1 # qz such that f~(q;) # 0
there are v € L and distinct elements t,,t; € f~!(v) such that s(f*(u)) <
s(f¥(v)), s(q:) < s(t;) for each k € N U {0}, i € {1,2}.

Proof. Let T be an a-realizer of (A, f). First suppose that P # (). Take u € P,
z € f72(u), g2 € M (u) = {f(z)}. Let 1 = f(z). Since Y is an a-realizer, we
obtain that there is ¢ € T such that ¢(g2) # ¢(q1). Put v = ¢(u). Then s(f*(u)) <
s(p(fF))) = s(f*(v), s(g:) < s(p(q:)) for each k € N U {0}, i € {1,2}, hence
(¢) is valid. Now let P = (. Then (A, f) is isomorphic to one of the algebras
(Z,f),(N, [),(Ng, f) for some k € Card, i.e., either (a) is valid or (A, f) = (Z, f).
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Each ¢ € T is a homomorphism, thus if (4, f) = (Z, f) then (Z, f) is isomorphic
to some subalgebra of (L, f). Therefore one of the conditions (a) — (c) is satisfied.

Conversely, let one of the conditions (a) — (¢) be valid. If (a) or () is valid,
then there exists a homomorphism g of (A, f) into (L, f); put T = {wo}. Let
7,y € A, @o(y) = wo(f(2)), y # f(z). If (A, f) is isomorphic to (N, f) or to (Z, f),
then each homomorphism of (A, f) into (L, f) is injective. Let (A, f) be (up to
isomorphism) (N, f) for some k € Card. Further, the relation po(y) = wo(f(z))
implies that {y, f(z)} € D, which is a contradiction, since f(z) € N — D.

Let (c) hold. Ifu € P, p€ f~*(u), g € f'(u) —{f(p)} then take q1 = f(p), g2 =
q; by (¢) (according to [8], as in the proof of Thm.2.9) there exists a homomorphism
Yupg of (A, f) into (L, f) such that

(1) wupq(u) =1,

(2) ﬂ"upq(Q) # Yupe(f(P))-
Let T the set of all homomorphisms of the form t,,,. We will show that T is
an a-realizer of (A, f). Let z,y € A and suppose that ¢(y) = ¢(f(z)) for each
¢ € T. Put z = f(x). From the connectedness we infer that f™(y) = f"(z) for
some m,n € NU{0}; we can assume that m, n are the smallest nonnegative integers
with this property. Since T # @ and (y) = ¢(z) for ¢ € T, we get that m # 0
and n # 0. Denote u = f™(y), p = f* }(z), ¢ = f™ '(y). In view of the relation
@Qupg € T we have

(3) Pupq(y) = Pupq(2)-
This implies
fm(wupq(z)) = fm(wupq(y)) = wﬂpq(fm(y)) = 1i'bw.ljoqv(u) = wupq(f"(z)) = fn(wupq(z))=

hence m = n. Assume that y # z. Next,

Yupq(q) =’f’upq(fn_1(y)) = N (Yupe(y)), 1-e., Yupg(y) € f_(nhl)("if)upq(‘?))-
Similarly we obtain Yupq(f (D)) = Yupe(f(f*1 (@) = [ (Yupy(f())),
Le., Yupg(flz)) € TV (hypg (f(p)). In view of (3) we get

£ Wupg (@) 0 77 (W (f(2))) # 0,

which is a contradiction to (2). This concludes the proof. O

3 a@-PDIMENSION AND A PRODUCT OF STICKS

In this section we deal with realizers of type (n,k), n € N,k € NU{0}. Further,
we find the value of (1, k)-pseudodimension of a direct product of sticks.

Lemma 3.1. Let n € N,k € NU{0}. An (n, k)-realizer of a connected monounary
algebra (A, f) exists if and only if R(A) = n and f*(a) € C(A) for each a € A.

Proof. The assertion is a corollary of 2.9. O

Theorem 3.2. Let n € N,k e Nu {0}.

a) If k =0 or n =1,k =1, then (n,k)-pdim (A, f) = 1 for each monounary
algebra such that an (n, k)-realizer exists.

b) Let k=1,n>2.If m € {1,2,...,n}, then there exists (A, f) € U such that
(n,k)-pdim (4, f) = m. If m € N,m > n, then (n,k)-pdim (A4, f) # m for
each (A, f) e U.

¢) If k > 2,m € N, then there exists (A, f) € U such that (n, k)-pdim (A, f) =
™.
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Proof.
a)

Assume that an (n, k)-realizer of (4, f) exists. If k = 0, then |A| = |C(A)| =
n by 3.1 and there is an isomorphism ¢y of A onto Z,,. Then 2.7 implies .
that (n,0)-pdim (A, f) = 1. If n = 1, k = 1, then 3.1 implies that there
is ¢ € A such that f(a) = ¢ for each a € A. Put ¢(c) = 01, p(a) =1 for
each a € A — {c}. Then {¢} is a (1,1)-realizer of (4, f) and (1,1)-pdim
(4, )= 1.

From the assumption it follows that L = Z,, U {1}.

Let me {1,...,n}. Weput A=Z,U{1,...,m}, f(in) = (i + 1), for each
i€ Z, f(l) =1, foreach { € {1,...,m}. For j € {1,...,m} we define a
mapping ¢; : A — L as follows: ¢;(in) = (i — j), for each i € Z, ¢;(j) =
1, () =(l—=1—j), foreach l € {1,...,m} — {j7}. (cf. Fig.2.)

e ) )
@ 'J\) __________ /(ﬂ-‘)n \w /(n.z).,

(AD (L.D

Fic. 2

It is easy to verify that ¢; is a homomorphism for each j € {1,...,m}.
Denote T = {g; : j € {1,...,m}}. Let z,y € A, ¢;(y) = ¢;(f(z)) for
each j € {1,...,m}. We have w;l(l) = {j} for each j, thus y # j for each
j- Thus y € Z,,. Next, f(z) € Z,, hence in view of the fact that any ¢;
is a bijection of C(A) onto C(L), the relation ¢;(y) = ¢;(f(z)) implies
that y = f(z). Therefore T is an (n,1)-realizer of (A, f) and (n, 1)-pdim
(A, f) < m.

Suppose that T’ is an (n, 1)-realizer of (A, f). Let j € {1,...,m}. If
P(j) € Zy, for each ¢ € T', then

P() =P = 1)) = L(f((7 = 2)n))s

Jj= f((J - z)n)s

which is a contradiction. Thus there exists ¢; € T’ such that ¢;(j) = 1. If
Wy =y for j,l € {1,...,m}, then v;(I) =1 = 4;(j), which implies

¥ilin) = %;(f(5)) = f(¥;(5)) = f(1) = On.
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Similarly, ¥;(ln) = 0,. Further, we have

On = ¥5(ln) = Vi (F77(n)) = £ (5(Gn)) = 177 (0n) = (L = )y

thus ! = j. Hence |Y’| > m, therefore (n,1)-pdim (4, f) = m.

Let m > n and suppose that there is (4, f) € U with (n,1)-pdim (4, f) =
m. Thus there is an (n, 1)-realizer T of (A, f) with [Y| = m. According to
3.1 we have R(A) = n and f(a) € C(A) for each a € A. Up to isomorphism,

A=Z,UD{UDyU---UDy,

flin) = (i + 1), for each i € Z,
f(d) =1, foreachd € Dy, l € {1,...,n}.
Let j € {1,...,n}. Define a mapping ¢; : A — L as follows:

@ilin) = (1 — j)n each i € Z,

1 ideDj,
w;(d) = N .
(I=1-73), ifde Dy L#].

It is easy to verify that {; : j € {1,...,n}} is an (n,1)-realizer of (A, f),
hence (n,1)-pdim (A, f) < n, which is a contradiction.

Let k > 2,m € N. There exists t € N such that 2™~' <t +1 < 2™. We
denote by (A, f) a monounary algebra such that A = Z, U {ai,...,a} U
{by,...,b.} (suppose that all these elements are distinct and they do not
belong to Z,,), where f(in) = (i +1), for eachi € Z, fla) =0n, f(b) =a
foreach [ =1,...,t.

There exist 2™ distinct m-tuples of the elements (n — 1), 1. Thus there
exists a set Q = {q1,...,qt} of m-tuples of the elements (n—1),, 1 with
Q| =t, ¢ # ((n=1)p,...,(n—1),) for each g € Q. For j € {1,...,m},
I €{1,...,t} let q(j) be the projection of ¢, into the j-th coordinate. Let
j e {1,...,m}; we will define a mapping ¢; as follows. For [ € {1,...,t}
we put

¢;i(in) = in for each i € Z,

wjla) = q(j),
o3(b1) = { 2 if () =1,

(n—2), otherwise.
It is easy to verify that {¢; : j € {1,...,m}} is a set of homomorphisms
and that it is an (n, k)-realizer of (4, f) (cf. Example 1).
Next suppose that Y is an (n, k)-realizer of (A, f),T = {¢1,...,¥r}, 7 =
Y| < m. For I € {1,...,t} consider an r-tuple pM such that for j €

{1,2,...,7}
) 0 ifyj(a) e Zn
M4y = J ’
) { 1 otherwise.
Let 1€ {1,...,t}. If p¥(j) = 0 for each j € {1,...,7}, then ¥;(a;) € Zy, for
each j € {1,...,7}; then ¢;(a;)= ¥;((n — 1)n) = ¢;(f((n — 2),)) and the
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definition of an (n, k)-realizer implies that a; = f((n—2),), a contradiction.
Therefore each r-tuple p¥ does not consist of zeros only.

Since v; is a homomorphism, v;(a;) = 1 or y;(a;) € Z,. If 1,1’ € {1,... ¢t}
and j € {1,...,r}, then either

(1) ¥j(w) = ¥j(ar) or
(2) Vji(a) = 1,95(ar) = (n — 1), or
(3) wj(a.!) = (n - l)n,’(f)j(ay) =1.

By the assumption, 7 < m — 1, 2" —1 < 2™~ — 1 < ¢, thus there exist [,!’ €
{1,...,t}, 1 # U such that p¥) = p() Then p® (5) = p)(j) for each j € {1,...,7}.
Then we obtain that the cases (2) and (3) yield a contradiction, thus Pilay) =
Yjlap) foreach j € {1,...,r}. This implies that for each j € {1,... 7}, ¥i(f(lh)) =
vj{ar) = v¥j(ar). According the fact that Y is an (n, k)-realizer we get f(b;) = ay,
which is a contradiction.

Thus we have shown that (n, k)-pdim(A, f) = m. a

Example 1. Let n =2 and k > 2. For m = 3 we will define (A4, f) such that (2, k)-
pdim(A, f) is equal to m. Let us follow the _proof of theorem 3.2c). The relation
22 <t+1<2%implies t € {4,5,6,7}. Let t = 4

()
/AN
VAR

D
FiGc. 3

Ther exists 2° of 3-tuples of elements 1, 15: (1,1,1), (1,1, 13), (1,12, 1), (1,1, 1),
(1,12,12), (12,1,12), (12,12,1), (12,12, 15). Next we choose four elements of them
(t=4), eg,let ¢ = (1,1,1), gz = (1,1,12), g3 = (1,15,1) and g4 = (15,1,1). Put
Q = {q1,92,93,94}. We can define three (m = 3) mappings ¢, 2, ¥3.

02 12 a) | az | az| a4 bl bz 53 b4
w1 02f 1211 1 1 1212 (2 |2 |0,
w2 02) 151 1 12 212 (022
w3 | 02 12| 1 | 121 1 12 (002 |2

It can be verified that {y), @2, 3} is a (2, k)-realizer of algebra (A, f) and (2, k)-
pdim(A4, f) = 3.
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Theorem 3.3. Let (A, f) be a direct product of sticks (A1, f), (A2, f), ..., (Am, f)
of types ki, ka,...,kn such that |{i € {1 m} tki =1} < 1. If k > k; for each
i€ {1,...,m}, then (1,k)-pdim (A4, f) =

Proof. Let (L, f) be a monounary algebra of type k, k > k; for each i € {1,...,m}.
We can suppose that L = {0,1,... k}, 4, = {0,1,... k;},

. Jj—1 ifj#0,
fm_{o if j = 0.
in L and in A; for i € {1,...,m}. For j € {1,...,m} we define a mapping
wj + A1 X -+ x Ay — L such that ¢;((a1,...,an)) = a;. Put T = {p; : j €
{L,....m}}. U z,y € A, p;(y) = ¢;(f(x)) for each j € {1,...,m}, then y = f(x).
Thus T is a (1, k)-realizer of (A, f) and (1, k)-pdim (A, f) < m.
Suppose that Y’ is a (1, k)-realizer of (A, f), |T'| < m. Denote 0=1(0,0,...,0) € A.
Obviously, ¥(0) = 0 for each ¢ € T’ We have |f~1(0)| = |{a = (al, ..,am) :
a; € {0,1} for each i € {1,...,m}}| = 2™ Next, if a € f~1(0), then ¥(a) € {0,1}
for each i € Y'. Since er'i < 2™ there are a,b € f71(0), @ # b such that
Y(a) = ¢(b) for each ¢» € T'. Without loss of generality, in view of the assumption
that [{i € {1,...,m} : k; = 1}| < 1 we get that f~1(b) # 0; let € f~'(b). Then
Y(a) = (f(x)) for each ¢ € T'. The set T’ is a (1, k)-realizer, of (A, f), thus (¥)
implies a = f(z) = b, which is a contradiction. Therefore (1, k)-pdim (A4, f) = m.
0

Lemma 3.4. Let (B, f) be a monounary algebra fulfilling the condition

(c) if b € B, then there is b’ € B with f(b) = f(b'), f~1(¥') = 0.
Let (E, f) be a 1-stick. Then (B, f) x (E, f) fulfils (c) and if (1, k)-pdim(B, f) = p,
then (1, k)-pdim((B, f) x (E, f))=p

Proof. Without loss of generality, E = {0,1}. First we show (¢) for the algebra
(B, f)x(E, f). Let (b,e) € BxE. By (c), thereis b’ € B with f(b) = f(b"), f~' (V') =
0. Take (b',e) € B x E. Then

f((s€)) = (F(V'), f(e)) = (f(b), f(e)) = f((b,e)),

U, €)= {(z1,22) 121 € fTHY), 22 € f7H(e)} =

Further suppose that (1, k)-pdim(B, f) = p and that Y is a (1, k)-realizer of (B, f).
For ¢ € T we define a mapping @ : B x E — L as follows. Let (b,e) € B x E, b’
be the element corresponding to b in view of the condition (¢). We put

o(b) if e =0,

B((b,e)) = { i

T = {¢:¢p €T} Toprove that T is a (1, k)-realizer of (B, f) x (E, f) assume that
(z,€), (y,4) € B x E and that @(f((z,€))) = @((y,5)) for each g € T. For any

¢ € T we have
@(f((z,€))) = ¢((f(2),0)) = @(f(x)).
If =0, then



thus the fact that z,y € B and that T is a (1, k)-realizer of (B, f) implies that
y = f(z), hence

(y,j) = (f(.E),O) = f((.'E,O)) = f((;r,e))
Let j = 1. To y € B there is y’ € B with f(y) = f(v'), f~'(¥') =0. Forany ¢ € T,

?((y,9)) = e((y, 1)) = o(v'),

e, ¢(y') = @(f(x)) for each ¢ € T. Since T is a (1, k)-realizer of (B, f), this
implies that y' = f(z), which is a contradiction, because f~!(y’) = 0. Thus j
cannot be 1. Therefore

The converse relation is obvious, thus

(l,k)-pdim((B,f) x (Eaf)) = (1: k)'pd“n(B!f) O

Corollary 3.5. Let (A, f) be a direct product of sticks (A1, f), ..., (An, f) of types
ki,k2,... km and assume that [{i € {1,...,m} : ki =1} =t > 1. If k > k; for
each i € {1,...,m}, then (1,k)-pdim (A, f) =m —t + 1.

Proof. The assertion is a consequence of 3.3 and 3.4; we can proceed by induction.
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