ON α-PSEUDODIMENSION OF MONOUNARY ALGEBRAS

DANICA JAKUBÍKOVÁ-STUDENOVSKÁ AND GABRIELA KÖVESIOVÁ

ABSTRACT. In this paper the notion of α -realizer is defined. There are found necessary and sufficient conditions under which an α -realizer of a connected monounary algebra exists. Next we deal with α -pseudodimension of a product of some special types of monounary algebras.

1 Introduction

Let \mathcal{U} be the class of all monounary algebras and let $\alpha = (L, f)$ be a fixed element of \mathcal{U} . To each $(A, f) \in \mathcal{U}$ we assign a cardinal which will be denoted by α -pdim(A, f); we say that this cardinal is the α -pseudodimension of (A, f).

Our definition is in accordance with that used by V. Novák and M. Novotný [6] (cf. especially Example 6.4 of [6]).

The most of results concern the case when both (A, f) and (L, f) are finite connected monounary algebras.

First we study α -realizers of $(A, f) \in \mathcal{U}$. There are found necessary and sufficient conditions under which an α -realizer of a connected monounary algebra exists. Next some special types α are dealt with and we determine α -pdim(A, f) in the case when (A, f) is a direct product of sticks.

After the World War II, O.Borůvka formulated a problem concerning matrices commuting with a given matrix, that led to study homomorphisms of monounary algebras. His problem stimulated the investigation of these algebras; monounary algebras were investigated e.g. by M.Novotný [7],[8], O.Kopeček [3], E.Nelson [4], D.Jakubíková–Studenovská [1],[2]. The concept of pseudodimension was introduced in [5] for ordered sets. Later it was extended by Novák and Novotný [6] to the concept of α -pseudodimension of arbitrary relational structures.

For the terminology and definitions cf. Section 2.

2α -realizer

In this section we start with defining of the notions we will use below. Then we investigate α -realizers of (A, f).

²⁰⁰⁰ Mathematics Subject Classification. 08A60.

Key words and phrases. monounary algebra, realizer, pseudodimension Supported by grant VEGA 1/7468/20.

Definition 2.1. Let $n \in N, k \in N \cup \{0\}$. The algebra of the type (n, k) is the monounary algebra (B, f), where $B = Z_n \cup \{m \in N : m \leq k\}$ (where $Z_n = \{0_n, \ldots, (n-1)_n\}$ is the set of all integers mod n),

$$f(i_n) = (i+1)_n$$
 for each $i \in Z, f(1) = 0_n$,

$$f(m) = m - 1$$
 for each $m \in \mathbb{N}, 1 < m \le k$.

In the case when n=1, the algebra (B,f) is called a stick or a stick of type k.

Notation 2.2. Let (B, f) be a connected monounary algebra. We denote by C(B) the set of all cyclic elements of (B, f) and R(B) = |C(B)|.

The degree s(x) of an element $x \in B$ was defined in [7] (cf. also [1]) as follows:

Let us denote by $B^{(\infty)}$ the set of all elements $x \in B$ such that there exists a sequence $\{x_n\}_{n\in\mathbb{N}\cup\{0\}}$ of elements belonging to B with the property $x_0=x$ and $f(x_n)=x_{n-1}$ for each $n\in\mathbb{N}$. Further, we put $B^{(0)}=\{x\in B: f^{-1}(x)=\emptyset\}$. Now we define a set $B^{(\lambda)}\subseteq B$ for each ordinal λ by induction. Let $\lambda>0$ be an ordinal. Assume that we have defined $B^{(\alpha)}$ for each ordinal $\alpha<\lambda$. Then we put

$$B^{(\lambda)} = \{ x \in B - \bigcup_{\alpha < \lambda} B^{(\alpha)} : f^{-1}(x) \subseteq \bigcup_{\alpha < \lambda} B^{(\alpha)} \}.$$

The sets $B^{(\lambda)}$ (where λ is an ordinal or $\lambda = \infty$) are pairwise disjoint. For each $x \in B$, either $x \in B^{(\infty)}$ or there is an ordinal λ with $x \in B^{(\lambda)}$. In the former case we put $s(x) = \infty$, in the latter we set $s(x) = \lambda$. We put $\lambda < \infty$ for each ordinal λ .

Suppose that $R(B) \neq 0$. If B = C(B), then we put h(B) = 0. If $B \neq C(B)$, then we define $h(B) = 1 + \sup \{s(x) : x \in B - C(B)\}$.

Notice that the definition of s(x) implies that if $B \neq C(B)$, then

$$h(B) = 1 + \sup\{s(x) : x \in B - C(B), f(x) \in C(B)\}.$$

Remark. Let us remark that we considerably apply results of M.Novotný [7],[8] concerning homomorphisms of monounary algebras. E.g., without further reference we will use that if (A, f) and (B, f) are monounary algebras, then

- (1) if φ is a homomorphism of (A, f) into (B, f), then $s(\varphi(x)) \geq s(x)$ for each $x \in A$,
- (2) if φ is a homomorphism of (A, f) into (B, f) and $x \in A$ belongs to a cycle C, then $\varphi(x)$ belongs to a cycle $D \subseteq B$ such that |D| divides |C|.

Notation 2.3. We will denote by (Z, f) and (N, f) the monounary algebra such that f(i) = i + 1 for each $i \in Z$ or $i \in N$, respectively.

Further, for a cardinal k let (N_k, f) be a fixed monounary algebra such that

$$N_k=N\cup D,\ N\cap D=\emptyset,\ |D|=k,$$

$$f(a) = \begin{cases} a+1 & \text{if } a \in N, \\ 1 & \text{if } a \in D. \end{cases}$$

Fig. 1

Definition 2.4. Let $(A, f) \in \mathcal{U}$ and let $\{\varphi_j : j \in J\}$ be a nonempty system of mappings of A into L such that for any $x, y \in A$ we have

$$y = f(x) \iff (\forall j \in J)(\varphi_j(y) = f(\varphi_j(x)).$$

Then $\{\varphi_j : j \in J\}$ is said to be an α -realizer of (A, f).

If no α -realizer of (A, f) exists, then we set

$$\alpha$$
-pdim $(A, f) = 0$.

Further, suppose that there exists some α -realizer of (A, f); then we put

$$\alpha$$
 -pdim $(A, f) = \min\{|J| : \{\varphi_j : j \in J\} \text{ is an } \alpha \text{ -realizer of } (A, f)\}.$

This cardinal is called α -pseudodimension of (A, f).

This definition immediately yields the following two assertions:

Lemma 2.5. Let $(A, f) \in \mathcal{U}$ and suppose that $\{\varphi_j : j \in J\}$ is an α -realizer of (A, f). For $j \in J$, the mapping φ_j is a homomorphism of (A, f) into (L, f).

Lemma 2.6. Let $(A, f) \in \mathcal{U}$ and let Υ be a nonempty system of homomorphisms of (A, f) into (L, f). Then Υ is an α -realizer of (A, f) if and only if the following implication is valid for each $x, y \in A$

(*)
$$((\forall \varphi \in \Upsilon)(\varphi(y) = \varphi(f(x)))) \Rightarrow y = f(x).$$

Corollary 2.7. If $(A, f) \in \mathcal{U}$ and there exists an injective homomorphism of (A, f) into (L, f), then α -pdim(A, f) = 1.

Lemma 2.8. Let (A, f) and (L, f) be connected monounary algebras. If there exists an α -realizer of (A, f), then R(A) = R(L).

Proof. Suppose that Υ is an α -realizer of (A, f).

a) First assume that $R(L) = m \in N$. Then there exists $x \in A$ such that $\varphi(f(x)) \in C(L)$. Put $y = f^{m+1}(x)$. For $\varphi \in \Upsilon$ we get

$$\varphi(y) = \varphi(f^{m+1}(x)) = f^{m+1}(\varphi(x)) = f^{m}(\varphi(f(x))) = \varphi(f(x)).$$

Since Υ is an α -realizer, (*) of 2.6 yields that y = f(x), i.e., $f^m(f(x)) = f(x)$. Therefore R(A) divides m. From 2.5 it follows that R(L) divides R(A) (because each φ is a homomorphism of (A, f) into (L, f)), thus we obtain R(A) = R(L).

b) Now suppose that R(L) = 0. According to 2.5, R(A) = 0, too.

Theorem 2.9. Let (A, f) and (L, f) be connected monounary algebras such that $R(A) = R(L) \neq 0$. An α -realizer of (A, f) exists if and only if $h(A) \leq h(L)$.

Proof. Let Υ be an α -realizer of (A, f). Let $a \in A - C(A)$ be such that $f(a) \in C(A)$. There exists $x \in C(A)$ with $f^2(x) = f(a)$. Put c = f(x). Then $f(c) = f(a) \in C(A)$. First suppose that $\varphi(a) \in C(L)$ for each $\varphi \in \Upsilon$. This implies that for $\varphi \in \Upsilon$ we have

$$\varphi(a) = \varphi(c) = \varphi(f(x)),$$

thus by (*), a = f(x), a contradiction. Hence there exists $\psi \in \Upsilon$ such that $b = \psi(a) \notin C(L)$. Since ψ is a homomorphism, the element f(b) is cyclic and

$$s(a) \le s(\psi(a)) = s(b).$$

Therefore $h(A) \leq h(L)$.

Conversely, assume that $h(A) \leq h(L)$. If h(A) = 0, then let φ_0 be an arbitrary isomorphism of A onto C(L). It is obvious that $\Upsilon = \{\varphi_0\}$ is an α -realizer of A. Now let $h(A) \neq 0$. Let $u \in A - C(A)$. Then there is $a \in A - C(A)$ with $f(a) \in C(A)$ and $u \in f^{-n}(a)$ for some $n \in N \cup \{0\}$. The relation $h(A) \leq h(L)$ implies that there is $b \in L - C(L)$ such that $f(b) \in C(L)$ and that $s(a) \leq s(b)$. Let b be a fixed element with this property. Obviously, $s(u) \leq s(b)$. By [8], Thm., p.157 there exists a homomorphism ψ_u of (A, f) into (L, f) having the following properties:

- $(1) \ \psi_u(u) = b,$
- (2) if $v \notin \bigcup_{m \in N \cup \{0\}} f^{-m}(u) \cup \{f^k(u) : k \in N\}$, then $\psi_u(v) \in C(L)$.

Denote $\Upsilon = \{\psi_u : u \in A - C(A)\}$. Let us verify that Υ is an α -realizer of (A, f) according to (*). Assume that $x, y \in A$ and that $\psi_u(y) = \psi_u(f(x))$ for each $\psi_u \in \Upsilon$.

- a) If $f(x) \notin C(A)$, then take u = f(x). We get $\psi_u(y) = \psi_u(u)$. Since $\psi_u^{-1}(\psi_u(u))$ is a one-element set $\{u\}$ by (2), this implies that y = u, i.e., y = f(x).
- b) Let $f(x) \in C(A)$. If $y \notin C(A)$ then $\psi_y(y) \notin C(L)$, hence $\psi_y(y) \neq \psi_y(f(x))$, a contradiction. Thus $y \in C(A)$. Take an arbitrary $\varphi \in \Upsilon$. Then φ is an isomorphism of C(A) onto C(L), thus the relation $\varphi(f(x)) = \varphi(y)$ yields that f(x) = y.

Therefore Υ is an α -realizer of (A, f).

Theorem 2.10. Let (A, f) and (L, f) be connected monounary algebras such that R(A) = R(L) = 0. Let $P = \{u \in A : |f^{-1}(u)| > 1, f^{-2}(u) \neq \emptyset\}$. An α -realizer of (A, f) exists if and only if one of the following conditions is satisfied:

- (a) $(A, f) \cong (N, f)$ or $(A, f) \cong (N_k, f)$ for some $k \in Card$;
- (b) $(A, f) \cong (Z, f)$ and there is a subalgebra of (L, f) isomorphic to (Z, f);
- (c) $P \neq \emptyset$ and for each $u \in A$, $q_1, q_2 \in f^{-1}(u)$, $q_1 \neq q_2$ such that $f^{-1}(q_1) \neq \emptyset$ there are $v \in L$ and distinct elements $t_1, t_2 \in f^{-1}(v)$ such that $s(f^k(u)) \leq s(f^k(v))$, $s(q_i) \leq s(t_i)$ for each $k \in N \cup \{0\}$, $i \in \{1, 2\}$.

Proof. Let Υ be an α -realizer of (A, f). First suppose that $P \neq \emptyset$. Take $u \in P$, $x \in f^{-2}(u)$, $q_2 \in f^{-1}(u) - \{f(x)\}$. Let $q_1 = f(x)$. Since Υ is an α -realizer, we obtain that there is $\varphi \in \Upsilon$ such that $\varphi(q_2) \neq \varphi(q_1)$. Put $v = \varphi(u)$. Then $s(f^k(u)) \leq s(\varphi(f^k(u))) = s(f^k(v))$, $s(q_i) \leq s(\varphi(q_i))$ for each $k \in N \cup \{0\}$, $i \in \{1, 2\}$, hence (c) is valid. Now let $P = \emptyset$. Then (A, f) is isomorphic to one of the algebras $(Z, f), (N, f), (N_k, f)$ for some $k \in \text{Card}$, i.e., either (a) is valid or $(A, f) \cong (Z, f)$.

Each $\varphi \in \Upsilon$ is a homomorphism, thus if $(A, f) \cong (Z, f)$ then (Z, f) is isomorphic to some subalgebra of (L, f). Therefore one of the conditions (a) - (c) is satisfied.

Conversely, let one of the conditions (a) - (c) be valid. If (a) or (b) is valid, then there exists a homomorphism φ_0 of (A, f) into (L, f); put $\Upsilon = \{\varphi_0\}$. Let $x, y \in A$, $\varphi_0(y) = \varphi_0(f(x))$, $y \neq f(x)$. If (A, f) is isomorphic to (N, f) or to (Z, f), then each homomorphism of (A, f) into (L, f) is injective. Let (A, f) be (up to isomorphism) (N_k, f) for some $k \in \text{Card}$. Further, the relation $\varphi_0(y) = \varphi_0(f(x))$ implies that $\{y, f(x)\} \subseteq D$, which is a contradiction, since $f(x) \in N - D$.

Let (c) hold. If $u \in P$, $p \in f^{-2}(u)$, $q \in f^{-1}(u) - \{f(p)\}$ then take $q_1 = f(p)$, $q_2 = q$; by (c) (according to [8], as in the proof of Thm.2.9) there exists a homomorphism ψ_{upq} of (A, f) into (L, f) such that

- (1) $\psi_{upq}(u) = v$,
- (2) $\psi_{upq}(q) \neq \psi_{upq}(f(p))$.

Let Υ the set of all homomorphisms of the form ψ_{upq} . We will show that Υ is an α -realizer of (A, f). Let $x, y \in A$ and suppose that $\varphi(y) = \varphi(f(x))$ for each $\varphi \in \Upsilon$. Put z = f(x). From the connectedness we infer that $f^m(y) = f^n(z)$ for some $m, n \in N \cup \{0\}$; we can assume that m, n are the smallest nonnegative integers with this property. Since $\Upsilon \neq \emptyset$ and $\varphi(y) = \varphi(z)$ for $\varphi \in \Upsilon$, we get that $m \neq 0$ and $n \neq 0$. Denote $u = f^m(y)$, $p = f^{n-1}(x)$, $q = f^{m-1}(y)$. In view of the relation $\varphi_{upq} \in \Upsilon$ we have

(3) $\psi_{upq}(y) = \psi_{upq}(z).$

This implies

 $f^m(\psi_{upq}(z)) = f^m(\psi_{upq}(y)) = \psi_{upq}(f^m(y)) = \psi_{upq}(u) = \psi_{upq}(f^n(z)) = f^n(\psi_{upq}(z)),$ hence m = n. Assume that $y \neq z$. Next,

 $\psi_{upq}(q) = \psi_{upq}(f^{n-1}(y)) = f^{n-1}(\psi_{upq}(y)), \text{ i.e., } \psi_{upq}(y) \in f^{-(n-1)}(\psi_{upq}(q)).$ Similarly we obtain $\psi_{upq}(f(p)) = \psi_{upq}(f(f^{n-1}(x))) = f^{n-1}(\psi_{upq}(f(x))),$ i.e., $\psi_{upq}(f(x)) \in f^{-(n-1)}(\psi_{upq}(f(p))).$ In view of (3) we get

$$f^{-(n-1)}(\psi_{upq}(q)) \cap f^{-(n-1)}(\psi_{upq}(f(p))) \neq \emptyset,$$

which is a contradiction to (2). This concludes the proof.

3α -PDIMENSION AND A PRODUCT OF STICKS

In this section we deal with realizers of type (n, k), $n \in N, k \in N \cup \{0\}$. Further, we find the value of (1, k)-pseudodimension of a direct product of sticks.

Lemma 3.1. Let $n \in N, k \in N \cup \{0\}$. An (n, k)-realizer of a connected monounary algebra (A, f) exists if and only if R(A) = n and $f^k(a) \in C(A)$ for each $a \in A$.

Proof. The assertion is a corollary of 2.9. \square

Theorem 3.2. Let $n \in N, k \in N \cup \{0\}$.

- a) If k = 0 or n = 1, k = 1, then (n, k)-pdim (A, f) = 1 for each monounary algebra such that an (n, k)-realizer exists.
- b) Let $k = 1, n \ge 2$. If $m \in \{1, 2, ..., n\}$, then there exists $(A, f) \in \mathcal{U}$ such that (n, k)-pdim (A, f) = m. If $m \in N, m > n$, then (n, k)-pdim $(A, f) \ne m$ for each $(A, f) \in \mathcal{U}$.
- c) If $k \geq 2, m \in \mathbb{N}$, then there exists $(A, f) \in \mathcal{U}$ such that (n, k)-pdim (A, f) = m.

Proof.

- a) Assume that an (n, k)-realizer of (A, f) exists. If k = 0, then |A| = |C(A)| = n by 3.1 and there is an isomorphism φ_0 of A onto Z_n . Then 2.7 implies that (n, 0)-pdim (A, f) = 1. If n = 1, k = 1, then 3.1 implies that there is $c \in A$ such that f(a) = c for each $a \in A$. Put $\varphi(c) = 0_1$, $\varphi(a) = 1$ for each $a \in A \{c\}$. Then $\{\varphi\}$ is a (1, 1)-realizer of (A, f) and (1, 1)-pdim (A, f) = 1.
- b) From the assumption it follows that $L = Z_n \cup \{1\}$. Let $m \in \{1, ..., n\}$. We put $A = Z_n \cup \{1, ..., m\}$, $f(i_n) = (i+1)_n$ for each $i \in Z$, $f(l) = l_n$ for each $l \in \{1, ..., m\}$. For $j \in \{1, ..., m\}$ we define a mapping $\varphi_j : A \to L$ as follows: $\varphi_j(i_n) = (i-j)_n$ for each $i \in Z$, $\varphi_j(j) = 1$, $\varphi_j(l) = (l-1-j)_n$ for each $l \in \{1, ..., m\} - \{j\}$. (cf. Fig.2.)

Fig. 2

It is easy to verify that φ_j is a homomorphism for each $j \in \{1, \ldots, m\}$. Denote $\Upsilon = \{\varphi_j : j \in \{1, \ldots, m\}\}$. Let $x, y \in A$, $\varphi_j(y) = \varphi_j(f(x))$ for each $j \in \{1, \ldots, m\}$. We have $\varphi_j^{-1}(1) = \{j\}$ for each j, thus $y \neq j$ for each j. Thus $y \in Z_n$. Next, $f(x) \in Z_n$, hence in view of the fact that any φ_j is a bijection of C(A) onto C(L), the relation $\varphi_j(y) = \varphi_j(f(x))$ implies that y = f(x). Therefore Υ is an (n, 1)-realizer of (A, f) and (n, 1)-pdim $(A, f) \leq m$.

Suppose that Υ' is an (n,1)-realizer of (A,f). Let $j \in \{1,\ldots,m\}$. If $\psi(j) \in Z_n$ for each $\psi \in \Upsilon'$, then

$$\psi(j) = \psi((j-1)_n) = \psi(f((j-2)_n)),$$
$$j = f((j-2)_n),$$

which is a contradiction. Thus there exists $\psi_j \in \Upsilon'$ such that $\psi_j(j) = 1$. If $\psi_j = \psi_l$ for $j, l \in \{1, ..., m\}$, then $\psi_j(l) = 1 = \psi_j(j)$, which implies

$$\psi_j(j_n) = \psi_j(f(j)) = f(\psi_j(j)) = f(1) = 0_n.$$

Similarly, $\psi_i(l_n) = 0_n$. Further, we have

$$0_n = \psi_j(l_n) = \psi_j(f^{l-j}(j_n)) = f^{l-j}(\psi_j(j_n)) = f^{l-j}(0_n) = (l-j)_n,$$

thus l = j. Hence $|\Upsilon'| \ge m$, therefore (n, 1)-pdim (A, f) = m.

Let m > n and suppose that there is $(A, f) \in \mathcal{U}$ with (n, 1)-pdim (A, f) = m. Thus there is an (n, 1)-realizer Υ of (A, f) with $|\Upsilon| = m$. According to 3.1 we have R(A) = n and $f(a) \in C(A)$ for each $a \in A$. Up to isomorphism,

$$A = Z_n \cup D_1 \cup D_2 \cup \cdots \cup D_n,$$

$$f(i_n) = (i+1)_n$$
 for each $i \in \mathbb{Z}$,

$$f(d) = l_n$$
 for each $d \in D_l$, $l \in \{1, \ldots, n\}$.

Let $j \in \{1, ..., n\}$. Define a mapping $\varphi_j : A \to L$ as follows:

$$\varphi_j(i_n) = (i-j)_n \text{ each } i \in \mathbb{Z},$$

$$\varphi_j(d) = \begin{cases} 1 & \text{if } d \in D_j, \\ (l-1-j)_n & \text{if } d \in D_l, \ l \neq j. \end{cases}$$

It is easy to verify that $\{\varphi_j : j \in \{1, ..., n\}\}\$ is an (n, 1)-realizer of (A, f), hence (n, 1)-pdim $(A, f) \leq n$, which is a contradiction.

c) Let $k \geq 2, m \in N$. There exists $t \in N$ such that $2^{m-1} < t+1 \leq 2^m$. We denote by (A, f) a monounary algebra such that $A = Z_n \cup \{a_1, \ldots, a_t\} \cup \{b_1, \ldots, b_t\}$ (suppose that all these elements are distinct and they do not belong to Z_n), where $f(i_n) = (i+1)_n$ for each $i \in Z$, $f(a_l) = 0_n$, $f(b_l) = a_l$ for each $l = 1, \ldots, t$.

There exist 2^m distinct m-tuples of the elements $(n-1)_n, 1$. Thus there exists a set $Q = \{q_1, \ldots, q_t\}$ of m-tuples of the elements $(n-1)_n, 1$ with $|Q| = t, q \neq ((n-1)_n, \ldots, (n-1)_n)$ for each $q \in Q$. For $j \in \{1, \ldots, m\}$, $l \in \{1, \ldots, t\}$ let $q_l(j)$ be the projection of q_l into the j-th coordinate. Let $j \in \{1, \ldots, m\}$; we will define a mapping φ_j as follows. For $l \in \{1, \ldots, t\}$ we put

$$arphi_j(i_n) = i_n$$
 for each $i \in Z$,
$$\varphi_j(a_l) = q_l(j),$$

$$\varphi_j(b_l) = \left\{ \begin{array}{ll} 2 & \text{if } q_l(j) = 1, \\ (n-2)_n & \text{otherwise.} \end{array} \right.$$

It is easy to verify that $\{\varphi_j : j \in \{1, \dots, m\}\}$ is a set of homomorphisms and that it is an (n, k)-realizer of (A, f) (cf. Example 1).

Next suppose that Υ is an (n, k)-realizer of (A, f), $\Upsilon = \{\psi_1, \ldots, \psi_r\}$, $r = |\Upsilon| < m$. For $l \in \{1, \ldots, t\}$ consider an r-tuple $p^{(l)}$ such that for $j \in \{1, 2, \ldots, r\}$

$$p^{(l)}(j) = \begin{cases} 0 & \text{if } \psi_j(a_l) \in Z_n, \\ 1 & \text{otherwise.} \end{cases}$$

Let $l \in \{1, ..., t\}$. If $p^{(l)}(j) = 0$ for each $j \in \{1, ..., r\}$, then $\psi_j(a_l) \in Z_n$ for each $j \in \{1, ..., r\}$; then $\psi_j(a_l) = \psi_j((n-1)_n) = \psi_j(f((n-2)_n))$ and the

definition of an (n, k)-realizer implies that $a_l = f((n-2)_n)$, a contradiction. Therefore each r-tuple $p^{(l)}$ does not consist of zeros only. Since ψ_j is a homomorphism, $\psi_j(a_l) = 1$ or $\psi_j(a_l) \in Z_n$. If $l, l' \in \{1, \ldots, t\}$ and $j \in \{1, \ldots, r\}$, then either

(1)
$$\psi_j(a_l) = \psi_j(a_{l'}) \text{ or }$$

(2)
$$\psi_j(a_l) = 1, \psi_j(a_{l'}) = (n-1)_n \text{ or }$$

(3)
$$\psi_i(a_l) = (n-1)_n, \psi_i(a_{l'}) = 1.$$

By the assumption, $r \leq m-1$, $2^r-1 \leq 2^{m-1}-1 < t$, thus there exist $l, l' \in \{1, \ldots, t\}$, $l \neq l'$ such that $p^{(l)} = p^{(l')}$. Then $p^{(l)}(j) = p^{(l')}(j)$ for each $j \in \{1, \ldots, r\}$. Then we obtain that the cases (2) and (3) yield a contradiction, thus $\psi_j(a_l) = \psi_j(a_{l'})$ for each $j \in \{1, \ldots, r\}$. This implies that for each $j \in \{1, \ldots, r\}$, $\psi_j(f(b_l)) = \psi_j(a_l) = \psi_j(a_{l'})$. According the fact that Υ is an (n, k)-realizer we get $f(b_l) = a_{l'}$, which is a contradiction.

Thus we have shown that (n, k)-pdim(A, f) = m.

Example 1. Let n=2 and $k \ge 2$. For m=3 we will define (A,f) such that (2,k)-pdim(A,f) is equal to m. Let us follow the proof of theorem 3.2c). The relation $2^2 < t+1 \le 2^3$ implies $t \in \{4,5,6,7\}$. Let t=4.

Fig. 3

There exists 2^3 of 3-tuples of elements $1,1_2$: $(1,1,1), (1,1,1_2), (1,1_2,1), (1_2,1,1), (1,1_2,1_2), (1,1_2,1_2), (1_2,1_2,1), (1_2,1_2,1_2)$. Next we choose four elements of them (t=4), e.g., let $q_1=(1,1,1), q_2=(1,1,1_2), q_3=(1,1_2,1)$ and $q_4=(1_2,1,1)$. Put $Q=\{q_1,q_2,q_3,q_4\}$. We can define three (m=3) mappings $\varphi_1,\varphi_2,\varphi_3$.

	0_2	12	a_1	a_2	a_3	a_4	b_1	b_2	b_3	b_4
$arphi_1$	0_2	12	1	1	1	12	2	2	2	0_2
$arphi_2$	0_2	12	1	1	12	1	2	2	0_2	2
$arphi_3$	0_2	12	1	12	1	1	2	02	2	2

It can be verified that $\{\varphi_1, \varphi_2, \varphi_3\}$ is a (2, k)-realizer of algebra (A, f) and (2, k)-pdim(A, f) = 3.

Theorem 3.3. Let (A, f) be a direct product of sticks $(A_1, f), (A_2, f), \ldots, (A_m, f)$ of types k_1, k_2, \ldots, k_m such that $|\{i \in \{1, \ldots, m\} : k_i = 1\}| \le 1$. If $k \ge k_i$ for each $i \in \{1, \ldots, m\}$, then (1, k)-pdim (A, f) = m.

Proof. Let (L, f) be a monounary algebra of type $k, k \geq k_i$ for each $i \in \{1, \ldots, m\}$. We can suppose that $L = \{0, 1, \ldots, k\}, A_i = \{0, 1, \ldots, k_i\},$

$$f(j) = \begin{cases} j-1 & \text{if } j \neq 0, \\ 0 & \text{if } j = 0. \end{cases}$$

in L and in A_i for $i \in \{1, \ldots, m\}$. For $j \in \{1, \ldots, m\}$ we define a mapping $\varphi_j: A_1 \times \cdots \times A_m \to L$ such that $\varphi_j((a_1, \ldots, a_m)) = a_j$. Put $\Upsilon = \{\varphi_j: j \in \{1, \ldots, m\}\}$. If $x, y \in A$, $\varphi_j(y) = \varphi_j(f(x))$ for each $j \in \{1, \ldots, m\}$, then y = f(x). Thus Υ is a (1, k)-realizer of (A, f) and (1, k)-pdim $(A, f) \leq m$. Suppose that Υ' is a (1, k)-realizer of (A, f), $|\Upsilon'| < m$. Denote $\bar{0} = (0, 0, \ldots, 0) \in A$. Obviously, $\psi(\bar{0}) = 0$ for each $\psi \in \Upsilon'$. We have $|f^{-1}(\bar{0})| = |\{a = (a_1, \ldots, a_m) : a_i \in \{0, 1\} \text{ for each } i \in \{1, \ldots, m\}\}| = 2^m$. Next, if $a \in f^{-1}(\bar{0})$, then $\psi(a) \in \{0, 1\}$ for each $\psi \in \Upsilon'$. Since $2^{|\Upsilon'|} < 2^m$, there are $a, b \in f^{-1}(\bar{0})$, $a \neq b$ such that $\psi(a) = \psi(b)$ for each $\psi \in \Upsilon'$. Without loss of generality, in view of the assumption that $|\{i \in \{1, \ldots, m\} : k_i = 1\}| \leq 1$ we get that $f^{-1}(b) \neq \emptyset$; let $x \in f^{-1}(b)$. Then $\psi(a) = \psi(f(x))$ for each $\psi \in \Upsilon'$. The set Υ' is a (1, k)-realizer, of (A, f), thus (*) implies a = f(x) = b, which is a contradiction. Therefore (1, k)-pdim (A, f) = m.

Lemma 3.4. Let (B, f) be a monounary algebra fulfilling the condition

(c) if $b \in B$, then there is $b' \in B$ with f(b) = f(b'), $f^{-1}(b') = \emptyset$.

Let (E, f) be a 1-stick. Then $(B, f) \times (E, f)$ fulfils (c) and if (1, k)-pdim(B, f) = p, then (1, k)-pdim $((B, f) \times (E, f)) = p$.

Proof. Without loss of generality, $E = \{0, 1\}$. First we show (c) for the algebra $(B, f) \times (E, f)$. Let $(b, e) \in B \times E$. By (c), there is $b' \in B$ with f(b) = f(b'), $f^{-1}(b') = \emptyset$. Take $(b', e) \in B \times E$. Then

$$f((b',e)) = (f(b'), f(e)) = (f(b), f(e)) = f((b,e)),$$

$$f^{-1}((b',e)) = \{(x_1, x_2) : x_1 \in f^{-1}(b'), x_2 \in f^{-1}(e)\} = \emptyset.$$

Further suppose that (1, k)-pdim(B, f) = p and that Υ is a (1, k)-realizer of (B, f). For $\varphi \in \Upsilon$ we define a mapping $\bar{\varphi} : B \times E \to L$ as follows. Let $(b, e) \in B \times E$, b' be the element corresponding to b in view of the condition (c). We put

$$\bar{\varphi}((b,e)) = \begin{cases} \varphi(b) \text{ if } e = 0, \\ \varphi(b') \text{ if } e = 1; \end{cases}$$

 $\bar{\Upsilon} = \{\bar{\varphi} : \varphi \in \Upsilon\}$. To prove that $\bar{\Upsilon}$ is a (1, k)-realizer of $(B, f) \times (E, f)$ assume that $(x, e), (y, j) \in B \times E$ and that $\bar{\varphi}(f((x, e))) = \bar{\varphi}((y, j))$ for each $\bar{\varphi} \in \bar{\Upsilon}$. For any $\varphi \in \Upsilon$ we have

$$\bar{\varphi}(f((x,e))) = \bar{\varphi}((f(x),0)) = \varphi(f(x)).$$

If j=0, then

$$\bar{\varphi}((y,j)) = \bar{\varphi}((y,0)) = \varphi(y),$$

thus the fact that $x, y \in B$ and that Υ is a (1, k)-realizer of (B, f) implies that y = f(x), hence

$$(y, j) = (f(x), 0) = f((x, 0)) = f((x, e)).$$

Let j=1. To $y\in B$ there is $y'\in B$ with $f(y)=f(y'),\ f^{-1}(y')=\emptyset$. For any $\varphi\in\Upsilon$,

$$\bar{\varphi}((y,j)) = \bar{\varphi}((y,1)) = \varphi(y'),$$

i.e., $\varphi(y') = \varphi(f(x))$ for each $\varphi \in \Upsilon$. Since Υ is a (1,k)-realizer of (B,f), this implies that y' = f(x), which is a contradiction, because $f^{-1}(y') = \emptyset$. Thus j cannot be 1. Therefore

$$(1,k)$$
-pdim $((B,f)\times(E,f))\leq(1,k)$ -pdim (B,f) .

The converse relation is obvious, thus

$$(1,k)\text{-pdim}((B,f)\times(E,f)) = (1,k)\text{-pdim}(B,f).$$

Corollary 3.5. Let (A, f) be a direct product of sticks $(A_1, f), \ldots, (A_n, f)$ of types k_1, k_2, \ldots, k_m and assume that $|\{i \in \{1, \ldots, m\} : k_i = 1\}| = t > 1$. If $k \ge k_i$ for each $i \in \{1, \ldots, m\}$, then (1, k)-pdim (A, f) = m - t + 1.

Proof. The assertion is a consequence of 3.3 and 3.4; we can proceed by induction.

REFERENCES

- D. Jakubíková-Studenovská, Retract irreducibility of connected monounary algebras I, Czech. Math. J. 46(121) (1996), 291-308.
- [2] D. Jakubíková-Studenovská, On congruence relations of monounary algebras I, II, Czechoslovak Math. J. 32(107), 33(108) (1982-3), 437-459, 448-466.
- [3] O.Kopeček, $|End\Im| = |Con\Im| = |Sub\Im| = 2^{|\Im|}$ for any uncountable 1-unary algebra \Im , Algebra Universalis 16 (1983), 312-317.
- [4] E.Nelson, Homomorphisms of monounary algebras, Pacif. J. Math. 99 (1982), 427-429.
- [5] V.Novák, On the pseudodimension of ordered sets, Czechoslovak Math. J. 13(88) (1963), 587-598.
- V. Novák, M. Novotný, Relational structures and dependence spaces, Czechoslovak Math. J. 47(122) (1997), 179-191.
- [7] M. Novotný, Über Abbildungen von Mengen, Pacif. J. Math. 13 (1963), 1359–1369.
- [8] M. Novotný, Mono-unary algebras in the work of Czechoslovak mathematicians, Archivum Math. (Brno) 26 No. 2-3, (1990), 155-164.

(Received October 10, 2001)

Department of Geometry and Algebra P. J. Šafárik University Jesenná 5 SK-041 54 Košice SLOVAKIA