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Abstract. When there is only one I-projection p̂ of the probability distribution q
on the set Π of types, the conditional probability π(ν ∈ B(p̂, ε)|ν ∈ Π) that if q
generates a type ν ∈ Π then the type is close to the I-projection, approaches unity, as
size n of type-supporting sequences goes to the infinity. What is the probability π(ν ∈
B(·)|ν ∈ Π) when Π admits several I-projections? Asymptotic Equiprobability of
I-projections Theorem states that for n growing beyond any limit the conditional
probability (measure) becomes split among the I-projections equally.

1. Introduction

In subjects as different as Statistical Physics and Computer Tomography, it is
not rare to encounter an applied problem which can be cast into the following
generic form:

There is a set Π of empirical probability mass functions (types) which could be
obtained from random samples of size n, drawn independently from a supposed
probability distribution q. The problem (from category of ill-posed inverse prob-
lems) lays in making a choice of specific type(s) from the set Π.

A result of the Method of Types, which was developed in the Information Theory
(cf. [3]), justifies application of the I-divergence minimization method (or equiva-
lently, maximization of relative entropy method, MaxEnt) for making the choice,
when n tends to infinity and Π has certain properties. The result is usually known
as Conditioned Weak Law of Large Numbers (CWLLN), or as ’Gibbs’ condition-
ing principle’ (in large deviations literature, see [4]). For a convenience it will be
recalled here, after a brief survey of necessary terminology. Another probabilis-
tic justification of MaxEnt which is not based on large deviations techniques was
proposed at [5].

1.1 Gibbs’ conditioning principle, entropy concentration.
Let X be a discrete finite set with m elements and let {Xi, i = 1, 2, . . . , n} be a

sequence of size n of identically and independently drawn random variables taking
values in X .

2000 Mathematics Subject Classification. Primary 62B15; Secondary 94A15, 65J20.
Key words and phrases. Conditioned law of large numbers, multiple I-projections, non-convex set.
Received 22. 4. 2003; Accepted 20. 6. 2003

3



A type ν , [n1, n2, . . . , nm]/n is an empirical probability mass function which
can be based on sequence {Xi, i = 1, 2, . . . , n}. Thus, ni denotes number of occur-
rences of i-th element of X in the sequence.

Let P(X ) be a set of all probability mass functions (pmf’s) on X .

Let the supposed source of the sequences (and hence also of types) be q ∈ P(X ).

Let π(ν) be the probability that q will generate type ν, ie. π(ν) ,
∏

i∈X q
nνi

i ·
·Γ(ν), where Γ(ν) , n!

n1! n2! ... nm! is the multiplicity (or Boltzmann’s complexion).

Then, π(ν ∈ A) denotes the probability that q will generate a type ν which
belongs to A ⊆ Π, ie. π(ν ∈ A) =

∑
ν∈A π(ν). Finally, let π(ν ∈ A|ν ∈ Π) denote

the conditional probability that if q generates type ν ∈ Π then the type belongs to
A. It is assumed that the conditional probability exists.

I-projection p̂ of q on set Π ⊆ P(X ) is such p̂ ∈ Π that I(p̂‖q) = infp∈Π I(p‖q),

where1 I(p‖q) ,
∑

X pi log pi

qi
is the I-divergence.

CWLLN. Let p̂ be unique I-projection of q on Π. Let q /∈ Π. Then for any ε > 0

(1) lim
n→∞

π (|νi − p̂i| > ε | ν ∈ Π) = 0 i = 1, 2, . . . ,m

Well-studied is the case of convex Π, which ensures existence of the unique I-
projection (cf. [2], and [7], [8], [9] for further developments).

Without the assumption of uniqueness of the I-projection, a claim known as the
Entropy Concentration Theorem (ECT), weaker than (1), can be still made (see
[1]):

ECT. Let Π ⊆ P(X ) be nonempty. Let Î be such that Î ≤ I(ν‖q) for any ν ∈ Π.
Then for any ε > 0

(2) lim
n→∞

π
(∣∣∣I (ν‖q) − Î

∣∣∣ < ε | ν ∈ Π
)

= 1

Assumption (of whatever form) which guarantees existence and uniqueness of
the I-projection is crucial for coming from statement (2) to the stronger claim (1).

2. Multiple I-projections

Recently, physicists (see for instance [10] and literature cited therein) started to
study problems of the generic form mentioned in the Introduction, which led into
non-convex Π, with possibly multiple I-projections.

In this note, the following questions are addressed: Do the conditional concen-
tration of types happen on the I-projections? If yes, do types concentrate on each
of them? And, if yes, what is the proportion?

In order to investigate these questions, implications of Sanov’s Theorem for the
case of several I-projections will be studied, at first. Then, a heuristics which
suggests answers to the questions will be made. Finally, the answers will be provided
by Asymptotic Equiprobability of I-projections Theorem, which will be supported
by a proof and illustrative examples.

1There, log 0 = −∞, log b
0

= +∞, 0 · (±∞) = 0, conventions are assumed. The definition of

I-projection was adapted from [2]. Throughout the paper log denotes the natural logarithm.
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2.1 Implications of Sanov’s Theorem.
Sanov’s Theorem (ST) is a fundamental tool for proving both ECT and CWLLN.

It reads

(3) lim
n→∞

logπ(ν ∈ Π)

n
= −I(p̂||q)

provided that Π is closure of its interior, and q /∈ Π. Thus, according to the ST

(4) π(ν ∈ Π)
.
= e−nI(p̂||q)

to first order in the exponent.
An application of the ST to π(ν ∈ B|ν ∈ Π), where B ⊆ Π, gives

(5) lim
n→∞

logπ(ν ∈ B|ν ∈ Π)

n
= −(I(p̂B ||q) − I(p̂Π||q))

where the subscripts B, Π denote the set on which q is I-projected. This can be
also stated as

(6) π(ν ∈ B|ν ∈ Π)
.
= e−n(I(p̂B||q)−I(p̂Π||q))

to first order in the exponent.
Let now Π be such that there are k I-projections [p̂1, p̂2, . . . , p̂k], of q on Π.

What does the ST and (5), (6) imply in this case?
Let B(p̂j , ε) denote an open Euclidean ball of radius ε centered around j-th

I-projection, which is assumed to be the only I-projection in there.
Let C , ∪j=1,2,...,kB(p̂j , ε). For types outside of C the RHS of (5) is negative

and thus, fur such types (6) implies that π(ν /∈ C|ν ∈ Π) goes to zero exponentially
fast. In turn, this implies that

(7) lim
n→∞

π(ν ∈ C|ν ∈ Π) = 1

Informally, for sufficiently large n it is virtually impossible to find a type which
does not belong to union of the I-projection balls. So, now it remains only to find
the proportion in which the probability is split among the different I-projections.
The next crude heuristics indicates that the split should be equal.

2.2 Heuristics.
According to (6),

(8) π(ν ∈ C|ν ∈ Π)
.
= e−n(I(p̂C ||q)−I(p̂Π||q))

to first order in the exponent. At the same time (6) implies

(9) π(ν ∈ B(p̂j , ε)|ν ∈ Π)
.
= e−n(I(p̂C ||q)−I(p̂Π||q)) j = 1, 2, . . . , k

since

(10) I(p̂Bj ||q) = I(p̂C ||q) j = 1, 2, . . . , k

However,

(11) π(ν ∈ C|ν ∈ Π) =

k∑

j=1

π(ν ∈ B(p̂j , ε)|ν ∈ Π)

which together with (8) and (9) implies that for sufficiently large n

(12) π(ν ∈ C|ν ∈ Π) = k π(ν ∈ B(p̂j , ε)|ν ∈ Π) j = 1, 2, . . . , k

After recalling (7), (12) implies that the conditional measure should be split among
the I-projections equally.
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2.3 Asymptotic Equiprobability of I-projections.

AEI Theorem. Let there be k I-projections of q on Π. Let B(p̂j , ε) be open
Euclidean ball of radius ε centered at j-th I-projection, which is assumed to be the
only I-projection in there. Then

(13) lim
n→∞

π(ν ∈ B(p̂j , ε)|ν ∈ Π) =
1

k
j = 1, 2, . . . , k

Sketch of proof of the Theorem will employ MaxProb justification of MaxEnt
(cf. [5]) and the ST.

Proof. Let ν̂ , arg supν?∈Π π(ν = ν?|ν ∈ Π). Let there be k such types, N ,
[ν̂1, ν̂2, . . . , ν̂k]. Then, by the Theorem 1 of [5], ν̂j → p̂j , for any j = 1, 2, . . . , k,
ie. the most probable type converges to the corresponding I-projection of q on Π.
Since there are k types in N with equal value of the conditional probability π (which
is the highest one), and each of the types from N converges to the corresponding
I-projection, the last two facts imply that all the I-projections should be equally
probable. Recall (7) to conclude that each of the conditional probabilities π should
be equal to 1/k for n growing beyond any limit. �

Note that the number of I-projections k can be at most
∑m

i=1

(
m
i

)
. Since m is

assumed finite, k is finite as well.
The Asymptotic Equiprobability of I-projections (AEI) states that the proba-

bility that if q generated a type from Π then the type is close to the particular
I-projection among k possible I-projections, approaches 1

k as n gets large. In other
words, the conditional concentration of types happens on each of the I-projections
with equal measure.

The AEI will be illustrated by the next two Examples.

2.4 Illustrative examples.

Example 1. Let Π = {p :
∑m

i=1 p
α
i − a = 0,

∑m
i=1 pi − 1 = 0}, where α, a ∈ R.

Note that the first constraint, known as frequency constraint, is non-linear in p and
Π is for |α| > 1 non-convex.

Let α = 2, m = 3 and a = 0.42 (the value was obtained for p = [0.5 0.4 0.1]).
Then there are three I-projections of uniform distribution q = [1/3 1/3 1/3] on Π:
p̂1 = [0.5737 0.2131 0.2131], p̂2 = [0.2131 0.5737 0.2131] and p̂3 = [0.2131 0.2131
0.5737] (see [6]). Note that they form a group of permutations. As it will become
clear later, it suffices to investigate convergence to say p̂1.

For n = 30 there are only two groups of types in Π: G1 comprises [0.5666 0.2666
0.1666] and five other permutations; G2 consists of [0.5 0.4 0.1] and the other five
permutations. So, together there are 12 types.

Value of the square of the Euclidean distance δ between ν and p̂1 attains its
minimum δG1 = 0.0051 within G1 group for two types: [0.5666 0.2666 0.1666],
[0.5666 0.1666 0.2666]. Within G2 the smallest δG2 = 0.0532 is attained by
[0.5 0.4 0.1] and [0.5 0.1 0.4].

Thus, if ε = ε1 is chosen so that the ball B(p̂1, ε1) contains only the two types
from G1 (which at the same time guarantees that p̂1 is the only I-projection in the
ball), then π(ν ∈ B(p̂1, ε1)|ν ∈ Π) = 2 ∗ 0.1152 = 0.2304. In words: probability
that if q generated a type from Π than the type falls into the ball containing only
types which are closest to the I-projection is 0.2304. If ε = ε2 is chosen so that also
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the two types from G2 are included in the ball and also so that it is the only I-
projection in the ball (any ε2 ∈ (

√
0.0532,

√
0.1253) satisfies both the requirements),

then π(ν ∈ B(p̂1, ε2)|ν ∈ Π) = 1
3 .

For n = 330 there are four groups of types in Π: G1, G2 and a couple of new
one: G3 consists of [0.4727 0.4333 0.0939] and all its permutations; G4 comprises
[0.5727 0.2333 0.1939] and its permutations. Hence, the total number of types from
Π which are supported by random sequences of size n = 330 is 24.
δG3 for the two types from G3 which are closest to p̂1 is 0.0729. The smallest

δG4 = 0.00077 is attained by [0.5727 0.2333 0.1939] and by [0.5727 0.1939 0.2333].
Thus, clearly, the two types from G4 have the smallest Euclidean distance to p̂1

among all types from Π which are based on samples of size n = 330. Again, setting
ε such that the ball B(p̂1, ε) contains only the two types which are closest to p̂1

leads to the 0.261 value of the conditional probability. Note the important fact,
that the probability has risen, as compared to the corresponding value 0.2304 for
n = 30.

Moreover, if ε is set such that besides the two types from G4 also the second clos-
est types (i.e. the two types from G1) are included in the ball then the conditional
probability is indistinguishable from 1

3 . Hence, there is virtually no conditional
chance of observing any of the remaining 4 types. The same holds for the types
which concentrate around p̂2 or p̂3. Thus, in total, a half of the 24 types is almost
impossible to observe.

So, this Example illustrates, that indeed, as n gets large, π(ν /∈ C|ν ∈ Π) goes
to zero, and that the conditional probability of finding a type which is close (in the
Euclidean distance) to one of the three I-projections goes to 1

3 .

Example 2. Let Π = Π1∪Π2, where Πj = {p :
∑m

i=1 pixi = aj ;
∑m

i=1 pi = 1}, j =
1, 2. Thus Π is union of two sets, each of whose is given by the classical moment
consistency constraint. If q is chosen to be the uniform distribution, then there is no
difficulty to find values a1, a2 such that there will be two different I-projections of
the uniform q on Π with the same value of I-divergence (as well as of the Shannon’s

entropy). This is indeed true for any a1 = µ + ∆, a2 = µ − ∆, where µ , EX
and ∆ ∈ (0, (Xmax −Xmin)/2), since then p̂1 is just a permutation of p̂2, and as
such attains the same value of Shannon’s entropy. To see that types which are
based on random samples of size n from Π indeed concentrate on the I-projections
with equal measure note, that for any n to each type in Π1 corresponds a unique
permutation of the type in Π2. Thus, types in ε-ball with center at p̂1 have the
same conditional probabilities π as types in the ε-ball centered at p̂2. This, together
with convexity of both Πj , for which the conditional concentration of types on the
respective I-projection is well-established, directly implies that

lim
n→∞

π(ν ∈ B(p̂j , ε)|ν ∈ Π) =
1

2
j = 1, 2

The same reasoning could be made for arbitrary q. Convexity of I-divergence
guarantees that there exists a pair a1, a2 with the desired property. For general q
the sought values of a1, a2 are not displaced around µ equally.

3. Concluding notes

Probabilistic justification of MaxEnt by CWLLN as well as several axiomatic
and non-axiomatic foundations of MaxEnt require assumption of uniqueness of I-
projection. As [10] indicates, problems which lead to non-convex Π with possibly
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non-unique I-projection appear in Physics. This facts prompted the presented
study of convergence of types to multiple I-projections. In particular, we were
interested in assessing the proportion by which types conditionally concentrate on
each of the I-projections. As the AEI Theorem states, concentration of types
happens on each of the I-projections with equal conditional measure. To support
the sketched proof of the AEI Theorem, two examples were developed.

Informally, the AEI can be described using the Statistical Physics terminology,
by stating that each of equilibrium points (I-projections) is asymptotically condi-
tionally equally possible. Yet another informal formulation: If a random generator
(probability distribution q) is confined to produce types in Π then, as n gets large,
the generator hides itself equally likely behind any of its I-projections on Π.

Asymptotic Equiprobability of I-projections enhances the Conditioned Weak
Law of Large Numbers.
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Dúbravská cesta 9; SK-841 04 Bratislava; Slovak Republic
marian.grendar@savba.sk

8



Acta Univ. M. Belii

Math no. 10(2003), pp. 9–15

ON INTEGRAL BALANCED

ROOTED TREES OF DIAMETER 10

Pavel Hı́c and Milan Pokorný

Abstract. A graph G is called integral if all the roots of the characteristic poly-
nomial P (G;x) are integers. A tree T is called balanced if the vertices at the same
distance from the centre of T have the same degree. In the present paper the infinite
class of integral balanced rooted trees of diameter 10, which has not been known
so far, is given. The problem of the existence of integral balanced rooted trees of
arbitrarily large diameter remains open.

1.Introduction

Let G = (V,E) be a graph. The characteristic polynomial P (G;x) of the graph
G is defined to be characteristic polynomial of the adjacency matrix of G. The
spectrum of the adjacency matrix is also called the spectrum of G, and is denoted
by Sp(G). We assume that the eigenvalues of G are given in non-increasing order

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).

λ1(G) is called the index of G, where n = |V |. Given v ∈ V (G), G − v denotes
the subgraph of G obtained by deleting the vertex v. For all other facts on graph
spectra (or terminology), see [1] (or [2]).

We say that G has an integral spectrum if all the roots of P (G;x) are integers.
A graph G is called integral if it has an integral spectrum. In general, the problem
of characterizing integral graphs seems to be difficult. In this paper we restrict
our investigations to integral balanced rooted trees, which present one interesting
family of graphs. It is known that there are infinitely many integral trees. In 1998
Hı́c and Nedela (see[4]) published the problem if there are integral balanced trees
of arbitrarily large diameter. There exist integral balanced trees with diameter 2,
3, 4, 6, 8. Integral balanced trees with diameter 5, 7, and 9 do not exist, as well
as integral balanced trees with diameter 4k + 1 (k is an arbitrary integer). Hence,
the first unsolved case of above problem is diameter 10. The main concern of this
paper is to investigate integral balanced rooted trees of diameter 6, 8, and 10. The
infinite class of integral balanced rooted trees with diameter 10 is given here (see
Proposition 6). In general, the problem remains still open.

2000 Mathematics Subject Classification: 05C50.
Key words and phrases. tree, characteristic polynomial, integral tree.
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The structure of a balanced tree (without vertices of degree 2) is determined
by the parity of its diameter and the sequence (nk, nk−1, ..., n1), where k is the
radius of T and nj (1 ≤ j ≤ k) denotes the number of successors of the vertex at
the distance k − j from the centre Z(T ). In what follows, ni (i = 1, 2, ...) always
stands for an integer ≥ 2. The balanced trees of diameter 2k are encoded by the
sequence (nk, nk−1, ...n1) and denoted by Tk = T (nk, nk−1, ...n1). These trees are
called balanced rooted trees. (see [4])

Sequence (nk, nk−1, ..., n1) is called integral if the corresponding balanced rooted
tree T (nk, nk−1, ..., n1) is integral. In 1974 Harary and Schwenk (see [3]) proved
that (n1) is integral if and only if n1 is a square. Later, Schwenk and Watanabe
(see [6]) proved that the sequence (n2, n1) is integral if and only if both n1 and
n1 + n2 are squares.

Hı́c and Nedela (see [4], [5]) published the following results:

(1) If (nk, nk−1, ..., n1) is integral, then (nj , nj−1, ..., n1) is integral for
1 ≤ j ≤ k − 1.

(2) The sequence (nk, nk−1, ..., n1) of positive integers is integral if and only if
for every q ∈ N the sequence (q2nk, q

2nk−1, ..., q
2n1) is integral.

(3) All roots of the characteristic polynomial of the balanced tree with the se-
quence (nk, nk−1, ..., n1) are roots of the following recursively defined poly-
nomial Pk(x):
P0(x) = x
P1(x) = x2 − n1

Pj(x) = x.Pj−1(x) − njPj−2(x) where j = 2, ..., k.

The integral sequence (nk, nk−1, ..., n1) such that the g.c.d. (nk, nk−1, ..., n1) is
square-free is called the primitive integral sequence and the corresponding integral
tree T (nk, nk−1, ..., n1) is called the primitive integral tree.

2.Preliminaries

Here, we give some useful results from spectral graph theory, and then deduce
some elementary facts about the spectrum of the integral balanced trees of even
diameter.

Theorem 1. (see [1, Theorem 0.6, p. 19]) Let G be a connected graph. Then
λ1(G) > λ1(G− v) for any vertex v ∈ V (G).

Lemma 2. Let {Pi(x)} be the sequence of polynomials (3) and {Ti} be the se-
quence of corresponding balanced trees. Then the sequence {λ1(Ti)} is increasing.

Proof. Let i be a positive integer, and let v be the central vertex of Ti. Now, since
Ti − v = niTi−1, where niTi−1 are ni disjoint copies of Ti−1, the proof follows from
Theorem 1. �

Now, let µi be the smallest positive root of the polynomial Pi(x), i = 1, 2, ....
Denote by {µk} the sequence of the smallest positive roots corresponding to the
sequence {Pk(x)}. The following theorem is given in [5].

Theorem 3. (see [5, Theorem 1]) For every i ≥ 1, there exists a positive root of
the polynomial Pi(x). Moreover, the following statements hold:

a. {µ2k+1} is decreasing;
b. {µ2k} is decreasing;
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c. µ2k+2 > µ2k+1 for k = 0, 1, ...

Lemma 4. Let fi(x) = xPi(x)
Pi−1(x) for i = 1, 2, ..., where Pi(x) is the polynomial of

(3). Then fi(x) is increasing and positive for x ∈ (λ1(Ti),∞).

Proof. We proceed by mathematical induction.

1. If i = 1, then f1(x) = xP1(x)
P0(x) = x2 − n1. Notice that

√
n1 = λ1(T1). Clearly,

the function f1(x) is increasing and positive for any x ∈ (λ1(T1),∞).

2. Now, let fi−1(x) = xPi−1(x)
Pi−2(x) be increasing and positive for any x ∈ (λ1(Ti−1),∞).

Using (3), after some routine calculations from the formula

fi(x) = xPi(x)
Pi−1(x)

we get
fi(x) = x2(1 − ni

fi−1(x) ).

By the induction hypothesis, the function fi−1(x) is increasing and positive for
x ∈ (λ1(Ti−1),∞). Using lemma 2, the function fi−1(x) is increasing and positive
also for x ∈ (λ1(Ti),∞). Hence, the function 1

fi−1(x) is decreasing and positive for

x ∈ (λ1(Ti),∞). Since ni is a positive integer, the function ni

fi−1(x) is decreasing

and positive for x ∈ (λ1(Ti),∞), too. We will prove that ni

fi−1(x) < 1 for every

x ∈ (λ1(Ti),∞).
Using substitution x = λ1(Ti) in the equation (3) we have
Pi(λ1(Ti)) = λ1(Ti).Pi−1(λ1(Ti)) − niPi−2(λ1(Ti)). Since λ1(Ti) is the root of

Pi(x), we have

ni = λ1(Ti)Pi−1(λ1(Ti))
Pi−2(λ1(Ti))

= fi−1(λ1(Ti)).

Notice that the function fi−1(x) is increasing for x ∈ (λ1(Ti−1),∞). Using
the previous formula, we have fi−1(x) > ni for x ∈ (λ1(Ti),∞). Therefore,

ni

fi−1(x) < 1 for x ∈ (λ1(Ti),∞). Now, the function 1 − ni

fi−1(x) is increasing and

positive for x ∈ (λ1(Ti),∞). Since the function x2 is also increasing and positive
for x ∈ (λ1(Ti),∞), the function fi(x) = x2(1 − ni

fi−1(x) ) is increasing and positive

for x ∈ (λ1(Ti),∞), too. The proof is complete. �
Theorem 5. (see [6, Theorem 1 and Theorem 2])

a) The balanced rooted tree T (n1) is integral if and only if n1 = k2 for some
k ∈ N .

b) The balanced rooted tree T (n2, n1) is integral if and only if
n1 = k2 and n2 = n2 + 2nk for some k, n ∈ N .

3. Results

3.1 Integral balanced rooted trees of diameter 6

Theorem 5 enables us to construct all integral balanced rooted trees T (n2 +
2nk, k2) of diameter 4 for given k, n ∈ N . It follows from (1) that every integral
balanced rooted tree of diameter 6 can be expressed as T (n3, n

2 + 2nk, k2) for
k, n ∈ N . For the roots of its characteristic polynomial the following equations
hold:

(4) P0(x) = x
11



P1(x) = x2 − k2

P2(x) = x.P1(x) − n2P0(x) = x(x2 − (k + n)2)

P3(x) = x.P2(x) − n3P1(x)

The roots of the first three equations are 0,±k,±(n+ k). Now, it is easy to see
that every root of equation x.P2(x) − n3P1(x) = 0 is also the root of the equation

(5) n3 =
x.P2(x)

P1(x)
.

The equation P3(x) = 0 is the polynomial equation of degree 4 with the roots
±a,±b (because the spectrum of every tree is symmetric). Using (4) and (5), we
have 0 < a < k, n+ k < b.

The problem of finding all integral balanced rooted trees T (n3, n
2 + 2nk, k2) for

given k, n ∈ N is identical to the problem of finding all integers n3, for which the
equation (5) has only integer roots. This problem can be solved by the following
algorithm:

readln(k);
readln(n);
for a:=1 to k − 1 do
if a.P2(a)

P1(a) is integer then

begin
b := n+ k + 1;

while b.P2(b)
P1(b)

≤ a.P2(a)
P1(a) do begin { end condition follows from lemma 4 }

if b.P2(b)
P1(b) = a.P2(a)

P1(a) then write (T ( b.P2(b)
P1(b) , n

2 + 2nk, k2)) ;

b := b+ 1;
end;
end;
Using the programme based on this algorithm we have found all integral balanced

rooted trees T (n3, n
2 + 2nk, k2) of diameter 6 for n = 1...10000, k = 1...2000. The

number of them is 270 814, but only 96 720 of them are primitive. That means that
we have found 96 720 infinite classes of integral balanced rooted trees of diameter
6. Their list you can get by e-mail from authors.

3.2 Integral balanced rooted trees of diameter 8

To find integral balanced rooted trees of diameter 8, we will use similar method as
we did in the section 3.1. It follows from (1) that every integral balanced rooted tree
of diameter 8 can be expressed as T (n4, n3, n

2 +2nk, k2), where T (n3, n
2 +2nk, k2)

is the integral balanced rooted tree of diameter 6. The roots of its characteristic
polynomial have to satisfy the equations (4) and the equation

P4(x) = x.P3(x) − n4P2(x) = 0.
The roots of the equations (4) are 0,±a,±k,±(n + k),±b. Every root of the

equation x.P3(x) − n4P2(x) = 0 is the root of the equation

(6) n4 =
x.P3(x)

P2(x)
12



The equation P4(x) = 0 is the polynomial equation of degree 5 with the roots
0,±c,±d. The problem of finding all integral balanced rooted trees T (n4, n3, n

2 +
2nk, k2) for given integral balanced rooted tree T (n3, n

2 + 2nk, k2) of diameter 6
is identical to the problem of finding all integers n4, for which the equation (6)
has only integer roots. This problem can be solved by the following algorithm (the
values of variables k, n and n3 are taken from the results of the algorithm, which
is described in the section 3.1):

readln(k);
readln(n);
readln(n3);
for c:=a+ 1 to n+ k − 1 do
if c.P3(c)

P2(c) is integer then

begin
d := b+ 1;

while d.P3(d)
P2(d) ≤ c.P3(c)

P2(c) do begin { end condition follows from lemma 4 }
if d.P3(d)

P2(d) = c.P3(c)
P2(c) then write (T (d.P3(d)

P2(d) , n3, n
2 + 2nk, k2)) ;

d := d+ 1;
end;
end;
Using the programme based on this algorithm we have found all integral balanced

rooted trees T (n4, n3, n
2 + 2nk, k2) of diameter 8 for n = 1...10000, k = 1...2000.

The number of them is 31 558, but only 5 784 of them are primitive. That means
that we have found 5 784 infinite classes of integral balanced rooted trees of diameter
8. Their list you can get by e-mail from authors.

3.3 Integral balanced rooted trees of diameter 10

Every integral balanced rooted tree of diameter 10 can be expressed as
T (n5, n4, n3, n

2 + 2nk, k2), where T (n4, n3, n
2 + 2nk, k2) is the integral balanced

rooted tree of diameter 8. The roots of its characteristic polynomial have to satisfy
the equations (4), (6), and the equation P5(x) = x.P4(x) − n5P3(x). The roots of
the equations (4) and (6) are 0,±a,±c,±k,±(n+ k),±b,±d. If x is the root of the
equation

x.P4(x) − n5P3(x) = 0,
then x is also the root of the equation

(7) n5 =
x.P4(x)

P3(x).

The equation P5(x) = 0 is polynomial equation of degree 6 with the roots
±e,±f,±g. The problem of finding all integral balanced rooted trees T (n5, n4, n3, n

2+
2nk, k2) for given integral balanced rooted tree T (n4, n3, n

2 + 2nk, k2) of diameter
8 is identical to the problem of finding all integers n5, for which the equation (7)
has only integer roots. This problem can be solved by the following algorithm (the
values of variables k, n, n3 and n4 are taken from the results of the algorithm,
which is described in the section 3.2):

readln(k);
readln(n);

13



readln(n3);
readln(n4);
for e:=1 to a− 1 do
if e.P4(e)

P3(e) is integer then

for f := c+ 1 to b− 1 do

if f.P4(f)
P3(f) = e.P4(e)

P3(e) then

begin
g := d+ 1;

while g.P4(g)
P3(g) ≤ e.P4(e)

P3(e)
do begin { end condition follows from lemma 4 }

if g.P4(g)
P3(g) = e.P4(e)

P3(e) then write (T ( g.P4(g)
P3(g) , n4, n3, n

2 + 2nk, k2));

g := g + 1;
end;
end;
Using the programme based on this algorithm we have found all integral balanced

rooted trees T (n5, n4, n3, n
2+2nk, k2) of diameter 10 for n = 1...10000, k = 1...2000.

Their list is in the table below. Only the tree in the first column after the heading
is primitive, the other trees can be construct from it using (2).

n5 3006756 12027024 27060804 48108096 75 168 900
n4 1051960 4207840 9467640 16831360 26 299 000
n3 751689 3006756 6765201 12027024 18 792 225
n2 283360 1133440 2550240 4533760 7 084 000
n1 133956 535824 1205604 2143296 3 348 900
k 366 732 1098 1464 1 830
n 280 560 840 1120 1 400
a 306 612 918 1224 1 530
b 1037 2074 3111 4148 5 185
c 527 1054 1581 2108 2 635
d 1394 2788 4182 5576 6 970
e 289 578 867 1156 1 445
f 918 1836 2754 3672 4 590
g 2074 4148 6222 8296 10 370

Proposition 6.
For any q ∈ N , the tree T (q23006756, q21051960, q2751689, q2283360, q2133956)

is integral balanced rooted tree of diameter 10, and its spectrum
Sp = {0,±280q,±289q,±306q,±366q,±527q,±918q,±1037q,±1394q,±2074q}.

Conclusion
The method which is written in this paper can be used for finding integral

balanced rooted trees with arbitrarily large even diameter. The disadvantage of
this method is that we have not been able to find any integral balanced rooted
tree with diameter larger than 10 yet because we have to work with extremely huge
numbers and investigate a huge number of possibilities. This problem can be solved
by development of computers only partially.

We have used 10 computers with Pentium II processors and with the operating
system Windows 98. The computation has lasted for two months, but only at
weekends. The programmes were made using Delphi Pascal.

14



About the problems connected with finding integral balanced rooted tree of
diameter larger than 10 tells the fact that from 20 million integral balanced rooted
trees of diameter 4 only 270 814 can be expanded to integral balanced rooted trees
of diameter 6, from them only 31 558 can be expanded to integral balanced rooted
trees of diameter 8, and from them only 5 can be expanded to integral balanced
rooted trees of diameter 10.

We can suppose that if we wanted to find integral balanced rooted tree of diam-
eter 12, we would have to investigate much more integral balanced rooted trees of
diameter 4, 6, 8, and 10, and work with much larger numbers than we have worked
so far.
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A NEW PROOF FOR CHORDAL GRAPHS

Petr Hliněný

Abstract. Chordal graphs are those without induced cycles longer than three. It is
a classical fact that every nonempty chordal graph contains a vertex, the neighbour-
hood of which induces a clique. This was first proved by Lekkerkerker and Boland
in 1962. Few more proofs are known nowadays. We present yet another, very short
and elementary proof.

Chordal Graphs

We consider nonempty finite simple graphs. A clique is a complete (sub)graph.
A chordal graph is a graph containing no induced cycle of length greater than three.
For a graph G and vertex v ∈ V (G), we denote by NG(v) the subgraph induced
on the neighbours of v in G (not including v itself – an “open” neighbourhood). A
vertex v of G is called simplicial if NG(v) is a clique.

Simplicial vertices in chordal graphs were, perhaps, first considered by Lekkerk-
erker and Boland in an old paper [2] describing interval graphs. One of their results
– a key fact in a characterization of chordal graphs via a simplicial decomposition,
reads:

Theorem 1. (Lekkerkerker and Boland, 1962) If G is a chordal graph, then G has
a simplicial vertex.

We say that a graph G is bisimplicial if G is either a clique, or G has two
nonadjacent simplicial vertices. The “folklore” short proof of Theorem 1 establishes
the following claim by induction.

Lemma 2. Every chordal graph is bisimplicial.

The inductive step in this proof finds a minimal vertex cut X which separates
the remaining vertices in G into sets Y1, Y2. It is proved that X induces a clique in
G, and then the claim is applied to the smaller graphs G− Y1 and G− Y2.

2000 Mathematics Subject Classification. 05C38.
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New Proof

The above sketched proof of Lemma 2 is short and elegant, but it is not elemen-
tary — the proof that a minimal vertex cut X in a chordal graph induces a clique
needs the Menger theorem. This had shown to be a major obstacle when we tried
to extend the notion of chordality to represented matroids (cf. [1]). That is why
we have looked for another, short and elementary proof of Theorem 1.

Our alternative proof of Lemma 2 proceeds in a sequence of three simple (and
elementary) claims, which lead to a contradiction showing that no minimal coun-
terexample to Lemma 2 exists.

Fig. 1. An illustration to a chordal cycle C

Lemma 3. Let G be a chordal graph. If C ⊆ G is a cycle, and e is an edge of C,
then there is an edge f ∈ E(G) such that f forms a triangle with two edges of
C − {e}. (Fig 1.)

Proof. We proceed by induction on |C|. If C is a triangle, then the claim holds
for f = e. So suppose a cycle C ⊆ G of length greater than three. Since C is not
induced in G, there is an edge e′ ∈ E(G−C) having both ends on C (a “chord” of
C). The graph (C − {e}) ∪ {e′} contains a unique cycle C ′ which is shorter than
C. We find the edge f inductively for C ′ and e′. �

Lemma 4. Let G be a graph, and let u, v be adjacent vertices in G such that the
neighbourhood subgraph NG(v) is bisimplicial. If v is simplicial in the neighbour-
hood subgraph NG(u), but v is not simplicial in the whole graph G, then there is
a vertex w which is adjacent to v but not to u, and w is simplicial in NG(v).

Proof. By the assumption, there are two nonadjacent simplicial vertices w,w′ in
the neighbourhood subgraph NG(v). At least one of them, say w, does not belong
to the clique NG(u) ∩NG(v). (See also Fig. 2.) �

18



Fig 2. An illustration to the proofs

Lemma 5. Let G be a non-bisimplicial graph such that the neighbourhood sub-
graph NG(v) is bisimplicial for each vertex v ∈ V (G). Then there is a cycle C ⊆ G
and an edge e of C, such that no triangle of G has two edges on C − {e}.
Proof. By the assumptions, G contains a non-simplicial vertex x0. Let x1 and
x−1 be two nonadjacent neighbours of x0 that are simplicial in NG(x0). For i =
1, 2, 3, . . . , we apply Lemma 4 to u = xi−1 and v = xi, and we set xi+1 = w. Notice
that xi−1, xi, xi+1 induce a 2-path but not a triangle. (See Fig. 2.) The sequence
proceeds inductively until xi is simplicial. In the other direction we analogously
get xi−1 from xi, xi+1 for i = −1,−2,−3, . . . .

Since G is finite, we eventually find indices i, j ∈ Z, i − j > 2; such that both
xi, xj are simplicial or that xi+1 = xj . Then, unless G is bisimplicial in the first
case, the vertices xi, xj are adjacent. Denote by C the cycle on xj , xj+1, . . . , xi

in G, and by e = xjxi. We have found the required objects C, e. �
Suppose that G0 is a counterexample to Lemma 2 on the smallest possible num-

ber of vertices. Then G0 is a non-bisimplicial chordal graph on more than one
vertex. Since an induced subgraph of a chordal graph is chordal by definition, the
(smaller) neighbourhood subgraphs NG0(v) are bisimplicial for each v ∈ V (G0).
We have a contradiction between Lemmas 3 and 5 for G = G0.
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MINIMAL REPRESENTATIVES OF G-CLASSES

OF 3-MANIFOLDS OF GENUS TWO

Ján Karabáš and Roman Nedela

Abstract. One of the central problems for 3-manifolds is the isomorphism problem.
Since 70’s several methods to attack it were developed. The method introduced in
a paper of Ferri and Gagliardi is not easy to use, since no bound for the number of
steps in a computer representation is known. Some approximations were introduced
in the paper of Grasselli, Mulazzani and Nedela. The present method based on
these approximations leads to a simple algorithm finding representatives of a given
equivalence classes of 3-manifolds of genus two. We have applied the algorithm to
reduce a known list of representatives of 3-manifolds of genus 2 and to derive some
new results as well.

Introduction

A n-manifold (n ≥ 1) is the topological space, in which every point has a neigh-
bourhood O(x) homeomorphic to the n-dimensional Euclidean space. Next, every
compact connected n-manifold, n ≤ 3, can be expressed as a simplicial complex
containing a finite set of simplices of dimension n. For instance, a compact con-
nected surface can be triangulated. However, we can form a triangulation of a
surface by infinitely many ways. For example, we can choose a point in a triangle
of a given triangulation, connect it with the vertices of that triangle and form a
new triangulation of the same surface. A general problem is to decide, whether two
different simplicial complexes represent the same n-manifold. In what follows we
shall only consider compact connected piecewise-linear 3-manifolds. Each such a
3-manifold can be triangulated as was already mentioned.

There is a well defined equivalence relation on the set of n-dimensional complexes
representing n-manifolds based on wave moves [4]. This equivalence allows us to
decide, which simplicial complexes represent the same n-manifold. Unfortunately,
the straight use of wave moves to solve the above isomorphism problem seems to
be intractable. In fact, if n > 2 no limit for the number of steps (moves) needed to
decide whether two complexes determine the same compact connected manifold is
known.
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Let M be an n-manifold. It is well known, that a simplicial complex representing
M can be represented by a graph Γ(M), which vertices represents simplices of
dimension n of the complex and edges represent a ”gluing” of maximal simplices of
the complex in subsimplices of dimension n−1. Given graph Γ(M) can be ”drawn”
on an orientable surface. The genus of M is the minimal genus of an orientable
surface into which Γ(M) embeds in a particular way described in the next section.

Following [3] we represent a 3-manifold of genus two as a vector of integers
of length six and consider certain equivalence relations defined on 6-tuples and
preserving the associated 3-manifold of genus two. There is an equivalence on the
set of 6-tuples introduced in [2] called H-equivalence. In [5] other equivalence on
the set of 6-tuples is defined. This equivalence is called G-equivalence and it extends
H-equivalence. If f and g are G-equivalent 6-tuples then they represent isomorphic
3-manifolds of genus two. Hence the G-equivalence provides an approximation of
the ”isomorphism problem”.

Main aim of this paper is to investigate the G-equivalence in details. As an
application a list of representations of ”small” 3-manifolds of genus two is produced.

Preliminaries

Each 3-dimensional simplicial complex can be represented by a bipartite 4-edge-
coloured graph. Let T be any simplicial triangulation and T ′ be its first barycentric
subdivision. Each vertex ω̂, which is the barycenter of the simplex ω of T is labelled
by the dimension of ω. Take the dual graph Γ of T ′ and if uv is an edge and {i, j, k}
are the colours of respective triangle in T use the colour complementary to {i, j, k}
to colour the edge uv. The labelling of vertices of T induces a decomposition
of the tetrahedrons of T into two classes, where adjacent tetrahedrons belong to
different classes. Thus Γ is bipartite. The dual graph Γ of T ′, together with the
edge-colouring ν, is a 4-coloured graph, representing T .

Definition 1. Let Γ = (V (Γ, E(Γ))) be a bipartite graph and let there exist a
mapping ν : E(Γ) → ∆4 = {1, 2, 3, 4} such that for all incident edges f, g ∈ E(Γ) :
ν(f) 6= ν(g). This mapping called a graph colouring and the graph Γ∆4 4-coloured
graph.

It is proved [4] that the above mentioned simplicial complexes can be represented
by a 4-coloured bipartite and connected graph Γ∆4 (next, the graph). The colouring
is regular, i.e. two incident edges share distinct colours. Since the colouring is
regular a factor induced by two colours is a disjoint union of bicoloured cycles. Let
I denotes the set of 2-cell embeddings of Γ∆4 into a closed orientable surface such
that the local rotation of colours induced by the embedding in ”black” vertices
is the same, say ρ, while the local rotation of colours in ”white” vertices is ρ−1.
Note that there are six possibilities for choosing ρ. It follows that faces of such
embedding are bounded by bicoloured cycles. Out of these six possibilities for ρ we
choose such ρ that the genus of the underlying surface is minimal in I. The integer
g is an invariant of a 3-manifold M represented by Γ∆4 and it is called the regular
genus of M (or shortly the genus of M). It is known that the regular genus of M
is equal to the Heegaard genus of M [1].

Let Γ∆4 is a 4-coloured graph and let Θ is subgraph of Γ∆4 contains of vertices
X,Y joined by h edges (1 ≤ h ≤ 3) coloured by colours c1, . . . , ch. If X and
Y are in two different components of graph Γ∆4−{c1,...,ch} induced by the set of
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complementary colours ∆4 − {c1, . . . , ch} then the subgraph Θ will be called a
dipole of type h.

There is a well defined operator over the set of 4-coloured graphs [4] called wave
move. Note that a wave move can be defined for (n + 1)-coloured, connected and
bipartite graphs (n-manifolds) generally.

Definition 2. If Θ is a dipole of type h in Γ∆4 coloured by colours {c1, . . . , ch} we
define a wave move as follows (see Fig. 1):

(a) Cutting of Θ

• remove edges and vertices of Θ
• glue ”hanging” edges of graph Γ∆4 of same colour

(b) Adding of Θ as inverse to cutting

CC2CC1 CC1 CC2

CC1 CC2 CC1 CC2

CC1 CC2 CC1 CC2

��

���
�

���� ��	


����

�
��
��

�������
�

���
�
��

��
��
��

Fig. 1. Wave moves

The main result of [4] states that graphs Γ∆4 and Γ′
∆4

represent isomorphic 3-
manifolds if and only if there is a finite sequence of wave-moves transforming Γ∆4 to
Γ′

∆4
. Hence the ”isomorphism problem” reduces to the problem to decide whether

two 4-coloured graphs are ”wave-move equivalent”.
It follows from [3] that each (closed) genus two 3-manifold can be represented

by a graph Γ∆4 which structure can be coded by a 6-tuple of integers satisfying

certain conditions. Let F̃2 is set of 6-tuples:

f = (h0, h1, h2; q0, q1, q2), hi, qi ∈ N.

The set of 6-tuples representing genus two 3-manifolds satisfy the following axioms:

(i) ∀i ∈ Z3 : hi > 0,
(ii) all hi has the same parity,
(iii) ∀i ∈ Z3 : 0 ≤ qi < hi−1 + hi = 2li,
(iv) all qi has the same parity.

Remark 1. From here all operations with numbers qi will be considered modulo 2li,
and according to (iii), qi will be always the least non-negative integer of the class.
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Now let us define the set V (f) for a 6-tuple f ∈ F̃2:

V (f) =
⋃

i∈Z3

{i} × Z2li

and the following permutations on V (f):

α0(i, j) = (i, j + (−1)j),

α1(i, j) = (i, j − (−1)j),

α2(i, j) =

{
(i+ 1, 2lk − j − 1) ; k = i+ 1 ; 0 ≤ j < hi

(i− 1, 2lk − j − 1) ; k = i ; hi ≤ j < 2li
,

α3(i, j) = ρ ◦ α2 ◦ ρ−1,

where ρ : V (f) → V (f) is a bijection defined by rule

ρ(i, j) = (i, j + qi).

Now let f ∈ F2 satisfy the following conditions:

(v) ∀i ∈ Z3 : hi + qi is odd, hi and qi have different parity,
(vi) the group 〈α2, α3〉 has exactly three orbits.

Given 6-tuple f we define the associated graph Γ∆4(f) as follows. Let V = V (f)
be the set of vertices of Γ∆4(f). Then the permutations α0, α1, α2 and α3 define
the decomposition of the edge set into four colours, the orbits of αi form the edges
of Γ∆i coloured by i, for i = 0, 1, 2, 3. Observe that the subgraphs Γ{0,1,2}, Γ{0,1,3}
induced by the respective sets of colours are isomorphic planar graphs.

Vice-versa let Γ∆4 be a 4-coloured graph with a bicoloured 2-factor containing
three circles of even length C0, C1, C2 coloured by colours 0 and 1. Other edges
coloured by colours 2 and 3 join vertices of Γ∆4 such that the induced subgraphs
Γ{0,1,2} and Γ{0,1,3} are planar and isomorphic. Now, let us code the graph by the
6-tuple f = (h0, h1, h2; q0, q1, q2) [2]. The first three items code the numbers of
edges coloured by 2 (3) joining the circles Ci−1 and Ci, (i = 0, 1, 2) of Γ∆4 . Clearly,
the planar subgraphs Γ{0,1,2} ' Γ{0,1,3} of Γ∆4 are uniquely determined by the
integers h0, h1 and h2. Then Γ∆4 arises by gluing Γ{0,1,2} with Γ{0,1,3} in the three
cycles C0, C1 and C2 coloured by 0 and 1. The integers q0, q1 and q2 determine
the rotations of cycles C0, C1, C2 in Γ{0,1,3} before the gluing is done. In this way
we get an embedding of Γ∆4 into bitorus (see Fig. 2)
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Fig. 2. The graph represented by 6-tuple (3, 1, 3; 2, 2, 0)

The conditions (i) – (vi) come in part from the interpretation while in part they
are forced by the requirement that Γ represents a compact connected 3-manifold of
genus 2.
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Theorem 1 [3]. For every compact connected 3-manifold M of genus ≤ 2 there
exists f ∈ F2 such that Γ(f) represents M.

Definition 3. The elements of the set F2 ⊂ F̃2 satisfying conditions (i) – (vi) will
be called admissible 6-tuples.

Definition 4. Let f ∈ F2. The number z(f) = h0+h1+h2 is called the complexity
of the 6-tuple f .

It is easy to design an algorithm to verify the conditions (i) – (vi) for a given
integer vector with six items. The most complicated seems to be to verify the
condition (vi), but the complexity of this algorithm is polynomial, depending on
complexity of given 6-tuple f . Therefore we can construct the set F2 up to a fixed
complexity in an effective way.

Now we introduce the equivalence relations on F2 defined in [2] and [5]. If
f = (h0, h1, h2; q0, q1, q2) is an admissible 6-tuple define the permutations ψ1, ψ2, ψ3

acting on F2 as follows [2]:

ψ1(h0, h1, h2; q0, q1, q2) = (h1, h2, h0; q1, q2, q0)

ψ2(h0, h1, h2; q0, q1, q2) = (h2, h1, h0; q0, q2, q1)

ψ3(h0, h1, h2; q0, q1, q2) =(h0, h1, h2; 2l0 − q0, 2l1 − q1, 2l2 − q2)

The above described permutations represents some recolourings of the graph
Γ∆4(f).

Definition 5. Let f, g ∈ F2. Let us define the relation

f
H≈ g : ∃η ∈ 〈ψ1, ψ2, ψ3〉 , η(f) = g

This relation is an equivalence and we will call it H-equivalence on F2. The equiv-
alence classes will be called H-orbits.

Lemma 1. [2, Prop. 16] H-equivalence preserves the admissibility of the 6-tuple.

Lemma 2. The group H = 〈ψ1, ψ2, ψ3〉 is isomorphic to D12, where D12 is the
group of symmetries of a regular hexagon. In particular, each H-orbit has at most
12 elements.

Proof. It follows from the definition of ψ1, ψ2, ψ3 that ψ3
1 = ψ2

2 = ψ2
3 = 1. The

group 〈ψ1, ψ2〉 is isomorphic to the group S3 of symmetries of a regular triangle
because

ψ2ψ1ψ2 = ψ−1
1 .

Also ψ3 commutes with the members of 〈ψ1, ψ2〉. Hence the group H satisfies
the relations of dihedral group D12. Thus H is an epimorphic image of D12. To
prove that the epimorphism is an isomorphism it is sufficient to find at least one
admissible 6-tuple such that the respective H-orbit has 12 different 6-tuples. The
6-tuple (1, 3, 5; 2, 2, 2) is the such a 6-tuple. �

Following [5], let us define mapping σ : F2 → F2 :

σ(h0, h1, h2; q0, q1, q2) =

{
(h0, h1, h2; q0, q1, q2); if q0 = 0

(h′0, h
′
1, h

′
2; q

′
0, q

′
1, q

′
2); if q0 6= 0
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where f = (h′0, h
′
1, h

′
2; q

′
0, q

′
1, q

′
2) is a 6-tuple defined by the next rules

h′0 = h0 + h1 − q0 q′0 = h0 + h1 + h2 − 2q0

h′1 = q0 q′1 = q0 + q1 + h1

h′2 = h2 + h1 − q0 q′2 = q0 + q2 + h1





iff 0 < q0 < h0, h2

h′0 = q0 + h1 − h2 q′0 = h1

h′1 = h0 + h2 − q0 q′1 = q0 + q1 − h2

h′2 = q0 + h1 − h0 q′2 = q0 + q2 − h0





iff q0 > h0, h2

h′0 = h1 q′0 = h1 + h2 − q0

h′1 = h0 q′1 = q1

h′2 = h1 + h2 − h0 q′2 = 2q0 + q2 + h1 − h0





iff h0 < q0 < h2

h′0 = h1 + h0 − h2 q′0 = h1 + h0 − q0

h′1 = h2 q′1 = 2q0 + q1 + h1 − h2

h′2 = h1 q′2 = q2





iff h2 < q0 < h0

The above described operation represents a sequence of wave moves such that
applying it to the graph represented by an admissible 6-tuple we get the new graph,
which can be represented by an admissible 6-tuple too.

Definition 6. Let f, g ∈ F2. We define a relation:

f
G≈ g : ∃γ ∈ 〈ψ1, ψ2, ψ3, σ〉 , γ(f) = g

This relation will be called G-equivalence on F2. The equivalence classes will be
called G-orbits and will be marked as usual [f ]G .

Agreement. Denote by [f ]H a H-orbit containing f . Similar, denote by [f ]G a G-
orbit containing f .

Lemma 3. [5, Th. 5.1] G-equivalence preserves the admissibility of the given 6-
tuple.

Obviously, any G-orbit is a union of some H-orbits.

Definition 7. Let H,H′ be two different H-orbits. Let f ∈ H∧ g ∈ H′ : g = σ(f).
Then we define a derivation of f as the difference δ(f) = z(g) − z(f) [5].

Straightforward from Definitions 6 and 7 we get the following lemma.

Lemma 4 [5]. With the above notation

δ(f) =





0 iff q0 = 0 (a)

h1 − q0 iff 0 < q0 < h0, h2 (b)

h1 − h0 iff h0 < q0 < h2 (c)

h1 − h2 iff h2 < q0 < h0 (d)

q0 + h1 − h0 − h2 iff q0 > h0, h2 (e)

Note. We denote by fi(i = 1, 2, . . . , 6) the i-th item of the vector representing an
admissible 6-tuple.

26



Definition 8. Let f, g ∈ F2 be two 6-tuples. Let I = {1, 2, 3, 4, 5, 6} be the set of
indexes of components of these vectors. We define the lexical order ≺ as follows:

f ≺ g ⇔ for j = inf{i|(i ∈ I) ∧ f(i) 6= g(i)}, f(j) < g(j)

Definition 9. Using the lexical order we derive an order on F2 in the following
way

f � g ⇔ (z(f) < z(g)) ∨ ((z(f) = z(g)) ∧ (f ≺ g))

We call this order the natural order of F2.

Finally, we define representatives of H-orbits.

Definition 10. Let F ⊆ F2.
The member f of F satisfying

f ∈ F : ¬(∃g ∈ F ), g � f

is called a minimal representative of F .
The member f of F satisfying

f ∈ F : ∀g ∈ F, f � g

is called the least representative of F .

Since F2 with respect to � is a well-ordered set, for each F there exists a unique
minimal representative which is in the same time the least representative of F .

Agreement. In the notation [f ]H denoting an orbit of H-equivalence we shall always
assume that 6-tuple f is minimal unless otherwise follows from the context.

To create a H-orbit from a given f is a trivial problem, which can be represented
by simple algorithm following i.e. from [2, Prop. 16]. By Lemma 2 the members of
[f ]H are

f = (h0, h1, h2; q0, q1, q2)

ψ1f = (h1, h2, h0; q1, q2, q0)

ψ2f = (h2, h1, h0; q0, q2, q1)

ψ3f = (h0, h1, h2; 2l0 − q0, 2l1 − q1, 2l2 − q2)

ψ2
1f = (h2, h0, h1; q2, q0, q1)

ψ2ψ1f = (h0, h2, h1; q1, q0, q2)

ψ3ψ1f = (h1, h2, h0; 2l1 − q1, 2l2 − q2, 2l0 − q0)

ψ2ψ
2
1f = (h1, h0, h2; q2, q1, q0)

ψ3ψ
2
1f = (h2, h0, h1; 2l2 − q2, 2l0 − q0, 2l1 − q1)

ψ3ψ2f = (h2, h1, h0; 2l0 − q0, 2l2 − q2, 2l1 − q1)

ψ3ψ2ψ1f = (h0, h2, h1; 2l1 − q1, 2l0 − q0, 2l2 − q2)

ψ3ψ2ψ
2
1f = (h1, h0, h2; 2l2 − q2, 2l1 − q1, 2l0 − q0)

Similarly, it is not complicated to compute an image σ(f) for any f ∈ F2. On the
other hand, a G-orbit may be infinite. In what follows we give a simple method for
deciding whether g ≈G h.
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Example. The 6-tuple (1, 3, k; 2, 2, k−1) k ≥ 3 belongs to an infinite G-orbit. Since
σ((1, 3, k; 2, 2, k−1)) = (3, 1, k+2; k+1, 2, 2) and this 6-tuple is H-equivalent to the
6-tuple (1, 3, k+ 2; 2, 2, k+ 1). Hence (1, 3, k+ 2; 2, 2, k+ 1) ≈G (1, 3, k; 2, 2, k− 1),
and z(σj+1(f)) > z(σj(f)) for every positive integer j. Thus [(1, 3, k; 2, 2, k − 1)]G
is infinite.

Representatives of G-orbits

Next lemma appears in [5, Prop. 6.1] without proof.

Lemma 5. Let f ∈ F2. Then ψ2, ψ3 and σ satisfy the following relations:

a) σ2 = 1

b) ψ2σ = σψ2

c) ψ3σ = σψ3

Proof. The proof is done by direct computation. We have to deal with four cases
related with the action of σ-operator. Recall that all the computations with qi will
be done modulo hi + hi+1, i ∈ Z3.

a) Let f ′ = σ(f) and f ′′ = σ(f ′). We prove f = f ′′.
The case q0 = 0 implies the identity by definition.

(I)
0 < q0 < h0 ⇒ h0 + h1 − q0 < h0 + h1 + h2 − 2q0 ⇒ h′0 < q′0
0 < q0 < h2 ⇒ h2 + h1 − q0 < h0 + h1 + h2 − 2q0 ⇒ h′2 < q′0

Hence we have to apply Case II in the definition of σ to compute σ(f ′′)

h′′0 = (h0 + h1 + h2 − 2q0) + q0 − (h2 + h1 − q0) = h0

h′′1 = (h0 + h1 − q0) + (h2 + h1 − q0) − (h0 + h1 + h2 − 2q0) = h1

h′′2 = (h0 + h1 + h2 − 2q0) + q0 − (h0 + h1 − q0) = h2

q′′0 = q0 mod (h0 + h2)

q′′1 = (h0 + h1 + h2 − 2q0) + (q0 + q1 + h1) − (h2 + h1 − q0) ≡ q1 mod (h0 + h1)

q′′2 = (h0 + h1 + h2 − 2q0) + (q0 + q2 + h1) − (h0 + h1 − q0) ≡ q2 mod (h1 + h2)

(II)
q0 > h0, h2 ⇒ q0 − h2 > 0 ⇒ h1 < h1 + (q0 − h2) ⇒ 0 < q′0 < h′0
q0 > h0, h2 ⇒ q0 − h0 > 0 ⇒ h1 < h1 + (q0 − h0) ⇒ 0 < q′0 < h′2

Hence we have to apply Case I in the definition of σ to compute σ(f ′′)

h′′0 = (q0 + h1 − h2) + (h0 + h2 − q0) − h1 = h0

h′′1 = h1

h′′2 = (q0 + h1 − h0) + (h0 + h2 − q0) − h1 = h2

q′′0 = (q0 + h1 − h2) + (h0 + h2 − q0) + (q0 + h1 − h0) − 2h1 = q0 mod (h0 + h2)

q′′1 = h1 + (q0 + q1 − h2) + (h0 + h2 − q0) ≡ q1 mod (h0 + h1)

q′′2 = h1 + (q0 + q2 − h0) + (h0 + h2 − q0) ≡ q2 mod (h1 + h2)
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(III)
q0 < h2 ⇒ h1 < (h2 − q0) + h1 ⇒ h′0 < q′0
q0 > h0 ⇒ (h1 + h2) − q0 < (h1 + h2) − h0 ⇒ q′0 < h′2

Hence we have to apply Case III in the definition of σ to compute σ(f ′′)

h′′0 = h0

h′′1 = h1

h′′2 = h0 + (h1 + h2 − h0) − h1 = h2

q′′0 = h0 + (h1 + h2 − h0) − (h1 + h2 − q0) = q0 mod (h0 + h2)

q′′1 = q1 mod (h0 + h1)

q′′2 = 2(h1 + h2 − q0) + (2q0 + q2 + h1 − h0) + h0 − h1 ≡ q2 mod (h1 + h2)

(IV)
q0 > h2 ⇒ (h1 + h0) − h2 > (h1 + h0) − q0 ⇒ h′0 > q′0
h0 > q0 ⇒ (h0 − q0) + h1 > h1 ⇒ q′0 > h′2

Hence we have to apply Case IV in the definition of σ to compute σ(f ′′)

h′′0 = h2 + (h1 + h0 − h2) − h1 = h0

h′′1 = h1

h′′2 = h2

q′′0 = h2 + (h1 + h0 − h2) − (h1 + h0 − q0) = q0 mod (h0 + h2)

q′′1 = 2(h1 + h0 − q0) + (2q0 + q1 + h1 − h2) + h2 − h1 ≡ q1 mod (h0 + h1)

q′′2 = q2 mod (h1 + h2)

b) In the following calculations the usage of the respective Case in computation

of images under σ is signed as follows . . .
I.
= . . . , . . .

IV.
= . . . . Let f ′ = σ(f) and

f ′′ = ψ2(f)

(I) 0 < q0 < h0, h2 ⇒ ψ2(f
′)

I.
=

I.
= ψ2(h0 +h1 − q0, q0, h2 +h1 − q0;h0 +h1 +h2 −2q0, q0 + q1 +h1, q0 + q1 +h1) =

= (h2 + h1 − q0, q0, h0 + h1 − q0;h2 + h1 + h0 − 2q0, q0 + q2 + h1, q0 + q1 + h1)
I.
=

I.
= σ(h2, h1, h0; q0, q2, q1) = σ(f ′′)

(II) q0 > h0, h2 ⇒ ψ2(f
′)

II.
=

II.
= ψ2(q0 + h1 − h2, h0 + h2 − q0, q0 + h1 − h0;h1, q0 + q1 − h2, q0 + q2 − h0) =

= (q0 + h1 − h0, h2 + h0 − q0, q0 + h1 − h2;h1, q0 + q2 − h0, q0 + q1 − h2)
II.
=

II.
= σ(h2, h1, h0; q0, q2, q1) = σ(f ′′)

Note, that using ψ2 in Cases (III) and (IV) of σ swaps the input conditions. How-
ever, we need to prove the following equalities:
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Using Case (IV) in the definition of σ we get:

(III) h0 < q0 < h2 ⇒ ψ2(f
′)

III.
=

III.
= ψ2(h1, h0, h1 + h2 − h0;h1 + h2 − q0, q1, 2q0 + q2 + q2 + h1 − h0) =

= (h1 + h2 − h0, h0, h1;h1 + h0 − q0, 2q0 + q2 + h1 − h0, q1)
IV.
=

IV.
= σ(h2, h1, h0; q0, q2, q1) = σ(f ′′)

Using Case (III) in the definition of σ we get:

(IV) h2 < q0 < h0 ⇒ ψ2(f
′)

IV.
=

IV.
= ψ2(h1 + h0 − h2, h2, h1;h1 + h0 − q0, q2, 2q0 + q1 + h1 − h2) =

= (h1, h2, h1 + h0 − h2;h1 + h0 − q0, q2, 2q0 + q1 + h1 − h2)
III.
=

III.
= σ(h2, h1, h0; q0, q2, q1) = σ(f ′′)

c) To prove commutativity of ψ3 and σ note that for the minimum non-negative
representatives q0, q1, q2 of the repective residual classes the following relations
hold (see Remark 1):

−qi = (hi + hi−1) − qi mod (hi + hi−1); i ∈ Z3

qi < hi−1 ⇒ (hi + hi−1) − qi > (hi + hi−1) − hi−1 ⇒
⇒ −qi > hi mod (hi + hi−1)

qi < hi ⇒ (hi + hi−1) − qi > (hi + hi−1) − hi ⇒
⇒ −qi > hi−1 mod (hi + hi−1)

Let f ′ = ψ3σf and f ′′ = σψ3f . We have to prove f ′ = f ′′.

I) 0 < q0 < h0, h2

h′0 = h0 + h1 − q0

h′1 = q0

h′2 = h2 + h1 − q0

q′0 = (h0+h1−q0)+(h2+h1−q0)−(h0+h1+h2−2q0) ≡ h1 mod (2h1+h0+h2−2q0)

q′1 = (h0 + h1 − q0) + q0 − (q0 + q1 + h1) = h0 − q0 − q1 mod (h0 + h1)

q′2 = q0 + (h2 + h1 − q0) − (q0 + q2 + h1) ≡ h2 − q0 − q2 mod (h1 + h2)

Since 0 < q0 < h0, h2 ⇒ −q0 > h0, h2 mod (h0 + h2) Case II in calculation of f ′′

applies.

h′′0 = (h0 + h2) − q0 + h1 − h2 = h0 + h1 − q0

h′′1 = h0 + h2 − ((h0 + h2) − q0) = q0

h′′2 = (h0 + h2) − q0 + h1 − h0 = h2 + h1 − q0

q′′0 = h1 mod (2h1 + h0 + h2 − 2q0)

q′′1 = (h0 + h2 − q0) + (h0 + h1 − q1) − h2 ≡ h0 − q0 − q1 mod (h0 + h1)

q′′2 = (h0 + h2 − q0) + (h1 + h2 − q2) ≡ h2 − q0 − q2 mod (h1 + h2)
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II) h0, h2 < q0

h′0 = h1 − h2 + q0

h′1 = h0 + h2 − q0

h′2 = h1 − h0 + q0

q′0 = (h1 − h2 + q0) + (h1 − h0 + q0) − h1 =

= h1 − h0 − h2 + 2q0 ≡ −h1 mod (2h1 − h0 − h2 + 2q0)

q′1 = (h1 + h2 + q0) + (h1 − h0 + q0) − (q0 + q1 − h2) =

= h0 + h1 + h2 − q0 − q1 ≡ h2 − q0 − q1 mod (h1 + h0)

q′2 = (h0 + h2 − q0) + (h1 − h0 + q0) − q0 + q2 − h0 =

= h0 + h1 + h2 − q0 − q2 ≡ h0 − q0 − q0 mod (h1 + h2)

Since h0, h2 < q0 ⇒ 0 < −q0 < h0, h2 mod (h0 + h2) Case I in calculation of f ′′

applies.

h′′0 = h0 + h1 − (h0 + h2 − q0) = h1 − h2 + q0

h′′1 = h0 + h2 − q0

h′′2 = h2 + h1 − (h0 + h2 − q0) = h1 − h0 + q0

q′′0 = h0 + h1 + h2 − 2(h0 + h2 − q0) =

= h1 − h0 − h2 + 2q0 ≡ −h1 mod (2h1 − h0 − h2 + 2q0)

q′′1 = (h0 + h2 − q0) + (h0 + h1 − q1) + h1 =

= h0 + h1 + h2 − q0 − q1 ≡ h2 − q0 − q1 mod (h0 + h1)

q′′2 = (h0 + h2 − q0) + (h1 + h2 − q2) + h1 =

= h0 + h1 + h2 − q0 − q2 ≡ h0 − q0 − q2 mod (h1 + h2)

III) h0 < q0 < h2

h′0 = h1

h′1 = h0

h′2 = h1 + h2 − h0

q′0 = [h1 + (h1 + h2 − h0)] − (h1 + h2 − q0) = h1 − h0 + q0 mod (2h1 + h2 − h0)

q′1 = [h1 + h0 − q1] ≡ −q1 mod (h1 + h0)

q′2 = [h0+(h1+h2−h0)]−(2q0+q2+h1−h0) = h2+h0−2q0−q2 mod (h1+h2)

Since h0 < q0 < h2 ⇒ h0 < −q0 < h2 mod (h0 + h2) Case III in calculation of f ′′

applies.

h′′0 = h1

h′′1 = h0

h′′2 = h1 + h2 − h0

q′′0 = h1 + h2 − (h0 + h2 − q0) = h1 − h0 + q0 mod (2h1 + h2 − h0)

q′′1 = h0 + h1 − q1 = h0 + h1 − q1 ≡ −q1 mod (h0 + h1)

q′′2 = 2(h0+h2−q0)+(h1 +h2−q2)+h1−h0 = h2+h0−2q0−q2 mod (h1 +h2)
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IV) h2 < q0 < h0 ⇒ h2 < −q0 < h0 mod (h0 + h2)

h′0 = h1 + h0 − h2

h′1 = h2

h′2 = h1

q′0 = [(h1 + h0 − h2) + h1] − (h1 + h0 − q0) = h1 − h2 + q0 mod (2h1 + h0 − h2)

q′1 = [(h1 +h0−h2)+h2]− (2q0 +q1 +h1−h2) = h0 +h2−2q0−q1 mod (h1 +h0)

q′2 = [h1 + h2] − q2 ≡ −q2 mod (h1 + h2)

Since h2 < q0 < h0 ⇒ h2 < −q0 < h0 mod (h0 + h2) Case IV in calculation of f ′′

applies.

h′′0 = h1 + h0 − h2

h′′1 = h2

h′′2 = h1

q′′0 = h1 + h0 − (h0 + h2 − q0) = h1 − h2 + q0 mod (2h1 + h0 − h2)

q′′1 = 2(h0 +h2− q0)+(h0 +h1− q1)+h1 −h2 = h0 +h2 −2q0− q1 mod (h0 +h1)

q′′2 = h1 + h2 − q2 ≡ −q2 mod (h1 + h2)

�
The application of σ is now easier. It follows that to calculate the action of σ it

is sufficient to consider the images of the three members σf , σψ1f and σψ2
1f of an

H-orbit.

Definition 11. Let S = {V,E} be a graph which vertices are H-orbits and the
adjacency relation is given by:

[f ]H ∼ [g]H ⇔ ∃g′ ∈ [g]H ∧ ∃f ′ ∈ [f ]H : g′ = σf ′.

Since σ2 = 1, the graph S is undirected. Note that S contains loops.

The connectivity components of S are in a correspondence with the G-orbits.
Therefore we call the connectivity components of S, G-orbits too. By the definition,
a G-orbit is a class of equivalence. We can describe its minimal representatives.

(1,1,9;0,0,2) (1,1,9;2,0,6) (1,1,9;4,0,4)

(1,3,9;2,0,6)

(1,3,11;0,0,4) (1,7,7;0,0,6)

(1,3,7;4,0,2)

(2,2,6;1;1;1)

(1,3,9;2,0,8)

(1,3,7;2,0,6)

(1,3,3;0,2,2)

(1,3,7;2,2,6)

(2,2,2;1,1,3)

(1,5,7;4,2,6)

(1,3,5;2,2,4)

(1,3,3;2,2,2)

(1,3,5;2,0,4)

(1,3,9;2,2,8)

�� ������

�� ��

	�	


����

Fig. 3. Some components of connectivity of S.

Agreement. Since the members of each H-orbit have the same complexity, we define
the complexity of a H-orbit to be the complexity of its members. Since each H-orbit
corresponds to a vertex in S, we can speak about complexity of a vertex. Moreover,
we say that u � v for u = [f ]H and v = [g]H, if f � g.
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Lemma 6. The set of neighbours of a vertex u = [f ]H in the graph S is
N = {[σf ]H, [σψ1f ]H, [σψ2

1f ]H}. In particular, a vertex in S has at most 3 neigh-
bours.

Proof. Let A = 〈ψ2, ψ3〉. Each H-orbit decomposes into the orbits induced by the
action of A. Since σ commutes with the elements of A (see Lemma 5), it follows
that for g = φf, φ ∈ A we have σg = σφf = φσf , hence [σg]H = [σf ]H. Hence, the
set of neighbours of vertex u is N . �
Theorem 2. Let v,u,w be three pairwise distinct vertices in S. Let u and w be
neighbours of v. Then

z(u) < z(v) ⇒ z(w) > z(v),(1)

z(u) = z(v) ⇒ z(w) ≥ z(v).(2)

Proof. Let us analyse the derivation of complexity δ(f) for a vertex v, f ∈ [f ]H = v.
Recall that f = (h0, h1, h2; q0; q1, q2) is the minimal representative of [f ]H. It
follows that h0 ≤ h1 ≤ h2. By Lemma 6 u,w ∈ {[σf ]H, [σψ1f ]H, [σψ2

1f ]H}. Hence
we need to analyse the three derivations: δ(f), δ(ψ1f) and δ(ψ2

1f). In the following
discussion we refer to Lemma 4.

I. For δ(f) we get:

(a) q0 = 0 ⇒ δ(f) = 0,

(b) 0 < q0 < h0, h2 ⇒ δ(f) > 0, therefore h1 − q0 ≥ h0 − q0 > 0,

(c) h0 < q0 < h2,we consider subcases:

h0 < q0 < h2 ⇒ δ(f) > 0

or

h0 = h1 < q0 < h2 ⇒ δ(f) = 0,

(d) h2 < h0 is in a contradiction with the minimality of f,

(e) q0 > h0, h2 ⇒ δ(f) > 0, therefore q0 + h1 − h0 − h2 > h1 − h0 ≥ 0.

II. For δ(ψ1f) we get:

(a) q1 = 0 ⇒ δ(ψ1f) = 0,

(b) 0 < q1 < h1, h0 ⇒ δ(ψ1f) > 0, therefore h2 − q1 ≥ h1 − q1 > 0,

(c) h1 < h0 is in a contradiction with the minimality of f,

(d) h0 < q1 < h1 ⇒ δ(ψ1f) > 0,

(e) q1 > h1, h0 ⇒ δ(ψ1f) > 0, therefore q1 + h2 − h1 − h0 > h2 − h0 ≥ 0.

III. For δ(ψ2
1f) we get:

(a) q2 = 0 ⇒ δ(ψ2
1f) = 0,

(b) 0 < q2 < h1, h2 we must consider following cases:

q2 < h0 ≤ h1, h2 ⇒ δ(ψ2
1f) > 0

or

h0 < q2 < h1 ⇒ δ(ψ2
1f) < 0,
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(c) h2 < h1, is in a contradiction with the minimality of f,

(d) h1 < q2 < h2 we consider subcases:

h0 < h1 < q2 < h2 ⇒ δ(ψ2
1f) < 0

or

h0 = h1 < q2 < h2 ⇒ δ(ψ2
1f) = 0,

(e) q2 > h1, h2 we consider subcases:

h0 ≤ h1 ≤ h2 < q2 < h1 + h2 − h0 ⇒ δ(ψ2
1f) < 0

or

h0 ≤ h1 ≤ h2 < q2 = h1 + h2 − h0 ⇒ δ(ψ2
1f) = 0

or

h1, h2, h1 + h2 − h0 ≤ q2 ⇒ δ(ψ2
1f) > 0.

The previous discussion describes the derivation of each neighbour of the vertex
v. The subcases are pairwise eliminative and they cover all the possibilities. Since
only one from the three possible neighbours of a given vertex x = [f ]H can have
a smaller complexity as x, it follows that two edges incident to vertices u, w with
given complexity never enter the vertex v with higher complexity. This neighbour
is y = [σψ2

1f ]H and z(y) < z(x) in some subcases of Case III. The complexity of
a neighbour of v can be smaller only in Case III.

Now assume z(u) < z(v). We have already observed z(w) ≥ z(v). Assume
z(w) = z(v). Analysing Cases I, II and III we see that u satisfies one of the
conditions III-b, III-d, III-e. Moreover, w satisfies the condition I-c. Combining
I-c with III-b, or III-d, or III-e we derive the following contradictions:

h0 = h1 < q0 < h2 ∧ h0 = q2 < h1, h2 ⇒ h1 < q0 ≤ q2 < h1

h0 = h1 < q0 < h2 ∧ h0 ≤ h1 ≤ h2 < q2 = h1 + h2 − h0 ⇒ h2 < q2 < h2

h0 = h1 < q0 < h2 ∧ h0 < h1 < q2 < h2.

Hence z(w) > z(v) and we are done. �

Definition 12. A vertex v is in an horisontal branch B = B(v) of a G-orbit if the
following holds:

v ∈ B(v) ⇔ ∀u ∈ N(v) : z(u) ≥ z(v)

Lemma 7. In every G-orbit there is precisely one horisontal branch B and B
contains the minimum element m of the G-orbit with respect to the order �.
The complexity of all elements of B is equal to z(m).

Proof. By the definition and by Theorem 2 a horisontal branch B consists of the 6-
tuples with a fixed complexity. A minimal representative m of a G-orbit containing
B belongs to B as well. Moreover, Theorem 2 implies that the complexity of the
6-tuples in B(m) is equal to z(m). �

Notice that a horisontal branch may contain only one vertex of S.
34



Theorem 3. There exists a polynomial-time algorithm to decide whether two 6-
tuples in F2 are G-equivalent.

Proof. Let f and g be 6-tuples in F2 such that z(f) ≥ z(g). Using Theorem 2 we
find f1 ∈ N(f) and g1 ∈ N(g) so that z(f1) ≤ z(f) and z(g1) ≤ z(g). Note that if
the complexity of f1 (g1) is less than z(f) (z(g)), f1 (g1) is uniquely determined.
By proceeding at most z(f) = n iterations we reach the horisontal branches of
the respective G-orbits containing f and g. If z(fn) 6= z(gn), the 6-tuples are not
G-equivalent. The complexity of this procedure is O(n). If z(fn) = z(gn) the
algorithm continues. We choose the minimal representatives of horisontal branches
B1(fn) and B2(gn) containing fn and gn. If the minimal representatives are equal
then f ≈G g. The complexity of this part of algorithm can be rougly estimated
by O(zn(f)3). By Lemma 7 the 6-tuples f and g are not G-equivalent in the other
case. �

List of G-minimal representatives of 6-tuples

By using [2], [5] and previous results we have generated two catalogues of minimal
representatives of G-classes of 3-manifolds of genus two.

The first one is a reduction of the catalogue introduced in [2]. We have applied
the G-equivalence on it. The new version includes only minimal representatives of G-
orbits. It is created by a simple algorithm which computes σ(f), σ(ψ1f) and σ(ψ2

1f)
for every 6-tuple. Only 6-tuples satisfying f ≤ σ(f) ∧ f ≤ σ(ψ1f) ∧ f ≤ σ(ψ2

1f)
(see Theorem 2) are listed in this catalogue. The new catalogue contains 309 of
6-tuples with complexity z ≤ 21 instead of 695 6-tuples of the original.

The second catalogue is formed by computing of all admissible 6-tuples with
complexity z ≤ 21. After creating, a 6-tuple is processed by a similar way as
described above and the minimal representatives of horisontal branches were listed.
Since we do not use any further criteria to reduce it, this catalogue is more rich as the
first one. It contains 433 of minimal 6-tuples. We have excluded the representatives
of traps defined by a condition introduced in [5].

The catalogue up to complexity z = 50 was created and reduced in thirty min-
utes. Using the same program minimal prepresentatives of G-orbits up to com-
plexity z = 100 and higher can be generated in a real time. The program can be
parallelised.
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Appendix A: Reduced catalogue introuced in [2]

+++ z = 7 +++

( 1, 3, 3; 2, 2, 0)

+++ z = 9 +++

( 1, 3, 5; 2, 2, 0)

( 3, 3, 3; 2, 2, 2)

+++ z = 10 +++

+++ z = 11 +++

( 1, 3, 7; 2, 2, 0)

( 1, 5, 5; 2, 2, 0)

( 1, 5, 5; 2, 4, 0)

( 3, 3, 5; 0, 2, 4)

( 3, 3, 5; 2, 2, 4)

+++ z = 12 +++

( 4, 4, 4; 1, 1, 1)

( 4, 4, 4; 1, 1, 5)

( 4, 4, 4; 3, 3, 3)

+++ z = 13 +++

( 1, 3, 9; 2, 2, 0)

( 1, 3, 9; 4, 2, 0)

( 1, 5, 7; 2, 2, 0)

( 1, 5, 7; 2, 4, 0)

( 3, 3, 7; 2, 2, 2)

( 3, 3, 7; 2, 2, 6)

( 3, 5, 5; 2, 4, 0)

( 3, 5, 5; 4, 4, 2)

+++ z = 14 +++

( 4, 4, 6; 1, 1, 1)

( 4, 4, 6; 1, 1, 3)

( 4, 4, 6; 1, 1, 5)

( 4, 4, 6; 1, 1, 7)

( 4, 4, 6; 1, 5, 1)

( 4, 4, 6; 1, 5, 5)

( 4, 4, 6; 3, 1, 5)

( 4, 4, 6; 3, 3, 5)

+++ z = 15 +++

( 1, 3,11; 2, 2, 0)

( 1, 5, 9; 2, 2, 0)

( 1, 5, 9; 2, 4, 0)

( 1, 5, 9; 4, 2, 0)

( 1, 5, 9; 4, 4, 0)

( 1, 7, 7; 2, 2, 0)

( 1, 7, 7; 2, 6, 0)

( 3, 3, 9; 0, 2, 4)

( 3, 3, 9; 0, 2, 8)

( 3, 3, 9; 2, 0, 2)

( 3, 3, 9; 2, 0, 6)

( 3, 3, 9; 2, 2, 8)

( 3, 5, 7; 2, 4, 0)

( 3, 5, 7; 2, 4, 2)

( 3, 5, 7; 4, 4, 0)

( 3, 5, 7; 4, 4,10)

( 5, 5, 5; 0, 4, 4)

( 5, 5, 5; 2, 2, 2)

( 5, 5, 5; 4, 4, 4)

+++ z = 16 +++

( 4, 4, 8; 1, 1, 1)

( 4, 4, 8; 1, 1, 9)

( 4, 4, 8; 1, 5, 1)

( 4, 4, 8; 3, 1, 7)

( 4, 4, 8; 3, 3, 7)

( 4, 4, 8; 3, 7, 3)

( 4, 6, 6; 1, 1, 1)

( 4, 6, 6; 1, 1, 9)

( 4, 6, 6; 1, 7, 1)

( 4, 6, 6; 3, 5,11)

( 4, 6, 6; 5, 5, 3)

+++ z = 17 +++

( 1, 3,13; 2, 2, 0)

( 1, 3,13; 4, 2, 0)

( 1, 3,13; 6, 2, 0)

( 1, 5,11; 2, 2, 0)

( 1, 5,11; 2, 4, 0)

( 1, 7, 9; 2, 2, 0)

( 1, 7, 9; 2, 6, 0)

( 1, 7, 9; 4, 2, 0)

( 1, 7, 9; 4, 6, 0)

( 3, 3,11; 2, 2, 2)

( 3, 3,11; 2, 2, 4)

( 3, 3,11; 2, 2,10)

( 3, 5, 9; 2, 0, 2)

( 3, 5, 9; 2, 4, 0)

( 3, 5, 9; 4, 2, 0)

( 3, 5, 9; 4, 4,12)

( 3, 5, 9; 4, 6, 0)

( 3, 7, 7; 2, 2, 2)

( 3, 7, 7; 2, 6, 2)

( 3, 7, 7; 4, 4,12)

( 5, 5, 7; 0, 2, 6)

( 5, 5, 7; 0, 4, 6)
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( 5, 5, 7; 0, 4,10)

( 5, 5, 7; 2, 0, 4)

( 5, 5, 7; 2, 0, 8)

( 5, 5, 7; 2, 4, 2)

( 5, 5, 7; 2, 4, 6)

( 5, 5, 7; 2, 6, 2)

( 5, 5, 7; 2, 6, 6)

( 5, 5, 7; 4, 0, 6)

( 5, 5, 7; 4, 2, 4)

( 5, 5, 7; 4, 4, 4)

( 5, 5, 7; 4, 4, 6)

+++ z = 18 +++

( 2, 8, 8; 3, 3, 1)

( 2, 8, 8; 3, 5, 1)

( 2, 8, 8; 5, 5, 1)

( 4, 4,10; 1, 1, 1)

( 4, 4,10; 1, 1, 3)

( 4, 4,10; 1, 1, 5)

( 4, 4,10; 1, 1, 7)

( 4, 4,10; 1, 1, 9)

( 4, 4,10; 1, 1,11)

( 4, 4,10; 1, 5, 1)

( 4, 4,10; 1, 5, 7)

( 4, 4,10; 1, 5, 9)

( 4, 4,10; 3, 1, 9)

( 4, 4,10; 3, 3, 3)

( 4, 4,10; 3, 3, 9)

( 4, 6, 8; 1, 1, 1)

( 4, 6, 8; 1, 1, 3)

( 4, 6, 8; 1, 1,11)

( 4, 6, 8; 1, 5, 3)

( 4, 6, 8; 1, 7, 1)

( 4, 6, 8; 3, 5,13)

( 4, 6, 8; 3, 9, 3)

( 4, 6, 8; 3, 9,13)

( 4, 6, 8; 5, 1, 3)

( 4, 6, 8; 5, 5, 3)

( 4, 6, 8; 5, 5,11)

( 6, 6, 6; 1, 1, 1)

( 6, 6, 6; 1, 1, 9)

( 6, 6, 6; 1, 3, 3)

( 6, 6, 6; 1, 3, 7)

( 6, 6, 6; 1, 5, 9)

( 6, 6, 6; 1, 7, 7)

( 6, 6, 6; 3, 3, 5)

( 6, 6, 6; 3, 5, 5)

( 6, 6, 6; 5, 5, 5)

+++ z = 19 +++

( 1, 3,15; 2, 2, 0)

( 1, 3,15; 6, 2, 0)

( 1, 5,13; 2, 2, 0)

( 1, 5,13; 2, 4, 0)

( 1, 5,13; 4, 2, 0)

( 1, 5,13; 4, 4, 0)

( 1, 5,13; 6, 2, 0)

( 1, 5,13; 6, 4, 0)

( 1, 7,11; 2, 2, 0)

( 1, 7,11; 2, 6, 0)

( 1, 9, 9; 2, 2, 0)

( 1, 9, 9; 2, 4, 0)

( 1, 9, 9; 2, 6, 0)

( 1, 9, 9; 2, 8, 0)

( 1, 9, 9; 4, 4, 0)

( 1, 9, 9; 4, 6, 0)

( 3, 3,13; 0, 2, 4)

( 3, 3,13; 0, 2,12)

( 3, 3,13; 2, 0, 2)

( 3, 3,13; 2, 0,10)

( 3, 3,13; 2, 2, 8)

( 3, 3,13; 2, 2,12)

( 3, 5,11; 2, 4, 0)

( 3, 5,11; 2, 4, 2)

( 3, 5,11; 4, 4, 0)

( 3, 5,11; 4, 4, 2)

( 3, 5,11; 4, 4,14)

( 3, 5,11; 6, 4, 0)

( 3, 7, 9; 2, 0, 2)

( 3, 7, 9; 2, 4, 2)

( 3, 7, 9; 4, 2, 0)

( 3, 7, 9; 4, 4, 0)

( 3, 7, 9; 4, 4,14)

( 3, 7, 9; 4, 6, 0)

( 3, 7, 9; 4, 8, 0)

( 3, 7, 9; 4, 8,14)

( 5, 5, 9; 0, 4, 4)

( 5, 5, 9; 0, 4, 6)

( 5, 5, 9; 0, 4,12)

( 5, 5, 9; 2, 0, 2)

( 5, 5, 9; 2, 0,10)

( 5, 5, 9; 2, 2, 2)

( 5, 5, 9; 4, 0, 4)

( 5, 5, 9; 4, 0, 8)

( 5, 5, 9; 4, 4, 8)

( 5, 5, 9; 4, 8, 4)

( 5, 7, 7; 0, 4,12)

( 5, 7, 7; 2, 2, 4)

( 5, 7, 7; 2, 6, 0)

( 5, 7, 7; 2, 8, 2)

( 5, 7, 7; 4, 4, 2)

( 5, 7, 7; 4, 6, 4)

( 5, 7, 7; 4, 6,12)

( 5, 7, 7; 6, 6, 4)

+++ z = 20 +++

( 4, 4,12; 1, 1, 1)

( 4, 4,12; 1, 1, 5)

( 4, 4,12; 1, 1, 9)

( 4, 4,12; 1, 1,13)

( 4, 4,12; 1, 5, 1)

( 4, 4,12; 1, 5, 5)

( 4, 4,12; 3, 1,11)

( 4, 4,12; 3, 3,11)
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( 4, 6,10; 1, 1, 1)

( 4, 6,10; 1, 1,13)

( 4, 6,10; 1, 7, 1)

( 4, 6,10; 3, 5, 3)

( 4, 6,10; 3, 5,15)

( 4, 6,10; 3, 9,15)

( 4, 6,10; 5, 1, 1)

( 4, 6,10; 5, 3,15)

( 4, 6,10; 5, 5, 1)

( 4, 6,10; 5, 5,13)

( 4, 6,10; 5, 9, 3)

( 4, 6,10; 7, 1, 1)

( 4, 6,10; 7, 3,15)

( 4, 8, 8; 1, 1, 1)

( 4, 8, 8; 1, 1,13)

( 4, 8, 8; 1, 7, 3)

( 4, 8, 8; 1, 9, 1)

( 4, 8, 8; 1, 9,13)

( 4, 8, 8; 3, 3, 1)

( 4, 8, 8; 5, 5,13)

( 4, 8, 8; 5, 7, 3)

( 6, 6, 8; 1, 1, 1)

( 6, 6, 8; 1, 1, 3)

( 6, 6, 8; 1, 1, 5)

( 6, 6, 8; 1, 1, 7)

( 6, 6, 8; 1, 1, 9)

( 6, 6, 8; 1, 1,11)

( 6, 6, 8; 1, 5, 5)

( 6, 6, 8; 1, 5,11)

( 6, 6, 8; 1, 9, 1)

( 6, 6, 8; 1, 9, 7)

( 6, 6, 8; 3, 1, 9)

( 6, 6, 8; 3, 7, 7)

( 6, 6, 8; 3,11, 3)

( 6, 6, 8; 3,11, 9)

( 6, 6, 8; 5, 1, 7)

( 6, 6, 8; 5, 3, 7)

( 6, 6, 8; 5, 5, 7)

( 6, 6, 8; 5,11, 7)

+++ z = 21 +++

( 1, 3,17; 2, 2, 0)

( 1, 3,17; 4, 2, 0)

( 1, 3,17; 8, 2, 0)

( 1, 5,15; 2, 2, 0)

( 1, 5,15; 2, 4, 0)

( 1, 5,15; 6, 2, 0)

( 1, 5,15; 6, 4, 0)

( 1, 7,13; 2, 2, 0)

( 1, 7,13; 2, 6, 0)

( 1, 7,13; 4, 2, 0)

( 1, 7,13; 4, 6, 0)

( 1, 7,13; 6, 2, 0)

( 1, 7,13; 6, 6, 0)

( 1, 9,11; 2, 2, 0)

( 1, 9,11; 2, 4, 0)

( 1, 9,11; 2, 6, 0)

( 1, 9,11; 2, 8, 0)

( 3, 3,15; 2, 2, 2)

( 3, 3,15; 2, 2, 6)

( 3, 3,15; 2, 2,14)

( 3, 5,13; 2, 0, 2)

( 3, 5,13; 2, 4, 0)

( 3, 5,13; 4, 2, 0)

( 3, 5,13; 4, 4,16)

( 3, 5,13; 4, 6, 0)

( 3, 5,13; 6, 4, 0)

( 3, 5,13; 8, 4, 2)

( 3, 7,11; 2, 2, 2)

( 3, 7,11; 2, 6, 2)

( 3, 7,11; 4, 2, 2)

( 3, 7,11; 4, 4,16)

( 3, 7,11; 4, 6, 2)

( 3, 7,11; 4, 8,16)

( 3, 9, 9; 0, 2, 2)

( 3, 9, 9; 2, 4, 0)

( 3, 9, 9; 2, 8, 0)

( 3, 9, 9; 4, 4,16)

( 5, 5,11; 0, 4,10)

( 5, 5,11; 0, 4,14)

( 5, 5,11; 2, 0, 8)

( 5, 5,11; 2, 0,12)

( 5, 5,11; 2, 2, 8)

( 5, 5,11; 2, 4, 2)

( 5, 5,11; 2, 4,10)

( 5, 5,11; 2, 6, 2)

( 5, 5,11; 2, 6,10)

( 5, 5,11; 4, 0,10)

( 5, 5,11; 4, 2, 4)

( 5, 5,11; 4, 2, 8)

( 5, 5,11; 4, 4, 8)

( 5, 5,11; 4, 4,10)

( 5, 5,11; 4, 8, 4)

( 5, 7, 9; 0, 2, 4)

( 5, 7, 9; 0, 2,12)

( 5, 7, 9; 0, 4,14)

( 5, 7, 9; 0, 6, 4)

( 5, 7, 9; 2, 0, 2)

( 5, 7, 9; 2, 2, 4)

( 5, 7, 9; 2, 4, 4)

( 5, 7, 9; 2, 6, 0)

( 5, 7, 9; 4, 0, 2)

( 5, 7, 9; 4, 0,14)

( 5, 7, 9; 4, 2, 2)

( 5, 7, 9; 4, 6, 0)

( 5, 7, 9; 4, 6, 2)

( 5, 7, 9; 4, 6,14)

( 5, 7, 9; 4,10, 4)

( 5, 7, 9; 4,10,14)

( 5, 7, 9; 6, 4, 4)

( 5, 7, 9; 6, 6, 0)

( 5, 7, 9; 6, 6,12)

( 5, 7, 9; 6, 6,14)

( 5, 7, 9; 6, 8, 2)

( 5, 7, 9; 6, 8,12)

( 5, 7, 9; 6,10,14)
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( 7, 7, 7; 2, 2, 2)

( 7, 7, 7; 2, 2, 6)

( 7, 7, 7; 2, 2,10)

( 7, 7, 7; 2, 6,10)

( 7, 7, 7; 2, 8, 8)

( 7, 7, 7; 4, 4, 4)

( 7, 7, 7; 4, 4, 8)

( 7, 7, 7; 6, 6, 6)

Appendix B: Our version of catalogue

+++ z = 7 +++

( 1, 3, 3; 2, 2, 0)

+++ z = 9 +++

( 1, 1, 7; 2, 0, 2)

( 1, 3, 5; 2, 2, 0)

( 3, 3, 3; 2, 2, 2)

+++ z = 11 +++

( 1, 3, 7; 2, 2, 0)

( 1, 5, 5; 2, 2, 0)

( 1, 5, 5; 2, 4, 0)

( 3, 3, 5; 0, 2, 4)

( 3, 3, 5; 2, 2, 4)

+++ z = 12 +++

( 2, 4, 6; 3, 3, 1)

( 4, 4, 4; 1, 1, 1)

( 4, 4, 4; 1, 1, 5)

( 4, 4, 4; 3, 3, 3)

+++ z = 13 +++

( 1, 1,11; 2, 0, 2)

( 1, 3, 9; 2, 2, 0)

( 1, 3, 9; 4, 2, 0)

( 1, 5, 7; 2, 2, 0)

( 1, 5, 7; 2, 4, 0)

( 3, 3, 7; 2, 2, 2)

( 3, 3, 7; 2, 2, 6)

( 3, 5, 5; 2, 4, 0)

( 3, 5, 5; 4, 4, 2)

+++ z = 14 +++

( 2, 2,10; 3, 1, 3)

( 2, 6, 6; 3, 3, 1)

( 2, 6, 6; 3, 5, 1)

( 4, 4, 6; 1, 1, 1)

( 4, 4, 6; 1, 1, 3)

( 4, 4, 6; 1, 1, 5)

( 4, 4, 6; 1, 1, 7)

( 4, 4, 6; 1, 5, 1)

( 4, 4, 6; 1, 5, 5)

( 4, 4, 6; 3, 1, 5)

( 4, 4, 6; 3, 3, 3)

( 4, 4, 6; 3, 3, 5)

+++ z = 15 +++

( 1, 3,11; 2, 2, 0)

( 1, 5, 9; 2, 2, 0)

( 1, 5, 9; 2, 4, 0)

( 1, 5, 9; 4, 2, 0)

( 1, 5, 9; 4, 4, 0)

( 1, 7, 7; 2, 2, 0)

( 1, 7, 7; 2, 6, 0)

( 3, 3, 9; 0, 2, 4)

( 3, 3, 9; 0, 2, 8)

( 3, 3, 9; 2, 0, 2)

( 3, 3, 9; 2, 0, 4)

( 3, 3, 9; 2, 0, 6)

( 3, 3, 9; 2, 2, 8)

( 3, 5, 7; 2, 4, 0)

( 3, 5, 7; 2, 4, 2)

( 3, 5, 7; 4, 4, 0)

( 3, 5, 7; 4, 4,10)

( 5, 5, 5; 0, 4, 4)

( 5, 5, 5; 2, 2, 2)

( 5, 5, 5; 2, 2, 6)

( 5, 5, 5; 4, 4, 4)

+++ z = 16 +++

( 2, 4,10; 3, 3, 1)

( 2, 4,10; 5, 3,13)

( 2, 6, 8; 3, 3, 1)

( 2, 6, 8; 3, 5,13)

( 2, 6, 8; 5, 3, 1)

( 4, 4, 8; 1, 1, 1)

( 4, 4, 8; 1, 1, 9)

( 4, 4, 8; 1, 3, 5)

( 4, 4, 8; 1, 5, 1)

( 4, 4, 8; 3, 1, 7)

( 4, 4, 8; 3, 3, 7)

( 4, 4, 8; 3, 7, 3)

( 4, 6, 6; 1, 1, 1)

( 4, 6, 6; 1, 1, 9)

( 4, 6, 6; 1, 7, 1)

( 4, 6, 6; 3, 5, 3)

( 4, 6, 6; 3, 5,11)

( 4, 6, 6; 5, 5, 3)

+++ z = 17 +++
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( 1, 1,15; 2, 0, 2)

( 1, 3,13; 2, 2, 0)

( 1, 3,13; 4, 2, 0)

( 1, 3,13; 6, 2, 0)

( 1, 5,11; 2, 2, 0)

( 1, 5,11; 2, 4, 0)

( 1, 7, 9; 2, 2, 0)

( 1, 7, 9; 2, 6, 0)

( 1, 7, 9; 4, 2, 0)

( 1, 7, 9; 4, 6, 0)

( 3, 3,11; 2, 2, 2)

( 3, 3,11; 2, 2, 4)

( 3, 3,11; 2, 2,10)

( 3, 5, 9; 2, 0, 2)

( 3, 5, 9; 2, 4, 0)

( 3, 5, 9; 4, 0, 2)

( 3, 5, 9; 4, 2, 0)

( 3, 5, 9; 4, 4, 2)

( 3, 5, 9; 4, 4,12)

( 3, 5, 9; 4, 6, 0)

( 3, 7, 7; 2, 2, 2)

( 3, 7, 7; 2, 6, 2)

( 3, 7, 7; 4, 4, 0)

( 3, 7, 7; 4, 4,12)

( 3, 7, 7; 4, 6, 0)

( 5, 5, 7; 0, 2, 4)

( 5, 5, 7; 0, 2, 6)

( 5, 5, 7; 0, 2, 8)

( 5, 5, 7; 0, 4, 6)

( 5, 5, 7; 0, 4,10)

( 5, 5, 7; 2, 0, 2)

( 5, 5, 7; 2, 0, 4)

( 5, 5, 7; 2, 0, 6)

( 5, 5, 7; 2, 0, 8)

( 5, 5, 7; 2, 2, 8)

( 5, 5, 7; 2, 4, 2)

( 5, 5, 7; 2, 4, 6)

( 5, 5, 7; 2, 6, 2)

( 5, 5, 7; 2, 6, 6)

( 5, 5, 7; 4, 0, 6)

( 5, 5, 7; 4, 2, 4)

( 5, 5, 7; 4, 4, 4)

( 5, 5, 7; 4, 4, 6)

+++ z = 18 +++

( 2, 6,10; 3, 3, 1)

( 2, 6,10; 3, 5, 1)

( 2, 6,10; 3, 5,15)

( 2, 6,10; 5, 3,15)

( 2, 6,10; 5, 5,15)

( 2, 8, 8; 3, 3, 1)

( 2, 8, 8; 3, 5, 1)

( 2, 8, 8; 5, 5, 1)

( 4, 4,10; 1, 1, 1)

( 4, 4,10; 1, 1, 3)

( 4, 4,10; 1, 1, 5)

( 4, 4,10; 1, 1, 7)

( 4, 4,10; 1, 1, 9)

( 4, 4,10; 1, 1,11)

( 4, 4,10; 1, 5, 1)

( 4, 4,10; 1, 5, 7)

( 4, 4,10; 1, 5, 9)

( 4, 4,10; 3, 1, 9)

( 4, 4,10; 3, 3, 3)

( 4, 4,10; 3, 3, 7)

( 4, 4,10; 3, 3, 9)

( 4, 4,10; 3, 7, 7)

( 4, 6, 8; 1, 1, 1)

( 4, 6, 8; 1, 1, 3)

( 4, 6, 8; 1, 1,11)

( 4, 6, 8; 1, 5, 3)

( 4, 6, 8; 1, 7, 1)

( 4, 6, 8; 3, 5,13)

( 4, 6, 8; 3, 9, 3)

( 4, 6, 8; 3, 9,13)

( 4, 6, 8; 5, 1, 3)

( 4, 6, 8; 5, 3, 1)

( 4, 6, 8; 5, 5, 3)

( 4, 6, 8; 5, 5,11)

( 4, 6, 8; 5, 7, 1)

( 4, 6, 8; 5, 7,11)

( 4, 6, 8; 5, 7,13)

( 6, 6, 6; 1, 1, 1)

( 6, 6, 6; 1, 1, 9)

( 6, 6, 6; 1, 3, 3)

( 6, 6, 6; 1, 3, 7)

( 6, 6, 6; 1, 5, 9)

( 6, 6, 6; 1, 7, 7)

( 6, 6, 6; 3, 3, 5)

( 6, 6, 6; 3, 3, 7)

( 6, 6, 6; 3, 5, 5)

( 6, 6, 6; 5, 5, 5)

+++ z = 19 +++

( 1, 3,15; 2, 2, 0)

( 1, 3,15; 6, 2, 0)

( 1, 5,13; 2, 2, 0)

( 1, 5,13; 2, 4, 0)

( 1, 5,13; 4, 2, 0)

( 1, 5,13; 4, 4, 0)

( 1, 5,13; 6, 2, 0)

( 1, 5,13; 6, 4, 0)

( 1, 7,11; 2, 2, 0)

( 1, 7,11; 2, 6, 0)

( 1, 9, 9; 2, 2, 0)

( 1, 9, 9; 2, 4, 0)

( 1, 9, 9; 2, 6, 0)

( 1, 9, 9; 2, 8, 0)

( 1, 9, 9; 4, 4, 0)

( 1, 9, 9; 4, 6, 0)

( 3, 3,13; 0, 2, 4)

( 3, 3,13; 0, 2,12)

( 3, 3,13; 2, 0, 2)

( 3, 3,13; 2, 0,10)

( 3, 3,13; 2, 2, 8)
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( 3, 3,13; 2, 2,12)

( 3, 3,13; 4, 2, 4)

( 3, 5,11; 2, 4, 0)

( 3, 5,11; 2, 4, 2)

( 3, 5,11; 4, 4, 0)

( 3, 5,11; 4, 4, 2)

( 3, 5,11; 4, 4,14)

( 3, 5,11; 6, 4, 0)

( 3, 7, 9; 2, 0, 2)

( 3, 7, 9; 2, 4, 2)

( 3, 7, 9; 4, 0, 2)

( 3, 7, 9; 4, 2, 0)

( 3, 7, 9; 4, 4, 0)

( 3, 7, 9; 4, 4, 2)

( 3, 7, 9; 4, 4,14)

( 3, 7, 9; 4, 6, 0)

( 3, 7, 9; 4, 6, 2)

( 3, 7, 9; 4, 8, 0)

( 3, 7, 9; 4, 8,14)

( 5, 5, 9; 0, 4, 4)

( 5, 5, 9; 0, 4, 6)

( 5, 5, 9; 0, 4,12)

( 5, 5, 9; 2, 0, 2)

( 5, 5, 9; 2, 0,10)

( 5, 5, 9; 2, 2, 2)

( 5, 5, 9; 2, 2,10)

( 5, 5, 9; 2, 6, 2)

( 5, 5, 9; 4, 0, 4)

( 5, 5, 9; 4, 0, 8)

( 5, 5, 9; 4, 4, 4)

( 5, 5, 9; 4, 4, 8)

( 5, 5, 9; 4, 8, 4)

( 5, 7, 7; 0, 2, 2)

( 5, 7, 7; 0, 2,10)

( 5, 7, 7; 0, 4,12)

( 5, 7, 7; 2, 2, 4)

( 5, 7, 7; 2, 2,10)

( 5, 7, 7; 2, 6, 0)

( 5, 7, 7; 2, 6, 4)

( 5, 7, 7; 2, 8, 0)

( 5, 7, 7; 2, 8, 2)

( 5, 7, 7; 4, 4, 2)

( 5, 7, 7; 4, 6, 4)

( 5, 7, 7; 4, 6,12)

( 5, 7, 7; 6, 6, 2)

( 5, 7, 7; 6, 6, 4)

+++ z = 20 +++

( 2, 2,16; 3, 1, 3)

( 2, 2,16; 3, 1, 9)

( 2, 4,14; 3, 3, 1)

( 2, 4,14; 5, 3,17)

( 2, 6,12; 3, 3, 1)

( 2, 6,12; 3, 5,17)

( 2, 6,12; 5, 3, 1)

( 2, 6,12; 5, 5,17)

( 2, 6,12; 7, 3, 1)

( 2, 8,10; 3, 3, 1)

( 2, 8,10; 3, 5, 1)

( 2, 8,10; 3, 7, 1)

( 2, 8,10; 5, 3,17)

( 2, 8,10; 5, 5,17)

( 2, 8,10; 5, 7,17)

( 4, 4,12; 1, 1, 1)

( 4, 4,12; 1, 1, 5)

( 4, 4,12; 1, 1, 9)

( 4, 4,12; 1, 1,13)

( 4, 4,12; 1, 5, 1)

( 4, 4,12; 1, 5, 5)

( 4, 4,12; 3, 1, 5)

( 4, 4,12; 3, 1,11)

( 4, 4,12; 3, 3, 3)

( 4, 4,12; 3, 3,11)

( 4, 4,12; 3, 7, 3)

( 4, 6,10; 1, 1, 1)

( 4, 6,10; 1, 1,13)

( 4, 6,10; 1, 7, 1)

( 4, 6,10; 3, 3, 3)

( 4, 6,10; 3, 5, 3)

( 4, 6,10; 3, 5,15)

( 4, 6,10; 3, 9,15)

( 4, 6,10; 5, 1, 1)

( 4, 6,10; 5, 3,15)

( 4, 6,10; 5, 5, 1)

( 4, 6,10; 5, 5,13)

( 4, 6,10; 5, 7,13)

( 4, 6,10; 5, 9, 3)

( 4, 6,10; 7, 1, 1)

( 4, 6,10; 7, 3,15)

( 4, 6,10; 7, 5, 3)

( 4, 8, 8; 1, 1, 1)

( 4, 8, 8; 1, 1,13)

( 4, 8, 8; 1, 7, 3)

( 4, 8, 8; 1, 9, 1)

( 4, 8, 8; 1, 9,13)

( 4, 8, 8; 3, 3, 1)

( 4, 8, 8; 3, 5, 1)

( 4, 8, 8; 3, 7,15)

( 4, 8, 8; 5, 5, 1)

( 4, 8, 8; 5, 5,13)

( 4, 8, 8; 5, 7, 1)

( 4, 8, 8; 5, 7, 3)

( 6, 6, 8; 1, 1, 1)

( 6, 6, 8; 1, 1, 3)

( 6, 6, 8; 1, 1, 5)

( 6, 6, 8; 1, 1, 7)

( 6, 6, 8; 1, 1, 9)

( 6, 6, 8; 1, 1,11)

( 6, 6, 8; 1, 3, 7)

( 6, 6, 8; 1, 3, 9)

( 6, 6, 8; 1, 5, 5)

( 6, 6, 8; 1, 5,11)

( 6, 6, 8; 1, 7, 7)

( 6, 6, 8; 1, 9, 1)

( 6, 6, 8; 1, 9, 7)

( 6, 6, 8; 1, 9, 9)
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( 6, 6, 8; 3, 1, 9)

( 6, 6, 8; 3, 3, 9)

( 6, 6, 8; 3, 5, 7)

( 6, 6, 8; 3, 7, 3)

( 6, 6, 8; 3, 7, 7)

( 6, 6, 8; 3,11, 3)

( 6, 6, 8; 3,11, 5)

( 6, 6, 8; 3,11, 7)

( 6, 6, 8; 3,11, 9)

( 6, 6, 8; 5, 1, 7)

( 6, 6, 8; 5, 3, 5)

( 6, 6, 8; 5, 3, 7)

( 6, 6, 8; 5, 5, 7)

( 6, 6, 8; 5,11, 7)

+++ z = 21 +++

( 1, 1,19; 2, 0, 2)

( 1, 1,19; 2, 0, 6)

( 1, 3,17; 2, 2, 0)

( 1, 3,17; 4, 2, 0)

( 1, 3,17; 8, 2, 0)

( 1, 5,15; 2, 2, 0)

( 1, 5,15; 2, 4, 0)

( 1, 5,15; 6, 2, 0)

( 1, 5,15; 6, 4, 0)

( 1, 7,13; 2, 2, 0)

( 1, 7,13; 2, 6, 0)

( 1, 7,13; 4, 2, 0)

( 1, 7,13; 4, 6, 0)

( 1, 7,13; 6, 2, 0)

( 1, 7,13; 6, 6, 0)

( 1, 9,11; 2, 2, 0)

( 1, 9,11; 2, 4, 0)

( 1, 9,11; 2, 6, 0)

( 1, 9,11; 2, 8, 0)

( 3, 3,15; 2, 0, 4)

( 3, 3,15; 2, 2, 2)

( 3, 3,15; 2, 2, 6)

( 3, 3,15; 2, 2,14)

( 3, 5,13; 2, 0, 2)

( 3, 5,13; 2, 4, 0)

( 3, 5,13; 4, 2, 0)

( 3, 5,13; 4, 4,16)

( 3, 5,13; 4, 6, 0)

( 3, 5,13; 6, 4, 0)

( 3, 5,13; 8, 4, 2)

( 3, 7,11; 2, 2, 2)

( 3, 7,11; 2, 6, 2)

( 3, 7,11; 4, 2, 2)

( 3, 7,11; 4, 4, 0)

( 3, 7,11; 4, 4,16)

( 3, 7,11; 4, 6, 0)

( 3, 7,11; 4, 6, 2)

( 3, 7,11; 4, 8,16)

( 3, 7,11; 6, 2, 2)

( 3, 7,11; 6, 4, 0)

( 3, 7,11; 6, 6, 0)

( 3, 9, 9; 0, 2, 2)

( 3, 9, 9; 0, 4, 2)

( 3, 9, 9; 2, 4, 0)

( 3, 9, 9; 2, 8, 0)

( 3, 9, 9; 4, 4, 2)

( 3, 9, 9; 4, 4,16)

( 3, 9, 9; 4, 6, 2)

( 3, 9, 9; 4, 8, 2)

( 3, 9, 9; 6, 6, 2)

( 5, 5,11; 0, 2, 4)

( 5, 5,11; 0, 2,12)

( 5, 5,11; 0, 4,10)

( 5, 5,11; 0, 4,14)

( 5, 5,11; 2, 0, 2)

( 5, 5,11; 2, 0, 6)

( 5, 5,11; 2, 0, 8)

( 5, 5,11; 2, 0,10)

( 5, 5,11; 2, 0,12)

( 5, 5,11; 2, 2, 8)

( 5, 5,11; 2, 2,12)

( 5, 5,11; 2, 4, 2)

( 5, 5,11; 2, 4, 6)

( 5, 5,11; 2, 4,10)

( 5, 5,11; 2, 6, 2)

( 5, 5,11; 2, 6, 8)

( 5, 5,11; 2, 6,10)

( 5, 5,11; 4, 0,10)

( 5, 5,11; 4, 2, 4)

( 5, 5,11; 4, 2, 8)

( 5, 5,11; 4, 4, 8)

( 5, 5,11; 4, 4,10)

( 5, 5,11; 4, 8, 4)

( 5, 5,11; 4, 8, 8)

( 5, 7, 9; 0, 2, 2)

( 5, 7, 9; 0, 2, 4)

( 5, 7, 9; 0, 2,12)

( 5, 7, 9; 0, 4,14)

( 5, 7, 9; 0, 6, 4)

( 5, 7, 9; 2, 0, 2)

( 5, 7, 9; 2, 0,12)

( 5, 7, 9; 2, 2, 4)

( 5, 7, 9; 2, 2,12)

( 5, 7, 9; 2, 4, 4)

( 5, 7, 9; 2, 6, 0)

( 5, 7, 9; 2, 8, 0)

( 5, 7, 9; 2, 8, 2)

( 5, 7, 9; 4, 0, 2)

( 5, 7, 9; 4, 0,14)

( 5, 7, 9; 4, 2, 2)

( 5, 7, 9; 4, 6, 0)

( 5, 7, 9; 4, 6, 2)

( 5, 7, 9; 4, 6, 4)

( 5, 7, 9; 4, 6,14)

( 5, 7, 9; 4,10, 4)

( 5, 7, 9; 4,10,14)

( 5, 7, 9; 6, 0, 4)

( 5, 7, 9; 6, 4, 0)

( 5, 7, 9; 6, 4, 4)

( 5, 7, 9; 6, 6, 0)

43



( 5, 7, 9; 6, 6,12)

( 5, 7, 9; 6, 6,14)

( 5, 7, 9; 6, 8, 2)

( 5, 7, 9; 6, 8,12)

( 5, 7, 9; 6,10,12)

( 5, 7, 9; 6,10,14)

( 7, 7, 7; 0, 2, 2)

( 7, 7, 7; 0, 2,10)

( 7, 7, 7; 0, 4, 4)

( 7, 7, 7; 0, 6, 6)

( 7, 7, 7; 2, 2, 2)

( 7, 7, 7; 2, 2, 4)

( 7, 7, 7; 2, 2, 6)

( 7, 7, 7; 2, 2, 8)

( 7, 7, 7; 2, 2,10)

( 7, 7, 7; 2, 6,10)

( 7, 7, 7; 2, 8, 8)

( 7, 7, 7; 4, 4, 4)

( 7, 7, 7; 4, 4, 8)

( 7, 7, 7; 4, 6, 6)

( 7, 7, 7; 6, 6, 6)
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Acta Univ. M. Belii

Math no. 10(2003), pp. 45–51

PROFESSOR ANTON DEKRÉT’S SEVENTIETH BIRTHDAY

Rudolf Zimka

In September 2002 Professor RNDr. Anton Dekrét, DrSc., a distinquished Slovak
mathematician celebrated with his friends his seventieth birthady.

Professor Anton Dekrét was born in a small settlement Dobroč, close to Čierny
Balog. After finishing the basic school in Dobroč he was educated at Brezno (1943
- 1947) and Banská Bystrica Gymnaziums (1947 - 1951). He completed his further
education at the Comenius University in Bratislava at the Faculty of Natural Sci-
ences, specializing in the field of mathematics – projective geometry in 1955. After
graduation his first work was as a teacher of mathematics at a secondary school (6
years) and then as a university teacher of mathematics at the Pedagogical College
in Martin (1 year). From 1962 to 1973 he worked at the College of Transport and
Communications in Žilina. In 1974 he moved to Zvolen where an Institute of Ap-
plied Mathematics was to be found at the College of Forest and Wood. Since 1998
Professor Dekrét has been working at the Department of Informatics of the Faculty
of Natural Sciences at the Matthiae Belii University in Banská Bystrica.

Professor Dekrét has been from his graduation up to the present day constantly
engaged in the teaching profession. His lectures and textbooks are known for ac-
curacy, comprehension and clarity; therefore they are very popular with students.
Professor Dekrét has been always trying to present mathematical knowledge to his
students in a way for them to utilize it in a practical manner. Success in this ap-
proach can be clearly noted by the hundreds of his students who have taken up
important posts in Slovak society.

The beginning of his scientific work can be traced back to his time at the College
of Transport and Communications in Žilina. There he took an active part at the
seminar on differential geometry at the Faculty of Technology, closely cooperating
with Professor Hejný. He also formed a working relationship with the scientists
at the Brno’s school of differential geometry, represented especially by Professors
Kolář and Kowalski. Having moved to Zvolen Professor Dekrét led seminars on
differential geometry at the Department of Mathematics and Projective Geometry
at the Faculty of Wood Technology. Also he intensified the collaboration with his
colleagues in Brno especially with Professor Kolář and started scientific coopera-
tion with the profile departments at the Faculty of Wood Technology. By his hard
working, strong-willed-mind and enthusiasm he gained much respect, winning over
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many of his colleagues into scientific work. The scientific activity at the Depart-
ment of Mathematics and Projective Geometry and the cooperation with the profile
departments achieved, under the influence of the activities of Professor Dekrét, a
higher dimension.

The main fields of the scientific interest of Professor Dekrét are differential geom-
etry of fibre spaces, applications of mathematics at modelling processes connected
with the diffusion of water in wood. During last few years he has also devoted
himself to the questions of utilizing differential geometry in robotics and control
theory. The results he gained in differential geometry can be divided into following
three groups:

(1) Contributions to the theory of prolonged functors (properties of the canon-
ical form and properties of the main connections on non-holonomic and
semi-holonomic prolongations of the main fibre spaces);

(2) Contributions to the theory of generalized connections on fibre spaces (co-
herences of various tensor fields with connections, covariant derivative of
geometric objects) and especially on iterated tangent fibrations;

(3) The list of connections naturally deduced from some geometrical objects
(connections constructed from (1,1) - forms on a tangent fibration, from
vector fields on a tangent fibration and on a general fibre space, from differ-
ential equations of higher order on differential manifolds and their relations
with Lagrangian and Hamiltonian formalism).

The results achieved in wood technology are the product of his cooperation with
wood experts. The results deal particularly with modelling tensorial character of
water motion and tension arising in wood during its drying process and methods
of the calculation of diffusion coefficient. Professor Dekrét has published so far 44
scientific papers on differential geometry and 42 scientific papers on the application
of mathematics in wood technology an in robotics.

Professor Dekrét does not limit his work only to the university. His activities in
the Union of Slovak Mathematicians and Physicists, of which he has been a member
since his university graduation, are also very significant. He has carried out various
roles over the years including chairmanship of its branch in Zvolen. It is greatly
to his credit that this branch was very active and successful. Professor Dekrét
took part in the preparation, organization and leading many summer and winter
schools and seminars on differential geometry along with many other meetings of
mathematicians, especially from Žilina, Zvolen and Banská Bystrica. Partakers of
these meetings remember them with pleasure as Professor Dekrét has always the
skill to join successfully mathematical programs with sport and social activities.
Participants could feel fully the truth of the proverb: ”In a healthy body there
is sound mind”. Professor Dekrét is an excellent champion of this proverb. Not
only in mathematics but also in favourite sport activities like mountain and cross-
country-ski tours considerably prevail his excellent mind and physical condition.
The Union of Slovak Mathematicians and Physicists has appreciated the meritorious
work of Professor Dekrét by electing him an honorary member of the Union of Slovak
Mathematicians and Physicists.

Tonko, allow me on behalf of all your friends, colleagues and students to wish
you in the following years good health, a peaceful mind, numerous further valuable
results in mathematics, complimented by many nice walks and tours in the beautiful
Slovak nature.
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The list of the publications of Professor RNDr. Anton Dekrét, DrSc.

Scientific papers on differential geometry
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Zvolen, 1987, ss. 81-86.

[22] Dekrét A., Tebula P.: On a model of internal stresses in drying wood, Zborńık
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aktuality 5, 1989, VšLD Zvolen, ss. 61.
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THE CLASSIFICATION OF PROGRAMMING ENVIRONMENTS

Ján Kollár, Peter Václav́ık and Jaroslav Porubän

Abstract. A process functional paradigm prevents the use of assignments in pro-
grams, at the same time providing full power of both functional and imperative
languages to a programmer. PFL – an experimental process functional language,
originally developed as a programming language, seems to be promising to integrate
the implementation requirements for any language aimed to von Neumann computer
architectures. As we hope, PFL may serve as a unified implementation language
in the future. That is why the formalized definitions of environments presented in
this paper are useful and constructive for further development of PFL as a minimal
superset of programming languages currently being used in a practice. In particular,
we will classify the environments dividing them into two basic categories – external
and internal environments, that may be defined in any scope of a program. Then
we extend the notion of explicit and implicit environments to object and modular
environments. Finally, we formulate the requirements for safe programming, which
prevents the use of undefined values in programs.

Introduction

In the past, except well known imperative languages such as Pascal, C, Modula
and Ada we have analyzed the languages that combines imperative and functional
paradigms to exploit the benefits of both – the ability to manipulate the state
preserving at the same time functional semantics, such as SML [13], Scheme [1],
Clean [2] and Haskell [12,17,18], that either exploit the environments explicitly or
hide them to a programmer [20,21]. Our aims were strongly practical – to develop a
programming language that integrates the ideas promising to correct programming
[14,15] and predicting the behavior of the systems [4,9] statically.

PFL – an experimental process functional language [5,6,7,8,9,10,11,19] was orig-
inally developed as a general purpose programming language based on a semanti-
cally minimal superset of known programming paradigms, such as imperative and
functional, modular and object-oriented, deterministic and non-deterministic, se-
quential and parallel, message passing and shared memory, etc. At the same time,
the goal was to provide a minimal set of syntactic constructs to a programmer.
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Syntactically, PFL is an extended subset of Haskell. Semantically, PFL integrates
both functional and imperative programming paradigms, not however in monadic
manner [20,21].

There are no assignments in PFL expressions provided to a user. All imperative
actions are performed by applications of processes. On the other hand, all what
is done is seen. It means that the state can be monitored even using graphic
interface strongly bound to the source specification, visualizing the flow of data in
environments. We do not want to hide the imperative actions to a user making
them functional; we just want to separate them from functional grains, to provide
the transparent and strong feedback to a user about mapping a problem to target
architecture.

At present time, it seems that PFL is promising to be used as a unified imple-
mentation bridge between specification languages and computer architectures, since
of its high abstraction coming out from the functional basis from one side, and its
ability to affect computer architecture resources directly from the other side. Using
PFL, neither a target imperative language, such as C in pure functional languages
able to manipulate state [17], nor a core language as for constrained functional
languages [16] is required. Instead of that, the machine code can be generated
directly.

However, PFL as a unified implementation language needs more detailed for-
malization of effects that arise from the state manipulation, since they affect the
function of computation. This paper is not devoted to reduction strategies and/or
the restrictions that must be taken into account when deterministic computation is
considered. In this paper we concentrate just on the classification of environments
manipulated in PFL that may be found in programming languages in general, and
we will show, how they are affected, using process functional paradigm, which is
materialized in PFL.

We will define explicit and implicit environments first. Then we will use them
to define object and modular environments. For the purpose of understanding
the definitions of environments, we introduce both basics of process functional
paradigm as well as a brief overview of PFL language constructs, related however
just to the definitions of environments, less to the semantics of the language or its
implementation.

As a result, we formulate the requirements for safe programming with respect
to further development of PFL. The definitions of programming environments in-
troduced in this paper are useful, since they show the danger coming out from an
undisciplined programming using imperative languages, and they are constructive,
since they show the way, in which the use of undefined values can be prevented,
still preserving full power of imperative languages. As we hope, this is solved
systematically an transparently using process functional paradigm. On the other
hand, integrating functional and imperative programming paradigms into the pro-
cess functional paradigm is just the first step towards removing the gap between
the specification and implementation.

Process Functional Paradigm

The form of a single argument “pure” function f in PFL script is as follows
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f :: Tx → Te

f x = e

where the first line contains the type definition (TD), (sometimes called type
signature) for f , expressing that f is a mapping from the values of the type Tx to
the values of the type Te. The second line contains the definition (D) of the function
f ; f is defined for each argument x by the expression e. Since a PFL function is just
a specific process, which has no environment variable in TD, we will use a “pair”
PD = (TD;D) to designate a process definition PD including function definition.
Then, whenever appropriate, instead of two lines of the definition above we will
write PD in the form

PD = (f :: Tx → Te; f x = e)

Further, to minimize the space, we will use the form

PD; . . . ;PD;

in which semicolons represent invisible newline characters causing all PD’s above
are indented to the same column given by first PD in the sequence.

The static semantics for the application (f m) is expressed by application rule,
as follows:

f :: Tx → Te m : Tx

f m : Te
(1)

According to (1), provided that f is of the type Tx → Te, and expression m is
of the type Tx, then f is applied correctly to m, and then the application (f m) is
of the type Te.

The dynamic semantics of the application (f m) using semantic function Eval
and lambda form (λx. e) for f is as follows,

Eval[[ (λx. e) m ]] = e[m/x](2)

where e[m/x] (the value of application) is the expression e in which each occur-
rence of the lambda variable x is substituted by the expression m, or by the value
of the expression m, depending on the reduction strategy.

The notion of variables in a purely functional language is mathematical; it means
that all variables, such as lambda variable x or function f are values.

On the other hand, a variable in imperative languages is a memory cell used to
store values. Process functional paradigm integrates both meanings using the the-
ory of mutable abstract types [3]: process functional variable is a cell v containing
(defined) data value m 6= ⊥ (then we write v[m]), or undefined value ⊥ (v[⊥]). At
the same time, an environment variable v is an overloaded mapping, as follows.

v : T̃ → T(3)

where T is a data type and T̃ = T ∪ () where () is the unit type.
The value of the application (v m′) depends on the argument m′ as well as on

the value m having been stored in the environment variable before.
According to definition 1, if (m : ()), then (v m′) is the access.
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Definition 1.

v[m] ` v : T̃ → T m′ : ()

v m′ : T ` m′ : T
(1.1)

where (v m′) = m′.

v[⊥] ` v : T̃ → T m′ : ()

v m′ : Ω ` ⊥ : Ω
(1.2)

where (v m′) = ⊥.

According to definition 2, if (m′ : T ), then (v m′) is the update of environment
variable.

Definition 2.

v[m] ` v : T̃ → T m′ : T

v m′ : T ` v[m′] ` m′ : T
(2.1)

where the state transition is v[m] ⇒ v[m′] and (v m′) = m′.

v[⊥] ` v : T̃ → T m′ : T

v m′ : T ` v[m′] ` m′ : T
(2.2)

where the state transition is v[⊥] ⇒ v[m′] and (v m′) = m′.

Clearly, case (1.1) is the access of a data value, case (1.2) is the unwanted access
of undefined value (prevented by the type checking), case (2.1) is the update called
modification and case (2.2) is the update called initialization of the environment
variable by the value m′. Hence, well-typed cases are (1.1), (2.1) and (2.2).

The dynamic semantics of the application (v m′) can be easily derived from the
definitions 1 and 2. Using Eval, it is as follows:

Definition 3.

(1.1) Eval[[ v m′ ]] v[m] = Eval[[ m ]] v[m], if m′ : ()

(1.2) Eval[[ v m′ ]] v[⊥] = Eval[[ ⊥ ]] v[⊥], if m′ : ()

(2.1) Eval[[ v m′ ]] v[m] = Eval[[ m′ ]] v[m′], if m′ : T

(2.2) Eval[[ v m′ ]] v[⊥] = Eval[[ m′ ]] v[m′], if m′ : T

Eval[[ m ]] v[m] = Eval[[ m ]]

Eval[[ ⊥ ]] v[⊥] = ⊥

Since (v m′) may affect the state of computation by the side effect, this applica-
tion is rather environmental than functional.

In PFL however, it is possible to perform environmental applications just indi-
rectly via applications of processes. This approach prevents an undisciplined use of
assignments, since there is no decision left to a programmer where to apply an envi-
ronment variable in an expressions. It means that no environment variable occurs
in source PFL expressions. Instead of that, environment variables are introduced
in processes type definitions. This guarantees the systematic and disciplined use of
hidden assignments in programs.

As shown below, it is the matter of the translation, to “remove” environment
variables from type definitions and to “bring” them into expressions.
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PFL Overview

We will use mathematical form for PFL constructs, not numbering them. In this
form we use →, and ⇒ instead of -> and =>. We also use array curly brackets in
the form {| and |} instead of { and } to precede the confusion with set brackets.

A PFL program consists of a set of multi-argument process definitions PD and
main expression e in global scope s = 0, as follows,

program M where

PD; . . . ;PD;

main = e

where PD is a pair consisting of a type definition TD and the definition D,
PD = (TD;D)

The form of PD is as follows.

f :: T1 → . . .→ Tn → T̃

f p1 . . . pn = e

where

PD; . . . ;PD;

where PD’s that follow keyword where are local processes definitions.
Using BNF, the syntax of type expressions is as follows:

T ::= v T | v {|R|} T | T̃
T̃ ::= () | T
T ::= a | TP | T → T | {|R|} → T | TD T1 . . . Tr| Cl T1 . . . Tu

{|R|} ::= {|TR
1 , . . . , T

R
d |}, d ≥ 1

where r, u ≥ 0, v is an environment variable, {|R|} is n-dimensional range, () is
unit type, a is a type variable, T P is primitive type (Char, Int, F loat), T → T
is function type, {|R|} → T is array type, TD is algebraic data type, Cl is a class
name and TR

i are range types – enumerated algebraic types, characters, integers,
or their finite subranges in the form cLi . . cUi , corresponding to lower, and upper
bounds of an array, such that cLi , c

U
i : TR

i .
Attention must be paid to the type expressions v T and v {|R|} T , since they are

just syntactic shortcuts, which serve during compilation

• to derive the environment variable types v : T̃ → T and v : {|R|} → T̃ → T ,
transforming both to T in target process f type definition, and

• transforming each expression as follows:

– Provided that m is a process argument of source type v T , then it is trans-
lated into the form of environmental application (v m), of the type T .

– Provided that ({|eR|}m), (eR is an index expression) is a process argu-
ment argument of source type v {|R|} T , then it is translated into the form
((v {|eR|}) m) which is of the type T again. Here (v {|eR|}) selects a cell
representing the item of an array, and then this cell – being the environment
variable – is applied to m.
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According to the transformation above, the source PFL script comprising envi-
ronment variables just in type definitions is translated to an intermediate form that
comprises the environment variables just in expressions.

Formal parameters pi are either in the form of simple lambda variable x or in
the form of patterns (C p1 . . . pm) or x@(C p1 . . . pm), such that m ≥ 0, and C
is a constructor of algebraic type. The form x@(C p1 . . . pm) is extremely useful,
since it allows updating the items of the structure (C p1 . . . pm) in place returning
its incoming value x.

PFL algebraic types are defined using data definitions, in the form as follows:

data TD a1 . . . au = C1 T1,1 . . . T1,n1

| C2 T2,1 . . . T2,n2

· · · · · · · · · · · · · · ·
| Cm Tm,1 . . . Tm,nm

where ak are type variables, Ti,j are type expressions and Ci are constructors of
algebraic type TD. For our purposes it is sufficient to consider just product types
(m = 1) an then we may write the definition above in the form

data TD a1 . . . au = C T1 . . . Tn

Provided that TD is defined, and expressions m1, . . . ,mn are such that m1 : T1,
. . . , mn : Tn holds, then

(C m1 . . .mn)

is used in an expression to construct n-tuple of items m1, . . . ,mn, such that it
is of monotype TD TM

1 . . . TM
u , TD TM

1 . . . TM
u ⊂ TD a1 . . . au.

A dynamic array in PFL is created by an expression, called array creator, as
follows.

{|RF |} → m

used in an expression, where {|RF |} is a finite subrange, {|RF |} ⊆ {|R|} and m : T̃ .
If m : T , then {|RF |} → m is the array of items, each initialized to m.

PFL type synonyms TS are defined using type definitions, in the form as follows

type TS a1 . . . au = T

that use is appropriate especially when an environment variable v is shared by
different processes, but also when a variable is associated with a memory address
(for example 177746), such as follows

type TS a1 . . . au = v T at #177746
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Abstract type is implemented using class definition and corresponding set of
instance definitions, in the form as follows,

class Cl a1 . . . au where TD; . . . ;TD;

instance Cl T1 . . . Tu where D; . . . ;D;

such that for each instance of a class Cl holds (Cl T1 . . . Tn) ⊂ (Cl a1 . . . an). If
a class is monomorphic, then it contains no type variables ai (u = 0) and then it is
possible to define just one instance for this class.

Provided that TD’s in a class definition contains at least one environment vari-
able, i.e. this environment is not empty, new object for an instance of this class is
created using the type expression in expressions as follows

Cl T1 . . . Tu

Then, if m is an expression of the type Cl T1 . . . Tu and a process f is defined
by D in instance Cl T1 . . . Tu, then f is selected using expression

(m ⇒ f)

which, when applied, affects the environment given by m. It may be noticed
that if a class environment is empty, then it exists just one object for each instance,
hence, in this case we have no opportunity for object programming using such a
class.

It is easy to see, that modularity may be implemented in a similar manner.
Except a main module, formed by program the additional set of modules can be
defined each of them in the form

module M where PD; . . . ;PD;

Then a process f defined in module M is accessible in other modules using the
expression

(M ⇒ f)

Let the global scope in each module and each object is the same as the global
scope in the program, i.e. s = 0, and local scopes are such that s > 0. Provided
that PD = (TD;D) such that v ∈ TD∧ f ∈ D, then both f and v are in the same
scope. The names of all processes in the same scope s must be unique, and any
environment variable name v in this scope must differ from the names of processes.
On the other hand, v ∈ TD1 ∧ v ∈ TD2 means sharing this variable by processes
defined by D1 and D2, which is allowed.

The scope boundary, as well as the visibility of lambda and pattern variables
and process names is the same as in Pascal; if f is in the scope s then its formal
parameters (lambda and pattern variables) and the names of local processes (as
well as its body) are in the scope s+ 1; if a name used in a scope s3 is introduced
in scopes s1 and s2 (s1 < s2 < s3) not however in scopes s, s2 < s ≤ s3, then the
used name is such that introduced in the scope s2.

59



The Definitions of Environments

To prevent the obscure notation, we will consider just single argument processes
f and g, such that f is defined in a scope s and g is defined in a scope s′, s′ ≥ s.

Considering a relation between environments in scopes s and s′ in a program,
we distinct two essential kinds of environments:

• Explicit environment – formed introducing new names for environment vari-
ables that are different from the names used in patterns

• Implicit environment – formed using names introduced in patterns.

This means, that an environment variable in the scope s may belong to the
explicit environment E(s), only if it does not belong to the implicit environment
I(s).

An explicit environment for values is defined according to definition 4.

Definition 4. For all processes f in the scope s, defined by

PD = (f :: v T → T̃f ; f x = ef )

where T is primitive monotype or function polytype or dynamic array polytype, it
holds:

• Lambda variable x is the value of v accessed in ef by x, where x : T .

• If {v : T̃ → T} 6⊆ I(s) then {v : T̃ → T} ⊆ E(s).
• Then, provided that g is a process defined by

D = (g y = eg)

in the scope s′, s′ ≥ (s− 1), such that f is accessible in eg , an environment
variable v is accessed/updated in eg by application (f m), translated to

f (v m), where v is the address and m : T̃ .

An explicit environment for static arrays is defined according to the definition 5.

Definition 5. For all processes f in the scope s, defined by

PD = (f :: v {|RF |} T → T̃f ; f x = ef )

where T is polytype, {|RF |} is finite subrange {|RF |} ⊆ {|R|}, it holds:

• Lambda variable x is the value of v {|eR|} ({|eR|}-th item of the array v),
{|eR|} ∈ {|RF |}, accessed in ef by x, where x : T .

• If {v : {|R|} → T̃ → T} 6⊆ I(s) then {v : {|RF |} → T̃ → T} ⊆ E(s)

• Then, provided that g is a function or a process defined by

D = (g y = eg)

in the scope s′, s′ ≥ (s − 1), such that f is accessible in eg , and each
environment variable – the {|eR|}-th item of the array v is accessed/updated
in eg by application f ({|eR|} m), translated to f (v {|eR|} m), v is the

address, where m : T̃ .

An explicit environment for algebraic structured data is defined according to the
definition 6.
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Definition 6. For all processes f in the scope s, defined by

PD = (f :: v TD → T̃f ; f p = ef )

where p ::= x | x@(C x1 . . . xn) | (C x1 . . . xn), TD is algebraic monotype, C is a
constructor (C :: T1 → · · · → Tn → TD), it holds:

• Lambda variable x is the address of v. Then x, x1, . . . , xn, are used in ef

as values, where x : T , x1 : T1, . . . , xn : Tn.

• If {v : T̃D → TD} 6⊆ I(s) then {v : T̃D → TD} ⊆ E(s).
• Then, provided that g is a function or a process defined by

D = (g y = eg)

in the scope s′, s′ ≥ (s−1), such that f is accessible, an environment variable
v is accessed/updated in eg by application f (C m1 . . . mn), translated to

f (v (C m1 . . . mn)), v is the address, where mi : T̃i, for i = 1 . . . n.

The extension to algebraic polytype is straightforward – by the substitution of
TD by type application (TD T a

1 . . . T
a
u ), where T a

u are type expressions comprising
type variables.

According to the definition 5, static arrays belong to an explicit environment
and they cannot be used in a higher order manner. According to the definition 6,
static data structures such as Pascal records in global memory or on the stack are
manipulated.

Opposite to the explicit environment, the implicit environment is defined con-
sidering that the items of data structures and arrays are values, but at the same
time they are cells, used as implicit environment variables for local processes. Since
non-structured values are represented by lambda variables that are values, not cells,
it follows that they cannot form an implicit environment.

An implicit environment formed by a lambda variable of a dynamic array type
is defined according to definition 7.

Definition 7.
Let f is a process or function in the scope s, defined by

D = (f x = ef )

(type definition is out of interest here), such that x : {|R|} → T , where T is a
polytype, and R is infinite range.

Let us consider the application (f ({|RF |} → m)), such that RF ⊆ R and m : T .
Then it holds:

• Lambda variable x is a dynamic array value and x{|eR|} the array item
value, both accessible in ef , x : {|RF |} → T and x{|eR|} : T .

• {x : {|R|} → T̃ → T} ⊆ I(s′), s′ > s, provided that ∃ g in the scope s′,
defined by

PD = (g :: x {||} → T̃g; g y = eg)

where x {||} = x {|R|} T .
• Then, {|eR|}-th item of a dynamic array x is accessible/updatable in scopes
s′′, s′′ ≥ s′, if g is accessible, by the application g ({|eR|} m′), translated to

g (x {|eR|} m′), where x is the value, and m′ : T̃ .
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A possible type definition for a dynamic array argument of f in the definition 7
is ({|R|} → T ), or v ({|R|} → T ), where v is an explicit environment variable, and
v ({||} → ), if v is an implicit environment variable.

An implicit environment formed by a lambda variable of an algebraic structured
data type is defined according to definition 8.

Definition 8.
Let f is a process or a function in the scope s, defined by

D = (f (C x1 . . . xn) = e) or D = (f x@(C x1 . . . xn) = e)

such that x : TD T a
1 . . . T

a
u , x1 : T1, . . . , xn : Tn, x : T , C : T1 → · · · → Tn →

TD T a
1 . . . T

a
u , TD is an algebraic data polytype and T1, . . . , Tn are polytypes.

Suppose the application f (C m1 . . . mn), where mi : Ti. Then it holds:

• Lambda variable x is the data value and x1, . . . , xn are its item values,
accessible in ef , x : TD T a

1 . . . T
a
u , and xi : Ti, for all xi ∈ {x1, . . . , xn}.

• {xi : T̃i → Ti} ⊆ I(s′), s′ > s, provided that ∃ g in the scope s′, defined by

PD = (g :: xi → T̃g; g y = eg)

where (xi ) = (xi Ti).
• Then a structured data item xi is accessible/updatable in ef (including

scopes s′′, s′′ ≥ s′), if g is accessible, by the application g m′
i, translated to

g (xi m
′
i), where xi is the address, and m′

i : T̃i.

Definition 9.
Object environment is the explicit environment E(0), defined by a class defini-

tion in global scope (s = 0), and allocated by class application Cl T1 . . . Tu. Its
size is dependent on argument types T1, . . . , Tu. Different objects have mutually
disjunctive environments. All object environments are also disjunctive with explicit
and implicit environments of a program and modules.

Definition 10.
Since a program is a main module of a modular sequential language, it is sufficient

to consider just a set of modules M1, . . . ,Mp, one of them being a program.

Let E
(0)
Mi

is an explicit environment in the global scope s = 0 defined by type
definitions of global processes in module Mi. Let (Mj ⇒ fk) is a process fk

imported from module Mj being applied in module Mi. Then I
(0)
Mi

is a set of

subsets of explicit environments E
(0)
Mj

formed by environment variables affected by

all imported processes, which is defined as follows.

I
(0)
Mi

= {S | S ⊆ E
(0)
Mj
, v ∈ S ⇐⇒ v ∈ TD, (TD(Mj ⇒ fk), D(Mj ⇒ fk)) ∈Mj}

where TD(Mj ⇒ fk) is type definition, and D(Mj ⇒ fk) is the definition of a
process fk in a module Mj .

Then modular environment for a module Mi is defined by the unification of all
subsets of explicit environments affected by all imported processes applied in Mi

and the explicit environment in global scope of module Mi.
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⋃

∀(Mj⇒fk)∈Mi

I
(0)
Mi

∪E(0)
Mi

Clearly, modular environments may be disjunctive, i.e. non-overlapping, but also
shared.

Conclusion

In this paper, programming environments are defined in terms of PFL – a process
functional language. We introduced the essence of process functional paradigm
– programming by application of processes instead of assignments providing the
ability for imperative semantics of PFL programs being described seemingly by a
purely functional source script, since no environmental applications occur in source
expressions. This approach, from one point of view, does not disqualify the language
to the role of a purely functional but still macro language that affects architecture
resources indirectly, using an underlying imperative target language. On the other
hand, defining the environments in its abstracted nature, we may see a danger of
the use of undefined values, inherent to each imperative language.

Without doubt, the implicit environments are initialized to defined values, since
algebraic data are constructed by (C m1 . . .mn) and arrays are created by ({|RF |} →
m), using mi and m that cannot be of unit type (). To preserve the safeness in the
use of defined values of arrays we must guarantee that all items are defined also for
arrays created using loop comprehensions [8] that are over the scope of this paper.

However, since explicit environments are not initialized as may be seen from their
definitions, it is quite possible to use the undefined values when applying processes
to expressions of unit type. Therefore, to guarantee the use of defined values in
programs, all explicit environment variables, except those associated with a mem-
ory addresses we must think about their initialization. But this approach decreases
the run-time efficiency, especially for local explicit environments (s > 0). Moreover,
since modular environment for a module is formed by unification of global explicit
environment of this module and all subsets of explicit environments affected by
imported processes from other modules, the modular environment may be shared.
Then, the initialization of shared environments possesses the question, which of po-
tential initializations occurring in the different modules determines the initial state.
Clearly, this question has no satisfactory answer for parallel modules, since multiple
initialization of shared environments in parallel would result to non-deterministic
initial state. On the other hand, it is reasonable to initialize object environments,
since they are disjunctive. (Notice, that we do not need static methods, such as in
C here, since our “static” processes are defined in program modules.)

At this point it may be seen the advantage of process functional approach: Since
PFL programs are expressions, the use of undefined explicit environment variables
are identifiable during the type checking, providing strong feedback to a user about
incorrectness, since they are related to arguments of unit types used improperly in
applications of processes.

Concluding, the safe programming is such that uses either initialized environ-
ments or provide source-to-target feedback about the use of undefined values that
yield potential incorrect execution of programs.
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