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MINIMAL REPRESENTATIVES OF G-CLASSES
OF 3-MANIFOLDS OF GENUS TWO

JAN KARABAS AND ROMAN NEDELA

ABSTRACT. One of the central problems for 3-manifolds is the isomorphism problem.
Since 70’s several methods to attack it were developed. The method introduced in
a paper of Ferri and Gagliardi is not easy to use, since no bound for the number of
steps in a computer representation is known. Some approximations were introduced
in the paper of Grasselli, Mulazzani and Nedela. The present method based on
these approximations leads to a simple algorithm finding representatives of a given
equivalence classes of 3-manifolds of genus two. We have applied the algorithm to
reduce a known list of representatives of 3-manifolds of genus 2 and to derive some
new results as well.

Introduction

A n-manifold (n > 1) is the topological space, in which every point has a neigh-
bourhood O(z) homeomorphic to the n-dimensional Euclidean space. Next, every
compact connected n-manifold, n < 3, can be expressed as a simplicial complex
containing a finite set of simplices of dimension n. For instance, a compact con-
nected surface can be triangulated. However, we can form a triangulation of a
surface by infinitely many ways. For example, we can choose a point in a triangle
of a given triangulation, connect it with the vertices of that triangle and form a
new triangulation of the same surface. A general problem is to decide, whether two
different simplicial complexes represent the same n-manifold. In what follows we
shall only consider compact connected piecewise-linear 3-manifolds. Each such a
3-manifold can be triangulated as was already mentioned.

There is a well defined equivalence relation on the set of n-dimensional complexes
representing n-manifolds based on wave moves [4]. This equivalence allows us to
decide, which simplicial complexes represent the same n-manifold. Unfortunately,
the straight use of wave moves to solve the above isomorphism problem seems to
be intractable. In fact, if n > 2 no limit for the number of steps (moves) needed to
decide whether two complexes determine the same compact connected manifold is
known.
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Let M be an n-manifold. It is well known, that a simplicial complex representing
M can be represented by a graph I'(M), which vertices represents simplices of
dimension n of the complex and edges represent a ”gluing” of maximal simplices of
the complex in subsimplices of dimension n—1. Given graph I'(M) can be ”drawn”
on an orientable surface. The genus of M is the minimal genus of an orientable
surface into which I'(M) embeds in a particular way described in the next section.

Following [3] we represent a 3-manifold of genus two as a vector of integers
of length six and consider certain equivalence relations defined on 6-tuples and
preserving the associated 3-manifold of genus two. There is an equivalence on the
set of 6-tuples introduced in [2] called H-equivalence. In [5] other equivalence on
the set of 6-tuples is defined. This equivalence is called G-equivalence and it extends
H-equivalence. If f and g are G-equivalent 6-tuples then they represent isomorphic
3-manifolds of genus two. Hence the G-equivalence provides an approximation of
the ”isomorphism problem”.

Main aim of this paper is to investigate the G-equivalence in details. As an
application a list of representations of ”small” 3-manifolds of genus two is produced.

Preliminaries

Each 3-dimensional simplicial complex can be represented by a bipartite 4-edge-
coloured graph. Let T be any simplicial triangulation and T” be its first barycentric
subdivision. Each vertex w, which is the barycenter of the simplex w of T is labelled
by the dimension of w. Take the dual graph T" of 7" and if uv is an edge and {1, j, k}
are the colours of respective triangle in T" use the colour complementary to {i, j, k}
to colour the edge uv. The labelling of vertices of T induces a decomposition
of the tetrahedrons of 7" into two classes, where adjacent tetrahedrons belong to
different classes. Thus I is bipartite. The dual graph T' of 7", together with the
edge-colouring v, is a 4-coloured graph, representing 7.

Definition 1. Let I' = (V(T', E(T'))) be a bipartite graph and let there exist a
mapping v : E(T') — Ay = {1,2,3,4} such that for all incident edges f,g € E(T) :
v(f) # v(g). This mapping called a graph colouring and the graph I'a, 4-coloured
graph.

It is proved [4] that the above mentioned simplicial complexes can be represented
by a 4-coloured bipartite and connected graph I'a, (next, the graph). The colouring
is regular, i.e. two incident edges share distinct colours. Since the colouring is
regular a factor induced by two colours is a disjoint union of bicoloured cycles. Let
7 denotes the set of 2-cell embeddings of I'a, into a closed orientable surface such
that the local rotation of colours induced by the embedding in ”black” vertices
is the same, say p, while the local rotation of colours in ”white” vertices is p~!.
Note that there are six possibilities for choosing p. It follows that faces of such
embedding are bounded by bicoloured cycles. Out of these six possibilities for p we
choose such p that the genus of the underlying surface is minimal in Z. The integer
¢ is an invariant of a 3-manifold M represented by I'a, and it is called the regular
genus of M (or shortly the genus of M). It is known that the regular genus of M
is equal to the Heegaard genus of M [1].

Let I'a, is a 4-coloured graph and let © is subgraph of I'a, contains of vertices
X.,Y joined by h edges (1 < h < 3) coloured by colours c1,...,cp. If X and
Y are in two different components of graph T'a,_¢.,, ) induced by the set of
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complementary colours Ay — {c1,...,cp} then the subgraph © will be called a
dipole of type h.

There is a well defined operator over the set of 4-coloured graphs [4] called wave
move. Note that a wave move can be defined for (n + 1)-coloured, connected and
bipartite graphs (n-manifolds) generally.

Definition 2. If © is a dipole of type h in T'a, coloured by colours {c1,...,cp} we
define a wave move as follows (see Fig. 1):
(a) Cutting of ©
e remove edges and vertices of ©
e glue "hanging” edges of graph I'a, of same colour

(b) Adding of © as inverse to cutting

LoJec \oJec2 feet fpee

Fic. 1. Wave moves

The main result of [4] states that graphs T'a, and T';, represent isomorphic 3-
manifolds if and only if there is a finite sequence of wave-moves transforming I'a, to
Iy, Hence the "isomorphism problem” reduces to the problem to decide whether
two 4-coloured graphs are ”wave-move equivalent”.

It follows from [3] that each (closed) genus two 3-manifold can be represented
by a graph I'a, which structure can be coded by a 6-tuple of integers satisfying
certain conditions. Let Fy is set of 6-tuples:

f = (ho,h1,h2;90,q1,92), hi, ¢ € N.

The set of 6-tuples representing genus two 3-manifolds satisfy the following axioms:
(i) Vi€ Zs:h; >0,

(ii) all h; has the same parity,

(iii) VieZs:0<q <hij_—1+h; =2l

(iv) all ¢; has the same parity.

Remark 1. From here all operations with numbers ¢; will be considered modulo 2[;,
and according to (iii), ¢; will be always the least non-negative integer of the class.
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Now let us define the set V(f) for a 6-tuple f € Fy:
V(f)= U {i} x Zay,

i€Z3
and the following permutations on V'(f):
ao(i,5) = (i,5+ (=1)7),
(i, 5) = (i, = (=1)7),
. G+1L,2—7—-1);k=i+1; 0<j<h
(XQ(Z,J) = . . . . )
(i—12l—75—-1); k=1, hy <j<2l;

a3(i,j) = poazop 7,

1
where p : V(f) — V(f) is a bijection defined by rule
Now let f € F» satisfy the following conditions:
(v) Vi € Zs : h; + q; is odd, h; and ¢; have different parity,

(vi) the group (a, as) has exactly three orbits.

Given 6-tuple f we define the associated graph I'a, (f) as follows. Let V = V(f)
be the set of vertices of T'a,(f). Then the permutations ag, a1, a2 and as define
the decomposition of the edge set into four colours, the orbits of «; form the edges
of I'a; coloured by i, for i = 0,1,2,3. Observe that the subgraphs I'(g 1 2}, I'{0,1,3}
induced by the respective sets of colours are isomorphic planar graphs.

Vice-versa let I'a, be a 4-coloured graph with a bicoloured 2-factor containing
three circles of even length Cy, C1,Cs coloured by colours 0 and 1. Other edges
coloured by colours 2 and 3 join vertices of I'a, such that the induced subgraphs
T10,1,2y and T'yg 1 3y are planar and isomorphic. Now, let us code the graph by the
6-tuple f = (ho,h1,h2;90,q1,q2) [2]. The first three items code the numbers of
edges coloured by 2 (3) joining the circles C;_q and Cj, (i = 0,1,2) of T'a,. Clearly,
the planar subgraphs T'fp;1,9) =~ I'{g,1,3) of I'a, are uniquely determined by the
integers ho, hy and ha. Then I'a, arises by gluing I'(g 1 2y with ;g1 3y in the three
cycles Cp, Cq and Cy coloured by 0 and 1. The integers qop, ¢1 and g2 determine
the rotations of cycles Co, C1, C2 in I'gq 1 3y before the gluing is done. In this way
we get an embedding of T'a, into bitorus (see Fig. 2)

F1G. 2. The graph represented by 6-tuple (3,1, 3;2,2,0)

The conditions (i) — (vi) come in part from the interpretation while in part they
are forced by the requirement that I" represents a compact connected 3-manifold of
genus 2.
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Theorem 1 [3]. For every compact connected 3-manifold M of genus < 2 there
exists f € Fy such that I'(f) represents M.

Definition 3. The elements of the set F, C Fy satisfying conditions (i) — (vi) will
be called admissible 6-tuples.

Definition 4. Let f € F». The number z(f) = ho+hy+ha is called the complexity
of the 6-tuple f.

It is easy to design an algorithm to verify the conditions (i) — (vi) for a given
integer vector with six items. The most complicated seems to be to verify the
condition (vi), but the complexity of this algorithm is polynomial, depending on
complexity of given 6-tuple f. Therefore we can construct the set F5 up to a fixed
complexity in an effective way.

Now we introduce the equivalence relations on F, defined in [2] and [5]. If
f = (ho, h1, h2; o, q1, g2) is an admissible 6-tuple define the permutations 1, 12, ¥3
acting on Fs as follows [2]:

¥1(ho, b, ho; o, 41, G2) = (h1, h2, ho; 1,92, q0)
pa(ho, b1, hos o, q1,G2) = (ha, k1, ho: qo, g2, q1)
3 (ho, hi, ha; qo, q1, g2) =(ho, h1, ha; 2lg — qo, 211 — q1, 212 — q2)

The above described permutations represents some recolourings of the graph
T, (f )
Definition 5. Let f,g € F2. Let us define the relation

fgg 23n € (1,2, 3) ,n(f) =g

This relation is an equivalence and we will call it H-equivalence on Fa. The equiv-
alence classes will be called H-orbits.

Lemma 1. [2, Prop. 16] H-equivalence preserves the admissibility of the 6-tuple.

Lemma 2. The group H = (t1,12,13) is isomorphic to Di2, where Dy is the
group of symmetries of a regular hexagon. In particular, each H-orbit has at most
12 elements.

Proof. Tt follows from the definition of 11, 2,13 that 13 = 2 = 42 = 1. The
group (¥1,12) is isomorphic to the group Ss of symmetries of a regular triangle
because

Yothrahe = Py .

Also 13 commutes with the members of (¢1,12). Hence the group H satisfies
the relations of dihedral group Dj2. Thus H is an epimorphic image of Dj2. To
prove that the epimorphism is an isomorphism it is sufficient to find at least one
admissible 6-tuple such that the respective H-orbit has 12 different 6-tuples. The
6-tuple (1,3,5;2,2,2) is the such a 6-tuple. O

Following [5], let us define mapping o : Fo — Fa :

(ho, h1,h2;q0,q1,¢2); ifgo =0

(ho, b1, h; 0, 41, 45); ifgo #0
25
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where f = (h{, b, hb; q), ¢4, ¢5) is a 6-tuple defined by the next rules

ho = ho 4+ h1 — qo 40 = ho + h1 + ha — 2qo

hi = qo ¢ =q+aq+m iff 0 < gy < ho, ha
hy = ha +h1 — qo g =qo+q2+hi

ho = qo + k1 — hy g =M

hy=ho+hs—qo G =q+q—he iff go > ho, ho
hy =gqo+h1—ho g5 =qo+q2—ho

hy = hy 4o = 1 +ha — qo

1 =ho G =q iff ho < go < ho
Ry = hy + hy — ho @5 = 2q0 + g2 + h1 — ho

ho = hy + ho — hy g9 = h1+ho —qo

hy = hy a1 =20 +q +hi—he iff ha < qo < ho
h/2:h1 qé:qg

The above described operation represents a sequence of wave moves such that
applying it to the graph represented by an admissible 6-tuple we get the new graph,
which can be represented by an admissible 6-tuple too.

Definition 6. Let f,g € F». We define a relation:
g
fRg: 3y e, o,93,0),7(f) =g

This relation will be called G-equivalence on F,. The equivalence classes will be
called G-orbits and will be marked as usual [f]g.

Agreement. Denote by [f]y a H-orbit containing f. Similar, denote by [f]g a G-
orbit containing f.

Lemma 3. [5, Th. 5.1] G-equivalence preserves the admissibility of the given 6-
tuple.

Obviously, any G-orbit is a union of some #-orbits.

Definition 7. Let H,H' be two different H-orbits. Let f € HAg € H' : g = o(f).
Then we define a derivation of f as the difference 6(f) = z(g) — z(f) [5].

Straightforward from Definitions 6 and 7 we get the following lemma.
Lemma 4 [5]. With the above notation

0 iff g =0 (a)
h1—qo iff 0 < qo < ho, ho (b)
6(f)=<¢ h1—ho iff ho < qo < ha (c)
hy — ho iff ho < qo < ho (d)

o+ h1 — ho — ho iff go > ho, hs (e)

Note. We denote by fi(i = 1,2,...,6) the i-th item of the vector representing an
admissible 6-tuple.
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Definition 8. Let f,g € F2 be two 6-tuples. Let I = {1,2,3,4,5,6} be the set of
indexes of components of these vectors. We define the lexical order < as follows:

[ =g forj=int{il(i € I) A f(i) # g(i)}, f(4) < 9(j)

Definition 9. Using the lexical order we derive an order on F» in the following
way
f<ge () <z29)VI(ES)=29)) A <9)
We call this order the natural order of Fs.
Finally, we define representatives of H-orbits.

Definition 10. Let F C F5.
The member f of F satisfying

feF:~(FgeF),g<Lf

is called a minimal representative of F'.
The member f of F satisfying

feEF:VgeF, f<Kyg

is called the least representative of F.

Since F, with respect to < is a well-ordered set, for each F' there exists a unique
minimal representative which is in the same time the least representative of F'.

Agreement. In the notation [f]y denoting an orbit of H-equivalence we shall always
assume that 6-tuple f is minimal unless otherwise follows from the context.

To create a H-orbit from a given f is a trivial problem, which can be represented
by simple algorithm following i.e. from [2, Prop. 16]. By Lemma 2 the members of

[f]n are
I = (ho, h1, h25 g0, q1, 42)

1 f = (h1, ha, ho; 41,92, q0)
Yo f = (ha, h1, hos qo, 42, q1)

%f = (ho, b1, h2; 2lo — qo, 211 — q1, 212 — q2)

= (h2, ho, h1; g2, G0, 1)

7/)21/)1f = (ho, h2, h1; 41, q0, q2)
wap1 f = (ha, ha, ho; 201 — q1, 212 — g2, 210 — qo)

Yot f = (ha, ho, has g2, 41, Q0)
Y3l f = (ha, ho, h1; 202 — g2, 2lo — g0, 211 — q1)
V3o f = (he, hy, ho; 2lo — qo, 2l — g2, 211 — q1)
Yathoth1 f = (ho, ha, h1; 2l — q1,2l0 — qo, 212 — g2)
Y3 f = (ha, ho, ho; 2lo — o, 21 — qu, 2lo — qo)

Similarly, it is not complicated to compute an image o(f) for any f € F». On the
other hand, a G-orbit may be infinite. In what follows we give a simple method for
deciding whether g =g h.
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Ezample. The 6-tuple (1,3,k;2,2,k—1) k > 3 belongs to an infinite G-orbit. Since
o((1,3,k;2,2,k—1)) = (3,1,k+2; k+1,2,2) and this 6-tuple is H-equivalent to the
6-tuple (1,3,k+2;2,2,k+ 1). Hence (1,3,k+2;2,2,k+ 1) =g (1,3,k;2,2,k— 1),
and z(o9T1(f)) > 2(c9(f)) for every positive integer 5. Thus [(1,3,k;2,2,k — 1)]g
is infinite.

Representatives of G-orbits
Next lemma appears in [5, Prop. 6.1] without proof.

Lemma 5. Let f € Fo. Then 19,13 and o satisfy the following relations:

a)o® =1
b) 1o = a1he
c) P30 = o3

Proof. The proof is done by direct computation. We have to deal with four cases
related with the action of o-operator. Recall that all the computations with ¢; will
be done modulo h; + hit1,1 € Zs.

a) Let f' =o(f) and f” = o(f’). We prove f = f".
The case go = 0 implies the identity by definition.
0<qo <h0ého+h1*(]o<h0+h1+h2*2(]0$h6<q6

I
() 0<q0<h2:h2+hl—q0<hg+h1+h2—2q0:>h'2<q6

Hence we have to apply Case II in the definition of o to compute o(f")

hg = (ho + k1 + ha — 2q0) 4+ qo — (k2 + h1 — qo) = ho

hY = (ho 4+ h1 — qo) + (h2 4+ h1 — qo) — (ho + h1 + ha — 2q0) = 1
hy = (ho + h1 + ha — 2q0) + qo — (ho + h1 — qo) = he

44 = qo mod (hg + h2)

qf = (ho + h1 4+ ha — 2q0) + (g0 + ¢1 + k1) — (h2 + h1 — qo) = ¢1 mod (kg + hq)
g5 = (ho 4+ h1 + ha — 2q0) + (g0 + g2 + h1) — (ho + h1 — qo) = g2 mod (hy + ha)

q0>h0,h2:>qofh2>():>h1<h1+(q07h2)¢0<q6<h6
qo > ho,ha = qo —ho > 0= hy < h1+ (g0 — ho) = 0 < gy < hi

(1)

Hence we have to apply Case I in the definition of o to compute o (f")

hg = (go + h1 — h2) + (ho + ha — qo) — h1 = ho

R = Iy

hy = (qo + b1 — ho) + (ho + ko — qo) — h1 = ha

a6 = (go + h1 — ha) + (ho + ha — qo) + (g0 + h1 — ho) — 2h1 = go mod (hg + hs)
qi = h1+ (g0 + @1 — ha) + (ho + ha — qo) = ¢ mod (ho + h1)

g5 = h1 + (qo + g2 — ho) + (ho + ha — qo) = g2 mod (hy + ha)
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go < ha = h1 < (ha — qo) + h1 = hy < qq

111
( ) qo>h0é(hl—i-hz)—qo<(h1+h2)—h0:>q6<hf_;

Hence we have to apply Case III in the definition of o to compute o(f")

0 =ho
W= by

g:ho+(h1+h2*ho)*h1:h2
a5 = ho + (h1 +ha — ho) — (h1 + h2 — qo) = qo mod (ho + ho)
qi’ =q1 mod (ho + hl)
@5 = 2(h1 + ha2 — qo) + (2q0 + g2 + b1 — o) 4 ho — h1 = g2 mod (hy + hy)

qo > ho = (h1 + h()) — hoy > (hl + h(]) —qo = h6 > q,s

(Iv) / /
ho > qo = (ho — qo) + h1 > h1 = ¢ > h,

Hence we have to apply Case IV in the definition of o to compute o(f”)

! = hy + (h1 + ho — ha) — hy = ho

1=h
h’2' = ho
4o = ha + (h1 4+ ho — ha) — (h1 + ho — qo) = go mod (ho + ha)
¢ =2(h1 +ho —qo0) +(2q0 + q1 + h1 — h2) + ha — hy = ¢y mod (hg + hy)
g5 = go mod (hy + h2)

b) In the following calculations the usage of the respective Case in computation

of images under o is signed as follows ... Lo Y Let f' = o(f) and

f"=a(f)

(1) 0<qo<hoha=1s(f)E

L.
= 2(ho + 1 —qo, o, ha +h1 — qo; ho +hy +h2 —2q0, g0+ q1 + hi, o+ g1+ hi) =

= (ha 4+ h1 — qo, g0, ho + h1 — qo; ho 4+ b1 + ho — 2qo, qo + g2 + h1,qo + 1 + 1) =

L o(ha, hi,ho; qo, g2, q1) = o (f")
(1) qo > ho,ha = ¥a(f) £

I:sz(QOJrhl*hz,hoJrhz*lIO,QOJrhl*ho;hl,lIoJr(h*hz,QOﬂL(D*ho):

II.
= (qo + h1 — ho, ha + ho — qo, g0 + k1 — ha; h1,qo + g2 — ho,qo + q1 — ha) =

€ o(ha, hi, ho; qo, g2, 1) = o(f")

Note, that using 12 in Cases (III) and (IV) of ¢ swaps the input conditions. How-
ever, we need to prove the following equalities:
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Using Case (IV) in the definition of o we get:
(IT)  ho < qo < ha = a(f) "2

"2 (s ho, i+ ho — hoi ha + ha — o, 1,200 + > + g2 + b1 — ho) =

= (h1 + ha — ho, ho, hi; ha 4 ho — qo, 2q0 + g2 + Py — ho, q1) &

Y 5 (ha, ha, hoi g0, g2, 1) = o (")

Using Case (III) in the definition of o we get:
(IV)  hy < qo < ho = Ua(f)) &

Ii/- d)z(hl + ,LO — }LQ, ’Lz7 ]’Ll; hl + ho — qo,q2, 2(]() +q1 + hl — hz) =
= (h1, ha, b1 + ho — ha; by + ho — o, 42, 240 + @1 + b1 — ha) "2

"2 5 (hay b1y hoi g0, g2, @) = o(f")

c) To prove commutativity of 13 and o note that for the minimum non-negative

representatives qo, q1, g2 of the repective residual classes the following relations
hold (see Remark 1):

—q; = (hl + hz’—l) —q; mod (hz + hifl);i S Z3

qi < hi—1 = (hi + hi—1) —qi > (hi + hi—1) — hi—1 =
= —q; > h; mod (h; + h;—1)
gi < hi = (hi +hi—1) —qi > (hi + hi—1) — hy =
= —¢; > hj—1 mod (h; + h;_1)
Let f' =30 f and f” = ovp3f. We have to prove f' = f".
I) 0<qo < ho,ho
ho = ho + N1 —qo
h’1 =4qo
hiy=ha+h1 —qo
q = (ho+h1—qo)+(ha+h1—qo)—(ho+h1+h2—2q0) = hq mod (2h1+ho+ha—2q0)
¢i = (ho+h1—qo0) + g0 — (g0 + g1 + h1) = ho — go — g1 mod (ho + hy)
g5 = qo + (ha + h1 — o) — (g0 + g2 + h1) = ha — qo — g2 mod (hy + hy)

Since 0 < qo < ho, ha = —qo > hg, he mod (hg + he) Case II in calculation of f”
applies.

hi = (ho+h2) —qo+h1 —ha = ho+h1 — qo

RY = ho + ha — ((ho + h2) — q0) = @0

Ry = (ho + ha) — qo + k1 — ho = ha + h1 — qo

¢y = h1 mod (2h1 + ho + ha — 2qo)

g/ = (ho +ha — qo) + (ho + b1 — q1) — ha = ho — qo — q1 mod (ho + h1)

g5 = (ho + ha — qo) + (h1 4+ ha — q2) = ha — qo — g2 mod (hy + ho)
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II) ho, ha < qo
ho = h1 —ha +qo
hy=ho+hs—qo
By = h1 — ho + qo
g0 = (h1 —ha+qo) + (h1 —ho +qo) —h1 =
= h1 — ho — ha + 2qo = —hy mod (2h1 — ho — h2 + 2qp)
g1 = (b +h2+qo0) + (b1 — ho + q0) — (90 + @1 — h2) =
=ho+h1+hs—qo—q1 =ha—qo— ¢ mod (hy + ho)
g5 = (ho +h2 = qo) + (h1 — ho +qo) — qo + g2 — ho =
=ho+hi1+hs —qo—q2=ho—qo — qo mod (hy + h2)

Since ho,he < g0 = 0 < —qo < hg, ha mod (ho + ha) Case I in calculation of f”
applies.
hg = ho 4+ h1 — (ho + ha — qo) = h1 — ha + qo
RY = ho+ha —qo
By = ha +hy — (ho + ha — qo) = h1 — ho + qo
gy = ho+h1+ ha —2(ho + ha — qo) =
=hy — hg — ha + 2q0 = —hy mod (2hy — hg — ha + 2qo)
@ =(ho+he—q)+(ho+hi—q) +m =
=ho+hi+ha—q —q = ha —qo — g1 mod (ho + hy)
g = (ho+ha = qo) + (h1 + ha —g2) + Iy =
=ho+h1+h2—q— g2 = ho — qo — g2 mod (h1 + h2)
IIT) ho < qo < h2
hy = hq
R, = ho
B = hy + ha — ho
qo = [h1 + (h1 + ha — ho)] — (h1 + ha — qo) = b1 — ho + qo mod (2R + hy — ho)
a1 = [ +ho — q1] = —q1 mod (A1 + ho)
¢ = [ho+ (h1+h2—ho)]— (2g0+ g2 +h1 —ho) = ha+ho—2¢o — g2 mod (h1+hs)

Since ho < qo < ha = ho < —qo < ha mod (ho + h2) Case III in calculation of f”
applies.

hY = hy

By = ho

hy = hy + ha — ho

qy = h1 +hg — (ho + ha — qo) = k1 — ho + o mod (2hy + ha — hg)
@ =ho+hi—q =ho+h —q =—qmod (ho + h1)

g3 = 2(ho+ha—qo)+ (h1 +ha—q2)+h1—ho = ha+ho—2qgo — g2 mod (hy +hy)
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IV) hy < qo < ho = ha < —qo < ho mod (hg + ha)
6 =h1+ho—hs
h’l = ho
hy = I
g6 = [(h1 4+ ho — h2) + k1] — (h1 + ho — qo) = h1 — ha + o mod (2h1 + hg — h2)
¢y = [(h1+ho—h2)+ha] — (2q0 +q1 +h1 — ha) = ho+h2 —2¢0 — q1 mod (h1 +hq)
¢b = [h1 + ha] — g2 = —g2 mod (hy + ha)

Since ha < qo < hg = ha < —qo < hg mod (hg + ha) Case IV in calculation of f”
applies.

R = hy + ho — hs

B = hy

hY =hy

gy = h1+ho — (ho + h2 — qo) = h1 — ha + go mod (2h; + ho — h2)

qi =2(ho+h2—qo) + (ho+h1—q1) +h1 — hg = ho+ ha — 290 — ¢ mod (ho + h1)
¢4 =h1 +hs — g2 = —q2 mod (hy + hsa)

O

The application of o is now easier. It follows that to calculate the action of o it
is sufficient to consider the images of the three members o f, o3/ f and 01?2 f of an
‘H-orbit.

Definition 11. Let S = {V, E} be a graph which vertices are H-orbits and the
adjacency relation is given by:

(flu ~lglnu =39 €lglun3f €lflu:g =of"
Since 02 = 1, the graph S is undirected. Note that S contains loops.

The connectivity components of S are in a correspondence with the G-orbits.
Therefore we call the connectivity components of S, G-orbits too. By the definition,
a G-orbit is a class of equivalence. We can describe its minimal representatives.

(1311,004) (17.7:008)

(138200 (139208 (30228 . (157426) o

(137:206)
(137226

(118002) (119206)  (119404)

(226111

(135204)

(222113

F1c. 3. Some components of connectivity of S.

Agreement. Since the members of each H-orbit have the same complexity, we define
the complexity of a H-orbit to be the complexity of its members. Since each H-orbit
corresponds to a vertex in S, we can speak about complexity of a vertex. Moreover,
we say that u < v for u = [f]y and v = [g]y, if f < g.
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Lemma 6. The set of neighbours of a vertex u = [f]y in the graph § is
N = {[of]n, [o¥1 flu, (093 fl3}- In particular, a vertex in S has at most 3 neigh-
bours.

Proof. Let A = (12,13). Each H-orbit decomposes into the orbits induced by the
action of A. Since o commutes with the elements of A (see Lemma 5), it follows
that for g = ¢f, ¢ € A we have 0g = 0o f = ¢o f, hence [og]y = [0 f]. Hence, the
set of neighbours of vertex uis N. [

Theorem 2. Let v,u, w be three pairwise distinct vertices in S. Let u and w be
neighbours of v. Then

(1) 2(w) < 2(v) = 2(w) > 2(v),
(2) z(u) = 2(v) = z(w) > z(v).

Proof. Let us analyse the derivation of complexity 6(f) for a vertex v, f € [f]x = v.
Recall that f = (ho,h1,h2;q0;q1,¢2) is the minimal representative of [f]y. It
follows that ho < hy < ho. By Lemma 6 u,w € {[o f]x, [0¥1 f]2, [0¥? fla}. Hence
we need to analyse the three derivations: 3(f), 6(11f) and d(x»?f). In the following
discussion we refer to Lemma 4.

1. For 6(f) we get:
(a) go =0=0(f) =0,
(b) 0 < qo < ho, he = 6(f) > 0, therefore hy — go > ho — qo > 0,
(¢) ho < qo < ha,we consider subcases:
ho < qo<h2=4(f)>0
or
ho=h1 < qo < he=d(f)=0,
(d) ha < hg is in a contradiction with the minimality of f,
(e) qo > ho, he = §(f) > 0, therefore go + h1 — ho — hg > hqy — hg > 0.

II. For 6(¢n f) we get:

(@)1 =0=46(u1f) =0,
() 0 < q1 < hi,ho = 6(¢1f) > 0, therefore he — g1 > h1 — q1 > 0,
(

(d ho <q1 < hy = 6(’[/}1f) > 0,

)
)
¢) h1 < hg is in a contradiction with the minimality of f,
)
(6) q1 > hl, ho = 5('(/)1f) > O,therefore q1 + hg — h1 — ho > h2 — ho > 0.

III. For (12 f) we get:
(a) a2 =0=6(vif) =0,
(b) 0 < g2 < h1, he we must consider following cases:
g2 < ho < hi,he =51 f) >0
or

ho < g2 < hy = §(3f) <0,
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(c) ha < hq,is in a contradiction with the minimality of f,
(d) h1 < g2 < ho we consider subcases:
h0<h1<Q2<h2:>5(¢%f)<0
or
ho = h1 < g2 < ha = §(3f) =0,
(e) g2 > h1, ho we consider subcases:
ho < hy <hg <gqa<hi+hy—ho=3@W3f) <0
or
ho <hi <hg<qe=h1+hy—ho=0Wf)=0
or

hi,ha,h1 +he —ho < @2 = 6(¢%f) > 0.

The previous discussion describes the derivation of each neighbour of the vertex
v. The subcases are pairwise eliminative and they cover all the possibilities. Since
only one from the three possible neighbours of a given vertex x = [f]y can have
a smaller complexity as x, it follows that two edges incident to vertices u, w with
given complexity never enter the vertex v with higher complexity. This neighbour
is y = [o¢?f]x and z(y) < z(x) in some subcases of Case III. The complexity of
a neighbour of v can be smaller only in Case ITI.

Now assume z(u) < z(v). We have already observed z(w) > z(v). Assume
z(w) = z(v). Analysing Cases I, IT and IIT we see that u satisfies one of the
conditions ITI-b, ITI-d, ITI-e. Moreover, w satisfies the condition I-c. Combining
I-c with ITII-b, or ITI-d, or III-e we derive the following contradictions:

ho="h1 <qo <haAho=q2 <hi,ha = h1 <qo<q2<hy
h/o:hl<qO<h2/\h0§h1Shz<QQ:h1+h2*ho:>h2<L]2<h2
h0:h1<q0<h2/\ho<h1<q2<h2.

Hence z(w) > z(v) and we are done. O

Definition 12. A vertex v is in an horisontal branch B = B(v) of a G-orbit if the
following holds:

veBv)eVYue N(v): z(u) > z(v)

Lemma 7. In every G-orbit there is precisely one horisontal branch B and B
contains the minimum element m of the G-orbit with respect to the order <.
The complexity of all elements of B is equal to z(m).

Proof. By the definition and by Theorem 2 a horisontal branch B consists of the 6-
tuples with a fixed complexity. A minimal representative m of a G-orbit containing
B belongs to B as well. Moreover, Theorem 2 implies that the complexity of the
6-tuples in B(m) is equal to z(m). O

Notice that a horisontal branch may contain only one vertex of S.
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Theorem 3. There exists a polynomial-time algorithm to decide whether two 6-
tuples in Fy are G-equivalent.

Proof. Let f and g be 6-tuples in F» such that z(f) > z(g). Using Theorem 2 we
find fi1 € N(f) and g1 € N(g) so that z(f1) < z(f) and z(g1) < 2(g). Note that if
the complexity of f1 (g1) is less than z(f) (2(g)), f1 (g91) is uniquely determined.
By proceeding at most z(f) = n iterations we reach the horisontal branches of
the respective G-orbits containing f and g. If z(f,) # z(gn), the 6-tuples are not
G-equivalent. The complexity of this procedure is O(n). If z(f,) = z(gn) the
algorithm continues. We choose the minimal representatives of horisontal branches
Bi(fn) and Bz(g,) containing f,, and g,. If the minimal representatives are equal
then f =g g. The complexity of this part of algorithm can be rougly estimated
by O(2,(f)?). By Lemma 7 the 6-tuples f and g are not G-equivalent in the other
case. [

List of G-minimal representatives of 6-tuples

By using [2], [5] and previous results we have generated two catalogues of minimal
representatives of G-classes of 3-manifolds of genus two.

The first one is a reduction of the catalogue introduced in [2]. We have applied
the G-equivalence on it. The new version includes only minimal representatives of G-
orbits. It is created by a simple algorithm which computes o (f), (1 f) and o (v? f)
for every 6-tuple. Only 6-tuples satisfying f < o(f) A f < a(¥1f) A f < o2 f)
(see Theorem 2) are listed in this catalogue. The new catalogue contains 309 of
6-tuples with complexity z < 21 instead of 695 6-tuples of the original.

The second catalogue is formed by computing of all admissible 6-tuples with
complexity z < 21. After creating, a 6-tuple is processed by a similar way as
described above and the minimal representatives of horisontal branches were listed.
Since we do not use any further criteria to reduce it, this catalogue is more rich as the
first one. It contains 433 of minimal 6-tuples. We have excluded the representatives
of traps defined by a condition introduced in [5].

The catalogue up to complexity z = 50 was created and reduced in thirty min-
utes. Using the same program minimal prepresentatives of G-orbits up to com-
plexity z = 100 and higher can be generated in a real time. The program can be
parallelised.
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Appendix A: Reduced catalogue introuced in [2]

(4, 4,8 1,1, 1)

= 7 +++

+++ Z

(4,4,8 1,1, 9

= 14 +++

+++ Z

(4,4,8 1,5, 1)

(1, 3, 3;2, 2,0

(4,4,8;3,1, 7

(4,4, 6;1,1,1)

(4,4,8;3,3, 7
(4, 4,8;3,7, 3
(4,6,6;1,1, 1)

(4,4,6;1,1,3)

9 +++

+++ z

(4, 4,6;1,1,5)

(4,4,6;1,1,7

(1, 3, 5; 2,2, 0

(3,3,3;2,2, 2

(4,6,6;1, 1,9

(4,4,6;1,5, 1)

(4,6,6;1,7, 1)

(4,4,6;1,5,5)

(4,6, 6; 3, 5,11)
(4,6, 6;5,5,3)

(4, 4, 6; 3, 1, 5)
(4, 4, 6; 3, 3, 5

= 10 +++

+++ Z

= 17 +++

+++ z

= 15 +++

+++ zZ

= 11 +++

+++ zZ

(1, 3,13; 2, 2, 0)

(1, 3,11; 2, 2, 0)

(1,3,7;2,2,0
(1,5, 5;2, 2,0
(1,5, 5; 2, 4, 0)
(3,3,5;0, 2, 4
(3,3,5;2, 2,4

(1, 3,13; 4, 2, 0

(1,5,9;2, 2,0
(1,5, 9;2, 4, 0)
(1,5, 9; 4, 2, 0)
(1,5, 9; 4, 4, 0
(1,7,7; 2,2, 0

(1, 7,7; 2, 6,0
(3,3,9;,0, 2, 4
(3,3,9;0, 2, 8
(3,3,9; 2,0, 2
(3,3,9; 2,0, 6)

(3,3,9;2, 2, 8)
(38,5,7;2, 4,0

(3,5,7; 2, 4, 2)
(3,5,7; 4, 4, 0)
(3,5,7; 4, 4,10)
(5,5, 5;0, 4, 4)
(5, 5,5;2, 2,2
(5, 5,5; 4, 4, 4)

(1, 3,13; 6, 2, 0)

(1, 5,11; 2, 2, 0)

(1, 5,11; 2, 4, 0)

(1,7,9; 2,2, 0
(1,7, 9; 2,6, 0
(1,7, 9; 4, 2, 0)
(1,7, 9; 4, 6, 0)

(3,3,11; 2, 2, 2)

= 12 +++

+++ Z

(4,4, 41,1, 1

(4, 4, 4; 1,1, 5)

(3, 3,11; 2, 2, 4

(4, 4, 4; 3, 3, 3)

(3, 3,11; 2, 2,10)
(3,5,9;2,0, 2

(3,5,9; 2, 4,0
(3,5,9; 4, 2,0
(3,5, 9; 4, 4,12)
(3,5,9; 4, 6, 0)
(38,7,7; 2, 2,2
(3,7,7; 2, 6, 2)
(3,7,7; 4, 4,12)

(5,5,7;0, 2, 6)
(5,5,7;0, 4, 6

= 13 +++

+++ zZ

(1, 3,9 2,2, 0
(1, 3, 9; 4, 2, 0)
(1,5,7;2, 2,0
(1,5,7;2, 4, 0)

(38,3,7;2,2,2

(3,3,7; 2,2, 6)
(3,5, 5;2, 4,0

(3,5,5;4,4, 2

= 16 +++

+++ zZ
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(3, 5,11; 4, 4,14)

(3, 5,11; 6, 4, 0)

(4,6, 8;5, 5,11

(6,6,6;1,1, 1)

(5,5,7; 0, 4,10)
(5,5,7; 2,0, 4)
(5,5,7;2,0,8)
(5,5,7; 2, 4, 2
(5,5,7; 2, 4, 6)
(5,5,7; 2,6, 2
(5, 5,7; 2, 6, 6)
(5, 5,7; 4, 0, 6)
(5,5,7; 4,2, 4
(5,5, 7; 4, 4, 4)
(5,5,7; 4, 4, 6)

(3,7,9;2,0, 2
(3,7,9;2, 4, 2

(3,7,9; 4,2, 0

(3,7, 9; 4, 4, 0)
(3,7,9; 4, 4,14)

(3,7,9; 4, 6, 0)
(3,7,9; 4,8, 0
(3,7,9; 4, 8,14)
(5,5,9; 0, 4, 4)
(5, 5,9; 0, 4, 6)
(5, 5,9; 0, 4,12)
(5,5,9;2,0,2
(5, 5,9; 2, 0,10)
(5,5,9; 2, 2,2
(5, 5,9; 4, 0, 4)
(5, 5,9; 4, 0, 8)
(5,5,9; 4, 4, 8
(5,5,9; 4, 8, 4)
(5,7,7; 0, 4,12)

(5,7,7;2,2, 4
(5,7,7;2,6, 0
(5,7,7;2,8, 2

(5,7, 7; 4, 4, 2)
(5,7,7; 4,6, 4

(5,7,7; 4, 6,12)
(5,7,7; 6, 6,4

(6,6, 6; 1,1, 9
(6, 6, 6; 1, 3, 3)
(6,6, 6;1,3,7
(6,6, 6; 1,5, 9

(6,6,6;1,7,7
(6,6, 6;3,3,5)

(6, 6, 6; 3, 5, 5)
(6,6, 6;5,5,5)

19 +++

+++ z

18 +++

+++ z

(1, 3,15; 2, 2, 0)

(1, 3,15; 6, 2, 0)

(2,8,8;3,3, 1

(1, 5,13; 2, 2, 0)

(2,8,8;3,5, 1)

(1, 5,13; 2, 4, 0)

(2,8,8;5,5, 1)

(1, 5,13; 4, 2, 0

(4, 4,10; 1, 1, 1

(1, 5,13; 4, 4, 0

(4, 4,10; 1, 1, 3)

(1, 5,13; 6, 2, 0)

(4, 4,10; 1, 1, 5)

(1, 5,13; 6, 4, 0)

(4,4,10; 1, 1, 7

(1, 7,11; 2, 2, 0)

(4, 4,10; 1, 1, 9)

(1, 7,11; 2, 6, 0)

(4, 4,10; 1, 1,11)

(1,9, 9 2,2, 0
(1,9, 9; 2, 4, 0)
(1,9, 9; 2, 6, 0
(1,9, 9; 2,8, 0
(1,9, 9; 4, 4, 0
(1,9, 9; 4,6, 0)

(3,3,13; 0, 2, 4

(4, 4,10; 1, 5, 1)

(4, 4,10; 1, 5, 7)

(4, 4,10; 1, 5, 9)

(4, 4,10; 3, 1, 9

(4, 4,10; 3, 3, 3)

(4, 4,10; 3, 3, 9

= 20 +++

+++ z

(4,6,8 1,1, 1)

(3, 3,13; 0, 2,12)
(3, 3,13; 2, 0, 2)

(4,6,8 1,1, 3)

1)

1,
(4, 4,12; 1, 1, 5)

1,

(4, 4,12;

(4,6,8; 1, 1,11)
(4,6,8; 1,5, 3
(4,6,8 1,7, 1)

(3, 3,13; 2, 0,10)

(4, 4,12; 1, 1, 9

(3, 3,13; 2, 2, 8)

(4, 4,12; 1, 1,13)

(3, 3,13; 2, 2,12)
(3,5,11; 2, 4, 0)

(4,6, 8; 3, 5,13)

(4,6, 8; 3,9, 3
(4,6, 8; 3, 9,13)
(4,6,8; 5, 1,3
(4,6,8;5,5,3)

(4, 4,12; 1, 5, 1)

(4, 4,12; 1, 5, 5)

(3, 5,11; 2, 4, 2)

(4, 4,12; 3, 1,11)

(3, 5,11; 4, 4, 0)

(4, 4,12; 3, 3,11)

(3, 5,11; 4, 4, 2)
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(3,9, 9; 4, 4,16)
(5, 5,11; 0, 4,10)
(5, 5,11; 0, 4,14)

(5, 5,11; 2, 0, 8

(4,6,10; 1, 1, 1)

= 21 +++

+++ z

(4, 6,10; 1, 1,13)

(4,6,10; 1, 7, 1)

(1, 3,17; 2, 2, 0)

(4, 6,10; 3, 5, 3)

(5, 5,11; 2, 0,12)

( 4, 6,10; 3, 5,15) (1, 3,17; 4, 2, 0)
(5, 5,11; 2, 2, 8)

( 4, 6,10; 3, 9,15)
(4, 6,10; 5, 1, 1)

(1, 3,17; 8, 2, 0)

(5, 5,11; 2, 4, 2)

(1, 5,15; 2, 2, 0)

(5, 5,11; 2, 4,10)

(1, 5,15; 2, 4, 0)
(5, 5,11; 2, 6, 2)

(4, 6,10; 5, 3,15)
(4, 6,10; 5, 5, 1)

(1, 5,15; 6, 2, 0)

(5, 5,11; 2, 6,10)
(5, 5,11; 4, 0,10)

(1, 5,15; 6, 4, 0)
(5, 5,11; 4, 2, 4)

(4, 6,10; 5, 5,13)
(4, 6,10; 5, 9, 3)

(1,7,13; 2, 2, 0)

(1, 7,13; 2, 6, 0)

(4,6,10; 7, 1, 1)

(1, 7,13; 4, 2, 0) (5, 5,11; 4, 2, 8)

(4, 6,10; 7, 3,15)
(4,8,8 1,1, 1)

(5, 5,11; 4, 4, 8)

(1, 7,13; 4, 6, 0)

(5, 5,11; 4, 4,10)

(5, 5,11; 4, 8, 4)

(1, 7,13; 6, 2, 0)

(4, 8,8;1, 1,13)

(4,8,8 1,7,3)

(1,7,13; 6, 6, 0)

(5,7,9;0,2, 4
(5,7,9;0,2,12)
(5,7, 9;0, 4,14)

(5,7,9;0, 6, 4
(5,7,9;2, 0,2
(5,7, 9;2, 2,4
(5,7,9; 2, 4, 4
(5,7,9; 2,6, 0
(5,7,9; 4,0, 2
(5,7, 9; 4, 0,14)

(5,7,9; 4,2, 2
(5,7,9; 4,6, 0

(5,7,9; 4, 6, 2)
(5, 7,9; 4, 6,14)
(5, 7,9; 4,10, 4)
(5,7, 9; 4,10,14)
(5,7,9; 6, 4, 4
(5,7,9; 6, 6, 0)
(5,7,9; 6, 6,12)
(5,7,9; 6, 6,14)
(5,7,9; 6,8, 2
(5,7,9; 6, 8,12)
(5,7,9; 6,10,14)

(1,9,11; 2, 2, 0)

(4,8,8 1,9, 1

(1,9,11; 2, 4, 0

(4,8, 8;1, 9,13

(4,8,8;3,3, 1

(1,9,11; 2, 6, 0)

(1,9,11; 2, 8, 0)

(4,8, 8;5,5,13)
(4,8,8;5,7,3)
(6,6,8 1,1, 1)

(3,3,15; 2, 2, 2)

(3, 3,15; 2, 2, 6)

(3, 3,15; 2, 2,14)

(3, 5,13; 2, 0, 2)

(6, 6,8 1,1, 3)

(6, 6, 8; 1, 1, 5)

(3, 5,13; 2, 4, 0)

(6,6,8;, 1,1, 7

(3,5,13; 4, 2, 0)

(6,6,8 1,1, 09

(3, 5,13; 4, 4,16)

(3, 5,13; 4, 6, 0)

(6, 6,8; 1, 1,11)
(6, 6,8; 1,5, 5)
(6, 6,8; 1, 5,11)

(6,6,8 1,9, 1)

(3, 5,13; 6, 4, 0)

(3, 5,13; 8, 4, 2)

(3, 7,11; 2, 2, 2)

(6,6,8 1,9, 7

(3, 7,11; 2, 6, 2)

(6,6,8; 31,9
(6,6,8;3,7,7)

(6, 6, 8; 3,11, 3)
(6,6, 8; 3,11, 9

(6,6,8 5, 1,7

(3, 7,11; 4, 2, 2)

(3, 7,11; 4, 4,16)

(3, 7,11; 4, 6, 2)

(3, 7,11; 4, 8,16)
(3,9,9;0, 2,2
(3,9, 9;2, 4, 0

(3,9,9; 2,8, 0

(6,6, 8; 5, 3,7
(6, 6,8, 5 5,7)
(6,6, 8; 5,11,7)
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7,7, 7; 4, 4, 8)
(7,7,7; 6, 6, 6)

(7,7, 7; 2, 6,10)

7,7, 7; 2,8, 8)
(7,7,7; 4, 4, 4

7,7, 7; 2, 2,2

7,7, 7; 2, 2, 6)
7,7, 7; 2, 2,10)

Appendix B: Our version of catalogue

(3,3,9;2, 2,8
(3,5,7; 2,4, 0

(3,3, 7;2, 2, 6)
(3,5,5;2, 4,0

(3,5, 5; 4, 4, 2)

= 7 +++

+++ z

)
)

2
0

(3,5, 7; 4, 4,10)
(5,5,5;0, 4,4
(5,5,5;2, 2,2

(5,5, 5;2, 2, 6)
(5,5, 5; 4, 4, 4)

(1, 3, 3;2, 2,0

= 14 +++

+++ z

= 9 +++

+++ Zz

(2, 2,10; 3, 1, 3)

(1,1,7; 2,0, 2
(1, 3, 5;2, 2,0

(3,3,3;2, 2,2

(2,6,6;3,3, 1
(2,6,6;3,5 1)
(4, 4,6;1, 1, 1)

= 16 +++

+++ z

(4, 4,6;1,1, 3

11 +++

+++ Z

(4, 4,6;1,1,5)

(4,4,6;1,1, 7 (2, 4,10; 3, 3, 1)

(1, 3,7;2, 2,0
(1,5, 5;2, 2,0

(1,5, 5; 2, 4, 0)
(3,3,5;0, 2, 4

(3,3, 5;2, 2, 4)

(2, 4,10; 5, 3,13)
(2,6, 8;3, 3,1
(2, 6, 8 3, 5,13)
(2,6,8; 5,3, 1
(4, 4,8;1,1, 1)

(4, 4, 6; 1,5, 1)

(4, 4, 6; 1, 5, 5)
(4, 4,6;3,1,5)
(4, 4,6; 3, 3,3
(4, 4, 6; 3, 3, 5)

(4, 4,8;1,1, 9

= 12 +++

+++ z

(4, 4, 8,1, 3, 5

= 15 +++

+++ z

(4, 4,8, 1,5, 1)

(2,4,6;3,3, 1
(4, 4,4 1,1, 1

(4, 4,8;3,1, 7

(1, 3,11; 2, 2, 0)

(4, 4,8;3,3,7
(4, 4, 8;, 3,7, 3)
(4,6,6;1,1, 1)

(1, 5,9; 2,2, 0
(1, 5,9; 2,4, 0
(1, 5,9; 4,2, 0
(1,5, 9; 4, 4, 0)
(1,7,7; 2,2, 0
(1,7,7; 2, 6, 0)
(3,3,9;0, 2, 4
(3,3,9;0, 2,8
(3,3,9;2,0,2
(3,3,9; 2,0, 4
(3,3,9; 2,0, 6)

(4, 4, 4; 1, 1, 5)

(4, 4, 4; 3, 3, 3

(4,6, 6;1, 1,9

= 13 +++

+++ z

(4,6,6;1,7,1)

(4, 6, 6; 3, 5, 3)
(4, 6, 6; 3, 5,11)
(4,6, 6;5,5,3)

(1, 1,11; 2, 0, 2)

(1,3, 9;2, 2, 0
(1, 3,9; 4, 2,0
(1,5,7;2,2, 0
(1,5,7;2, 4, 0)

(3,3,7;2, 2,2

= 17 +++

+++ z
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(4,6,8; 5 5,3)
(4,6, 8; 5, 5,11)

(4,6,8;5,7,1)

(5,5,7; 4,0, 6)
(5,5, 7; 4, 2,4

(5,5,7; 4,4, 4

(1, 1,15; 2, 0, 2)

(1, 3,13; 2, 2, 0)

(1, 3,13; 4, 2, 0)
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(6,6, 6;1, 1, 1)

= 18 +++

+++ z

(1, 5,11; 2, 4, 0

(6,6,6;1,1,9

(1,7, 9; 2, 2, 0
(1,7, 9; 2,6, 0
(1,7, 9; 4, 2, 0
(1,7, 9; 4, 6, 0)

(3, 3,11; 2, 2, 2)

(6,6, 6;1,3,3)
(6,6,6;1,3, 7
(6,6,6;1,5,9)

(6,6,6;1,7,7)
(6,6,6;3,3,5)

(6,6,6;3,3,7
(6, 6, 6; 3, 5, 5)

(6,6, 6;5,5,5)

(2,6,10; 3, 3, 1

(2, 6,10; 3, 5, 1)

(2, 6,10; 3, 5,15)
(2, 6,10; 5, 3,15)
(2, 6,10; 5, 5,15)
(2,8,8;3, 3,1
(2,8,8; 3,5, 1)

(3,3,11; 2, 2, 4

(3, 3,11; 2, 2,10)
(3,5,9; 2,0, 2
(3,5,9; 2, 4,0
(3,5,9; 4,0, 2
(3,5,9; 4, 2, 0)
(3,5,9; 4, 4, 2)
(3,5, 9; 4, 4,12)
(3,5,9; 4, 6, 0)

(38,7,7; 2, 2,2
(3,7,7; 2, 6, 2)
(3,7,7; 4, 4, 0)
(3,7, 7; 4, 4,12)

(3,7,7; 4,6, 0
(5,5,7;0,2,4

(5,5, 7;0, 2, 6)
(5,5,7;0, 2,8
(5,5,7;0, 4, 6)
(5,5, 7;0, 4,10)
(5,5, 7;2,0,2)
(5,5,7; 2,0, 4
(5,5,7; 2,0, 6)
(5,5,7; 2,0, 8
(5,5,7;2,2,8)
(5,5, 7;2, 4,2
(5,5,7; 2, 4, 6)

(5,5,7; 2,6, 2
(5,5,7; 2,6, 6)

(2,8,8;5,5, 1)

(4, 4,10; 1, 1, 1)

= 19 +++

+++ Z

(4, 4,10; 1, 1, 3)

(4, 4,10; 1, 1, 5)

(1, 3,15; 2, 2, 0)

(4, 4,10; 1, 1, 7

(1, 3,15; 6, 2, 0)

(4, 4,10; 1, 1, 9

(1,5,13; 2, 2, 0)

(4, 4,10; 1, 1,11)

(1,5,13; 2, 4, 0)

(4, 4,10; 1, 5, 1)

(1, 5,13; 4, 2, 0)

(4, 4,10; 1, 5, 7)

(1, 5,13; 4, 4, 0

(4, 4,10; 1, 5, 9

(1, 5,13; 6, 2, 0)

(4, 4,10; 3, 1, 9

(1, 5,13; 6, 4, 0)

(4, 4,10; 3, 3, 3)

(1, 7,11; 2, 2, 0)

(4, 4,10; 3, 3, 7)

(1, 7,11; 2, 6, 0)

(4, 4,10; 3, 3, 9

(1,9, 9;2, 2, 0
(1,9, 9; 2, 4, 0
(1,9, 9; 2, 6, 0
(1,9, 9; 2,8, 0
(1,9, 9; 4, 4, 0
(1,9, 9; 4, 6, 0)

(3,3,13; 0, 2, 4

(4, 4,10; 3, 7, 7)

(4,6,8 1,1, 1)

(4,6,8 1,1, 3)

(4,6, 8; 1, 1,11)
(4,6,8; 1,5, 3)
(4,6,8 1,7, 1)

(4,6, 8; 3, 5,13)

(4,6, 8;3,9, 3
(4, 6, 8; 3, 9,13)
(4,6,8; 5,1, 3)
(4,6,8;5,3, 1

(3, 3,13; 0, 2,12)
(3, 3,13; 2, 0, 2)

(3, 3,13; 2, 0,10)

(3, 3,13; 2, 2, 8)
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( 4, 6,10; 3, 3, 3)

(5,7,7;2,8, 0

(5,7, 7; 2,8, 2)
(5,7,7;4, 4,2

(5,7,7; 4,6, 4
(5,7,7; 4, 6,12)

(5,7,7;6, 6,2

(3, 3,13; 2, 2,12)

(4, 6,10; 3, 5, 3)

(3, 3,13; 4, 2, 4

(4, 6,10; 3, 5,15)
(4, 6,10; 3, 9,15)

(4, 6,10; 5, 1, 1)

(3,5,11; 2, 4, 0)

(3, 5,11; 2, 4, 2)

(3, 5,11; 4, 4, 0)

( 4, 6,10; 5, 3,15)
(4, 6,10; 5, 5, 1)

(3, 5,11; 4, 4, 2)

(5,7,7;6, 6,4

(3, 5,11; 4, 4,14)

(3,5,11; 6, 4, 0)

(4, 6,10; 5, 5,13)
(4, 6,10; 5, 7,13)

( 4, 6,10; 5, 9, 3)

= 20 +++

+++ Z

(3,7,9;2,0,2
(3,7, 9;2, 4, 2)

(3,7,9; 4,0, 2
(3,7,9; 4,2, 0

(3,7,9; 4, 4, 0)
(3,7,9; 4, 4, 2)
(3,7, 9; 4, 4,14)
(3,7,9; 4, 6, 0)
(3,7,9; 4, 6, 2)
(3,7,9; 4,8, 0
(3,7,9; 4, 8,14)
(5,5,9; 0, 4, 4)
(5, 5,9; 0, 4, 6)
(5, 5,9; 0, 4,12)
(5,5,9;2,0,2
(5, 5,9; 2, 0,10)
(5,5,9; 2, 2,2
(5, 5,9; 2, 2,10)
(5, 5,9; 2,6, 2)
(5,5,9; 4, 0, 4
(5,5,9; 4, 0, 8)
(5,5,9; 4, 4, 4)
(5, 5,9; 4, 4, 8)
(5,5,9; 4, 8, 4
(5,7,7;0, 2,2
(5,7, 7; 0, 2,10)
(5,7, 7; 0, 4,12)
(5,7,7; 2,2, 4)
(5,7, 7; 2, 2,10)
(5,7,7; 2, 6, 0)
(5,7,7; 2,6, 4)

(4,6,10; 7, 1, 1)

(2, 2,16; 3, 1, 3)

(4, 6,10; 7, 3,15)
(4, 6,10; 7, 5, 3)

(2, 2,16; 3, 1, 9)

(2, 4,14; 3, 3, 1)

(4,8,8 1,1, 1)

(2, 4,14; 5, 3,17)

(4, 8,8;1, 1,13)

(4,8,8 1,7, 3)

(2,6,12; 3, 3, 1)

(2, 6,12; 3, 5,17)

(2,6,12; 5, 3, 1)

(4,8,8 1,9, 1

(4,8,8;1,09,13)

(4,8,8; 3,3, 1

(2, 6,12; 5, 5,17)

(2,6,12; 7, 3, 1)

(4,8,8;3,5, 1)

(2, 8,10; 3, 3, 1)

(4,8, 8;3,7,15)

(4,8,8;5,5, 1)

(2,8,10; 3, 5, 1)

(2,8,10; 3, 7, 1

(4, 8, 8; 5, 5,13)

(4,8,8 5,7, 1)

(2, 8,10; 5, 3,17)
(2, 8,10; 5, 5,17)
(2, 8,10; 5, 7,17)

(4,8,8;5,7,3)
(6,6,8 1,1, 1

(4,4,12; 1,1, 1)

(6,6,8 1,1, 3)

(4, 4,12; 1, 1, 5)

(6, 6,8 1,1, 5)

(4, 4,12; 1, 1, 9

(6, 6,8 1, 1,7

(4, 4,12; 1, 1,13)

(6,6,8 1,1, 9

(4, 4,12; 1, 5, 1)

(6, 6, 8 1, 1,11)
(6, 6,8 1, 3,7
(6, 6,8 1,3, 9
(6, 6,8, 1,5, 5)

(4, 4,12; 1, 5, 5)

(4, 4,12; 3, 1, 5)

(4, 4,12; 3, 1,11)

(4, 4,125 3, 3, 3)

(6,6, 8 1, 5,11)
(6,6,8 1,7, 7
(6,6,8 1,9, 1)

(4, 4,125 3, 3,11)

(4, 4,12; 3, 7, 3)

(4, 6,10; 1, 1, 1)

(6,6,8 1,9, 7
(6,6,8;, 1,9, 9

(4, 6,10; 1, 1,13)

(4,6,10; 1, 7, 1)
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(3, 3,15; 2, 2,14) (5, 5,11; 2, 4, 2)

(6,6,8; 31,9

(6,6,8;3,3,9
(6,6,8 3,5, 7

(6, 6, 8; 3,7, 3)
(6,6,8;,3,7,7)
(6, 6, 8; 3,11, 3)
(6, 6, 8 3,11, 5)
(6, 6, 8 3,11, 7)
(6, 6, 8; 3,11, 9)

(6,6,8 5, 1,7

(6,6,8;5,3,5)
(6,6,8 5, 3,7

(6,6,8; 5,5, 7
(6, 6, 8; 5,11, 7)

(5, 5,11; 2, 4, 6)

(3, 5,13; 2, 0, 2)

(5, 5,11; 2, 4,10)

(5, 5,11; 2, 6, 2)

(3,5,13; 2, 4, 0)

(3, 5,13; 4, 2, 0)

(5, 5,11; 2, 6, 8)

(3, 5,13; 4, 4,16)

(3, 5,13; 4, 6, 0)

(5, 5,11; 2, 6,10)
(5, 5,11; 4, 0,10)

(5,5,11; 4, 2, 4)

(3,5,13; 6, 4, 0)

(3,5,13; 8, 4, 2)

(5, 5,11; 4, 2, 8)

(3, 7,11; 2, 2, 2)

(5, 5,11; 4, 4, 8)

(3, 7,11; 2, 6, 2)

(5, 5,11; 4, 4,10)

(5, 5,11; 4, 8, 4)

(3, 7,11; 4, 2, 2)

(3, 7,11; 4, 4, 0

(5, 5,115 4, 8, 8

(3, 7,11; 4, 4,16)

(3, 7,11; 4, 6, 0)

(5,7,9;0, 2,2

(5,7,9;0, 2, 4
(5,7, 9; 0, 2,12)

(5, 7,9; 0, 4,14)
(5,7,9; 0, 6, 4)
(5,7,9;2,0,2
(5,7,9; 2, 0,12)
(5,7,9; 2,2, 4

(3, 7,11; 4, 6, 2)

(3, 7,11; 4, 8,16)

(3, 7,11; 6, 2, 2)

= 21 +++

+++ z

(3, 7,11; 6, 4, 0)

(1, 1,19; 2, 0, 2)

(3, 7,11; 6, 6, 0)

(1, 1,19; 2, 0, 6)

(3,9,9;0,2,2
(3,9,9;0, 4, 2

(1, 3,17; 2, 2, 0)

(1, 3,17; 4, 2, 0)
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(5,7,9; 4, 0, 2)
(5,7, 9; 4, 0,14)
(5,7, 9; 4, 2, 2
(5,7,9; 4, 6, 0)
(5,7,9; 4, 6, 2)
(5,7,9; 4, 6, 4
(5,7, 9; 4, 6,14)
(5,7, 9; 4,10, 4)
(5, 7,9; 4,10,14)
(5,7,9; 6,0, 4)
(5,7,9; 6, 4, 0)
(5,7,9; 6, 4, 4
(5,7,9; 6, 6, 0)

(3,9,9; 4,8, 2
(3,9, 9; 6,6, 2

(5, 5,11; 0, 2, 4

(1, 7,13; 2, 2, 0)

(1, 7,13; 2, 6, 0)

(1, 7,13; 4, 2, 0)

(5, 5,11; 0, 2,12)
(5, 5,11; 0, 4,10)
(5, 5,11; 0, 4,14)

(5, 5,11; 2, 0, 2)

(1, 7,13; 4, 6, 0)

(1, 7,13; 6, 2, 0)

(1, 7,13; 6, 6, 0)

(1,9,11; 2, 2, 0)

(5, 5,11; 2, 0, 6)

(1,9,11; 2, 4, 0

(5,5,11; 2, 0, 8)

(1,9,11; 2, 6, 0)

(5, 5,11; 2, 0,10)
(5, 5,11; 2, 0,12)

(5, 5,11; 2, 2, 8)

(1,9,11; 2, 8, 0)

(3, 3,15; 2, 0, 4)

(3, 3,15; 2, 2, 2)

(5, 5,11; 2, 2,12)

(3, 3,15; 2, 2, 6)
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(7,7, 7; 2, 2,10)
c7,7,7; 2, 6,10)
(7,7,7; 2,8, 8)
(7,7, 7; 4, 4, 4
(7,7, 7; 4, 4, 8

(7,7,7; 4, 6, 6)

(7,7, 7; 0, 2,10)

C7,7,7; 0, 4, 4)
(7,7,7; 0, 6, 6)
C7,7,7; 2, 2, 2)
(7,7,7; 2, 2, 4
(7,7,7; 2, 2, 6)

(5,7,9; 6, 6,12)
(5,7,9; 6, 6,14)
(5,7,9; 6,8, 2)
(5,7,9; 6, 8,12)
(5,7,9; 6,10,12)
(5,7,9; 6,10,14)

¢(7,7,7;0, 2,2

(7,7,7; 6,6, 6)

(7,7,7;2,2,8)
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