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USING TRACE TO IDENTIFY

IRREDUCIBLE QUADRATIC POLYNOMIALS

Ondrej Šuch

Abstract. In this note we prove a way to check that a quadratic polynomial is
irreducible using a trace map and state a conjecture that this method works also for
higher degree polynomials

Introduction

In explicit computer computations with finite fields it is often important to find an
irreducible polynomial of a given degree. While searching for such polynomial it is
crucial to have an algorithm to find out whether a given polynomial is irreducible.
This problem has been considered by many authors e.g. [2], Problem 7.1. In this
note we present a novel way to check whether a quadratic polynomial is irreducible.

Consider a quadratic polynomial

f(x) = x2 − ax− b

over a finite field Fp = Z/pZ of characteristic p. If f is an irreducible polynomial,
then its splitting field E is a Galois extension (for definition and general properties
used here see e.g. [1]) of Fp of degree 2 and cardinality p2. The Galois group Γ =
Gal(E/Fp) of this extension is of order 2, generated by Frobenius automorphism

Frob : x 7→ xp. Its square Frob2 is the trivial automorphism of E/Fp, that is it

fixes all elements of E, so that xp2

= x for all elements of E.
For any element x in E the sum of all elements in the orbit of x by the action of

Galois group defines a linear map called trace

(1) traceE/Fp
: x 7→ x+ Frob(x) = x+ xp.

Since the orbit of x is permuted by the generator of Γ, the image of any element
under trace map in fact lies in Fp. In this note we ask the reverse. Namely, assume
that for any element x in the Fp module Fp[x]/f(x), the trace map defined by (1)
lies in Fp. Does it follow that f is an irreducible polynomial?

To this end we prove the following.
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Proposition 1.

Let M = F[x]/f(x), where F is a finite field of odd characteristic p and car-
dinality q. Suppose that x + xq lies in the submodule F of M . Then f(x) is an
irreducible polynomial.

Proof of main result.

We start with the following lemma.

Lemma 2.

Let M = Z[x]/f(x). Then in M for any odd n ≥ 3 we can write

xn = Pn(a, b)x+Qn(a, b)

where Pn when considered as a polynomial in b is monic and has degree
n− 1

2
.

Proof. We proceed by induction proving a somewhat stronger statement. Namely,
we also claim that Qn has degree ≤ n−1

2 in b. For n = 3 we compute directly

x3 = x · x2 = x · (ax+ b)

= ax2 + bx

= (ax + b)a+ bx

= x · (a2 + b) + ab

Now suppose that induction hypothesis holds for an odd n. Using relation x2 =
ax+ b we compute

xn+2 = x2 · xn = (ax+ b) · (Pn(a, b)x+Qn(a, b))

= x2aPn(a, b) + x(bPn(a, b) + aQn(a, b)) + bQn(a, b)

= (ax+ b)aPn(a, b) + x(bPn(a, b) + aQn(a, b)) + bQn(a, b)

= x · (a2Pn(a, b) + bPn(a, b) + aQn(a, b)) + baPn(a, b) + bQn(a, b)

This shows existence of Pn+1 and Qn+1, explicitly

Pn+1 = a2Pn + bPn + aQn

Qn+1 = baPn + bQn

By induction hypothesis

degb(a
2Pn) =

n− 1

2

degb(bPn) = 1 +
n− 1

2

degb(aQn) ≤
n− 1

2

so that

degb(Pn+1) = 1 +
n− 1

2
=

(n+ 2)− 1

2
.
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and since bPn is monic, so is Pn+1. Similarly, it follows that degb(Qn+1) ≤
(n+2)−1

2
completing induction step. �

Proof of Proposition 1. Let p be an odd prime, and let us now count the number
of points over F on the affine curve C defined by Pq(x, y) = 0. On one hand, for

any fixed x by Lemma 2 there are at most q−1
2 values of y such that Pq(x, y) = 0.

Since there are q possible values of a, the number of F-valued points is ≤ q(q−1)
2 .

On the other hand, if f(x) is irreducible then Pq(x, y) = 0 by properties of trace
discussed in the beginning. The number of monic quadratic irreducible polynomials
equals to the difference of numbers of monic polynomials over F and those which are
reducible. The former number is obviously q2, the latter is q +

(

q
2

)

. It follows that

the number of irreducible quadratic polynomials is q(q−1)
2 and hence the number of

F-valued points on C is ≥ q(q−1)
2 .

Taking into account both bounds, it follows that the number of F-valued points

on C is precisely q(q−1)
2 and they are in one-to-one correspondence with irreducible

quadratic polynomials. �

Comparison with other algorithms

Of course, there are many other algorithms to check if a given quadratic poly-
nomial is irreducible. For instance, in [2, Theorem 7.5] an algorithm is shown with
complexity O(log q) (of operations in F) to find out if a given polynomial is irre-
ducible. Using [2,Algorithm 5.2] we can compute the trace in O(log q) steps and
conclude that our algorithm also can be carried out in O(log q) steps.

However, for the special case of checking irreducibility of quadratic polynomial
there is a more direct algorithm, which we now explain. Assuming the characteristic
of F is 6= 2, we can write

x2 − ax− b = (x− a/2)2 − b−
a2

4
= 0

so that f(x) has solution if and only if b + a2

4 is a square in F, which happens if

and only if the discriminant ∆(f) = a2 + 4b is a square in F.
If we denote by n the degree deg(F : Fp), then one defines the norm map

NF/Fp
(x)

NF/Fp
(x) := x · xp · · ·xpn−1

= x
pn−1
p−1 .

It is a homomorphism of the multiplicative group F× of invertible elements in F to
F×

p . Composing the norm map with Legendre symbol on Z/pZ

(

a

p

)

= a
p−1
2

we obtain a multiplicative map χ2 : F× → {−1, 1} given by

((2)) χ2(a) :=

(

NF/Fp
(a)

p

)

= a
pn−1

2

57



The group F× is cyclic, of order pn − 1 [1, Theorem 12.3]. Thus a in F is a square
if and only if χ2(a) 6= −1. Since exponentiation to k-th power takes O(log(k))
operations, checking whether ∆(f) is square takes using (2) at most O(log q) op-
erations. Thus even this specialized algorithm, taking advantage of the fact that
f(x) is of degree 2, does not lead to (an asymptotic) speed up of finding out if the
given polynomial is irreducible.

Conclusion

In conclusion we make the following conjecture concerning higher degree poly-
nomials.

Conjecture 3.

A polynomial f(x) is irreducible over F if and only if the trace map is of rank 1.
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