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ON THE STRUCTURE OF POLYHEDRAL GRAPHS

WITH PRESCRIBED EDGE AND DUAL EDGE WEIGHT

Barbora Ferencová and Tomáš Madaras

Abstract. We consider families of polyhedral graphs with prescribed minimum
vertex degree δ, minimum face degree ρ, minimum edge weight w and dual edge
weight w∗. We determine all quadruples (δ, ρ, w,w∗) for which the asociated family
is nonempty.

Introduction

Throughout this paper we consider connected plane graphs without loops or
multiple edges. For a plane graph G, V = V (G), E = E(G) and F = F (G) denotes
the set of its vertices, edges and faces, respectively. A k-vertex (k-face) will stand
for a vertex (a face) of degree k, a ≥ k-vertex/≤ k-vertex (≥ k-face/≤ k-face) for
those of degree at least k/at most k. For an edge e being incident with an a-vertex
and a b-vertex, and with a c-face and a d-face, the type of e is (a, b, c, d) where
a ≤ b, c ≤ d. The weight w(e) of an edge e = uv is the sum degG(u) + degG(v).
The edge weight w(G) of a plane graph G is equal to min

uv∈E(G)
{degG(u) + degG(v)};

the dual edge weight w∗(G) of G is the edge weight of the dual of the graph G. Let
Gc(δ, ρ, w, w∗) be the family of all c-connected plane graphs with minimum vertex
degree at least δ, minimum face degree at least ρ, edge weight at least w and dual
edge weight at least w∗; for c = 3, we will use the notation G(δ, ρ, w, w∗).

It is well known that every plane graph contains a vertex of degree at most 5.
Among numerous generalizations of this result (see [6]), the fundamental role plays
the Kotzig’s theorem [7] stating that for each polyhedral graph G, w(G) ≤ 13, and
if G is of minimum degree at least 4, then w(G) ≤ 11; both these bounds are sharp.
Thus, the family of all polyhedral graphs with minimum edge weight at least 14
(and of the ones with minimum degree at least 4 and minimum edge weight at least
12) is empty. Considering the dual graphs, we obtain the analogical results for dual
weight constraints. Note that the Kotzig’s theorem provides no information about
degrees of two faces incident with an edge that attains the minimum weight in a
graph, but there are generalisations of theorem taking this aspect into account. For
example, in [1] Borodin extended the Kotzig’s result showing that each normal plane
map (that is, a plane pseudograph having no vertices or faces of degree less than
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three) contains either a 3-face incident with an edge of weight at most 13, or a 4-face
incident with an edge of weight at most 8, or else a 5-face incident with an edge of
weight 6; all these bounds being sharp. Another partial results are contained in the
classical paper [8]. It is also possible to consider some combinations of constraints
based on minimum vertex degree, face degree, edge weight and dual edge weight;
to our knowledges, the simultaneous combinations of all four mentioned constraints
were not studied in deeper details.

The aim of this paper is give the complete characterization of quadruples
(δ, ρ, w, w∗) for which the family G(δ, ρ, w, w∗) is empty. The Euler theorem implies
that (4, 4, 8, 8) yields the empty family. From the Kotzig theorem, it follows that
for quadruples (3, 3, 14, 6), (4, 3, 12, 6), the corresponding families are empty, and
from [L] follows the emptiness of families determined by quadruples (4, 3, 8, 9) and
(3, 5, 7, 10). Using the duality, we get that the corresponding families are empty
also for (3, 3, 6, 14), (3, 4, 9, 8), (3, 4, 6, 12), (5, 3, 10, 7).

We prove

Theorem 1. The families G(3, 3, 7, 10),G(3, 3, 8, 9),G(3, 4, 7, 9) are empty.

In each of three cases of theorem, we proceed by contradiction, thus, assuming
the non-emptiness of specified family, we consider its representant G with specified
minimum vertex degree, face size, edge and dual edge weight. At this graph G,
the discharging method is used. We define the charge c : V ∪ E ∪ F → Z by the
following assignments:

(∀v ∈ V ) c(v) = degG(v) − 6

(∀α ∈ F ) c(α) = 2 · degG(α) − 6

(∀e ∈ E) c(e) = 0.

From the Euler Theorem, it follows that
∑

x∈V ∪E∪F

c(x) = −12.

Next, we define the local redistribution of charges between the elements of G such
that the total sum of charges remains the same. This is performed by certain rules
which specify the charge transfers from elements to another elements in specific
situations. After such redistribution, we obtain a new charge c̃ : V ∪ E ∪ F → Q.
Then, we prove that for any element x ∈ V ∪E∪F , c̃(x) ≥ 0 (hence,

∑
x∈V ∪E∪F

c̃(x) ≥

0 ). This contradiction shows that G cannot exist.

The family G(3, 3, 7, 10)

The discharging rules are the following:

Rule 1: Each k-vertex x sends c(x)
k to each incident edge.

Rule 2: Each k-face α, k 6∈ {7, 8, 9, 10, 11} sends c(α)
k to each incident edge.

Rule 3: Each l-face β, l ∈ {7, 8, 9, 10, 11} sends to each incident edge e of type
(a, b, c, d) the following charge:

(a) 3
2 if a = 3, 3 ≤ c ≤ 4,

(b) 4
5 if a = 3, c = 5,

(c) 3
4 if a = 3, c ≥ 6,

(d) 1 otherwise.
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For proving the nonnegativity of final charges, firstly observe that all vertices
and all k-faces, k 6∈ {7, 8, 9, 10, 11} are discharged to zero. Now we analyze the final
charge of the remaining faces and edges.

1. Let β be an l-face, 7 ≤ l ≤ 11. Then β is incident with at most five 3-vertices
(since w(G) ≥ 7).

(a) If β is not incident with a 3-vertex then c̃(β) ≥ 2l − 6− l · 1 = l − 6 > 0 by
Rule 3(d).

(b) Let β be incident with exactly t 3-vertices, 1 ≤ t ≤ 5 . Then 2t transfers
from β are by Rule 3(a), (b), or (c), and the remaining ones are by Rule
3(d). Moreover, for transfers through a pair of edges of β with common
3-vertex, Rule 3(a) may be used only with Rule 3(c) (since w∗(G) ≥ 10).
From this fact we have that the maximum charge transferred from β is in
the case when each of Rules 3(a) and 3(c) is used t times; then c̃(β) ≥
2l − 6 − t 3

2 − t 3
4 − (l − 2t) · 1 = l − 6 − t

4 . Hence, c̃(β) ≥ 0 for t ≥ 4; for
t = 5, we have l ∈ {10, 11} and so c̃(β) > 0.

2. Let e be an edge of G of the type (a, b, c, d); note that a + b ≥ 7 since w(G) ≥ 7.

(a) If a = 3, 3 ≤ c ≤ 4, 7 ≤ d ≤ 11, then c̃(e) ≥ −1 − 1
2 + 3

2 = 0 by Rules 1 and
3(a).

(b) If a = 3, 3 ≤ c ≤ 4, d ≥ 12, then c̃(e) ≥ −1 − 1
2 + 2·d−6

d ≥ 0 by Rules 1 and
2.

(c) If a = 3, c = 4, d = 6, then c̃(e) ≥ −1− 1
2 + 1

2 + 2·6−6
6 = 0 by Rules 1 and 2.

(d) If a = 3, c = 5, 5 ≤ d ≤ 6, then c̃(e) ≥ −1 − 1
2 + 4

5 + 2·d−6
d > 0 by Rules 1

and 2.
(e) If a = 3, c = 5, 7 ≤ d ≤ 11, then c̃(e) ≥ −1 − 1

2 + 4
5 + 4

5 > 0 by Rules 1, 2
and 3(b).

(f) If a = 3, c = 5, d ≥ 12, then c̃(e) ≥ −1− 1
2 + 4

5 + 2d−6
d > 0 by Rules 1 and 2.

(g) If a ≥ 3, c ≥ 6, d ≥ 6, then c̃(e) ≥ −1 − 1
2 + 1 + 3

4 > 0 by Rules 1 and 2 (or
3(c) or 3(d)).

The family G(3, 3, 8, 9)

The discharging rules are the following:

Rule 1: Each k-vertex x sends c(x)
k to each incident edge.

Rule 2: Each k-face α, k 6∈ {6, 7} sends c(α)
k to each incident edge.

Rule 3: Each k-face β, k ∈ {6, 7} sends to each incident edge e of type (a, b, c, d)
the following charge:

(a) 6
5 if a = 3, b ≥ 5, 3 ≤ c ≤ 4,

(b) 1 if a ≥ 4, b ≥ 4, c ≥ 3,
(c) 3

5 if a = 3, b ≥ 5, c ≥ 5.

Like in previous proof, all vertices and all k-faces, k 6∈ {6, 7} are discharged to
zero. Now we analyze the final charge of the remaining faces and edges.]

1. Let β be an l-face, 6 ≤ l ≤ 7. Then β is incident with at most three 3-vertices
(since w(G) ≥ 8).

(a) If β is not incident with a 3-vertex then c̃(β) ≥ 2l − 6− l · 1 = l − 6 ≥ 0 by
Rule 3(b).
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(b) Let β be incident with exactly t 3-vertices, 1 ≤ t ≤ 3 . Like in previous
proof, 2t transfers from β are by Rule 3(a) or (c), and the remaining ones are
by Rule 3(b). Again, for transfers through a pair of edges of β with common
3-vertex, Rule 3(a) may be used only with Rule 3(c) (since w∗(G) ≥ 9); this
yields that the maximum charge transferred from β is in the case when each
of Rules 3(a) and 3(c) is used t times. Hence, c̃(β) ≥ 2l− 6− 6

5 t− 3
5 t− (l−

2t) · 1 = l − 6 + t
5 > 0.

2. Let e be an edge of G of the type (a, b, c, d); as w(G) ≥ 8, we have a + b ≥ 8.

(a) If a = 3, b ≥ 5, 4 ≤ c ≤ 5, d = 5 then c̃(e) ≥ −1 − 1
5 + 4

5 + 1
2 = 1

10 > 0 by
Rules 1 and 2.

(b) If a ≥ 4, b ≥ 4, c ≥ 4, d ≥ 5 then c̃(e) ≥ 2 ·
(
− 1

2

)
+ 4

5 + 1
2 = 3

10 > 0 by Rules
1 and 2.

(c) If a = 3, b ≥ 5, 3 ≤ c ≤ 4, 6 ≤ d ≤ 7 then c̃(e) ≥ −1− 1
5 + 6

5 = 0 by Rules 1
and 3(a).

(d) If a ≥ 4, b ≥ 4, c ≥ 3, 6 ≤ d ≤ 7 then c̃(e) ≥ 2 ·
(
− 1

2

)
+ 1 = 0 by Rules 1 and

3(b).
(e) If a = 3, b ≥ 5, c = 5, 6 ≤ d ≤ 7 then c̃(e) ≥ −1 − 1

5 + 4
5 + 3

5 = 1
5 > 0 by

Rules 1, 2 and 3(c).
(f) If a = 3, b ≥ 5, 6 ≤ c ≤ 7, 6 ≤ d ≤ 7 then c̃(e) ≥ −1− 1

5 + 2 · 3
5 = 0 by Rules

1 and 3(c).
(g) If a = 3, b ≥ 5, c ≥ 3, d ≥ 8 then c̃(e) ≥ −1 − 1

5 + 2·8−6
8 = 1

20 > 0 by Rules
1 and 2.

(h) If a ≥ 4, b ≥ 4, c ≥ 3, d ≥ 8 then c̃(e) ≥ 2 · −1
2 + 2·8−6

8 = 1
4 > 0 by Rules 1

and 2.

The family G(3, 4, 7, 9)

The discharging rules are the following:

Rule 1: Each k-vertex x sends c(x)
k to each incident edge.

Rule 2: Each k-face α, k 6= 5 sends c(α)
k to each incident edge.

Rule 3: Each 5-face β sends to each incident edge e of type (a, b, c, d) the following
charge:

(a) 1 if a = 3, b ≥ 4, c = 4,
(b) 3

4 if a = 3, b ≥ 4, c ≥ 5,

(c) 1
2 if a ≥ 4, b ≥ 4, c ≥ 4.

All vertices and all faces except a 5-face are discharged to zero. Consider the
final charge of 5-faces and edges:
1. Let β be a 5-face. If β is not incident with a 3-vertex then c̃(β) ≥ 2 ·5−6−5 · 12 =
3
2 > 0. Otherwise, β is incident with t 3-vertices, 1 ≤ t ≤ 2. Again, due to the
fact that w∗(G) ≥ 9, for transfers through a pair of edges of β sharing common
3-vertex, Rule 3(a) may be used only in the combination with Rule 3(c). Thus,
c̃(β) ≥ 2 · 5 − 6 − 1 · t − 3

4 · t − (5 − 2t) 1
2 = 3

2 − 3t
4 ≥ 0.

2. Let e be an edge of G of the type (a, b, c, d); as w(G) ≥ 7, a + b ≥ 7.

(a) If a = 3, b ≥ 4, c = 4, d ≥ 5 then c̃(e) ≥ −1 − 1
2 + 1 + 1

2 = 0 by Rules 1, 2
and 3(a).

(b) If a = 3, b ≥ 4, c = 5, d ≥ 5 then c̃(e) ≥ −1 − 1
2 + 2 · 3

4 = 0 by Rules 1 and
3(b).
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(c) If a ≥ 4, b ≥ 4, c ≥ 4, d ≥ 5 then c̃(e) ≥ 2 ·
(
− 1

2

)
+ 2 · 1

2 = 0 by Rules 1 and
3(c).

Fig. 1 Fig. 2

Concluding remarks

1. Concerning the quadruples (3, 3, 6, 13), (3, 3, 7, 9), (3, 3, 8, 8), (3, 4, 6, 11), (3, 4, 7, 8)
and (3, 5, 6, 11) (and the quadruples derived from them by swapping the first entry
with the second one, and the third with the fourth one), it is easy to show that the
corresponding families are nonempty (and, in fact, infinite); the examples are: the
truncated dodecahedron, the graph of Fig. 1, the icosidodecahedron, the dual of
the graph of Fig. 2, the rhombic dodecahedron and the truncated icosahedron (for
the names of these polyhedra, see [9]). In this sense, our results are best possible.
The diagram on Fig. 3 presents the hierarchy of all nonempty families generated
by quadruples (δ, ρ, w, w∗) under the set inclusion partial ordering.

Fig. 3
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2. The Kotzig theorem was further generalized in many ways, one of which con-
sidered, for the specified family of polyhedral graphs, the existence of longer paths
with the degrees of their vertices bounded above by a finite constant that depends
only of the specified family and of path length; such paths are called light. For the
related results regarding various families, see [2], [3], [4] or [5]. In the connection
with the results presented in this paper, one may consider, for given integer k ≥ 1,
the families of polyhedral graphs with prescribed weight of i-paths and dual i-paths
for all i ∈ {1, . . . , k}. To our knowledge, currently there are no results involving
both normal and dual weights for k ≥ 3.
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5 (1955), 111–113.

8. H. Lebesgue, Quelques consequences simples de la formule d’Euler, J. Math. Pures Appl 19
(1940), 19–43.

9. Eric W. Weisstein., ”Uniform Polyhedron.”, From MathWorld–A Wolfram Web Resource.,
http://mathworld.wolfram.com/UniformPolyhedron.html.

Institute of Mathematics, Faculty of Sciences; University of P. J. Šafárik;
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