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Abstract. Following on from results of Hofmann [27], we investigate the extension
of the theory of natural dualities to quasivarieties generated by finite structures that
can have operations, partial operations and relations in their type. It turns out that
the usual proofs of the Second Duality Theorem, the Duality Compactness Theorem
and the NU Duality Theorem extend to this setting with only minor changes. We
present simple proofs of Two-for-One Full Duality and Strong Duality Theorems, and
show how our techniques can be applied to yield new dualities from known strong
dualities by simply swapping the topology from one side to the other.

While developing the theory of natural dualities, the author and his various
coauthors made a conscious decision to aim the theory at those who use universal
algebraic ideas, for whom a duality may be a useful tool; see, for example, Davey
and Werner [20, 21, 22], Davey and Priestley [18], Clark and Davey [5] and Pitkethly
and Davey [30]. This required a careful choice of an appropriate level of generality
for both the starting algebraic category A and the topological dual category X. To
maximise the algebraic content we decided to concentrate on the case where A was
an ISP-closed class of algebras generated by a single finite (total) algebra. Later,
we extended the theory to include multi-sorted dualities, where A is an ISP-closed
class generated by a finite set of finite algebras; see [18] and [5, Chapter 7]. We were
aware that the restriction to finite generating algebras was not necessary; see, for
example, Davey [12], the appendix of Davey and Werner [20], Davey and Werner [21,
22], Davey and Priestley [18], and Clark and Davey [5, Exercise 2.9]. Nevertheless,
we felt that the theory for finitely generated classes was sufficiently rich to warrant
special attention. Based on our experience with many examples, we chose the dual
category X to be the IScP

+-closed class generated by a finite topological structure
whose type allowed finitary total operations, partial operations and relations.

The lack of symmetry between the allowable types of structures on the original
algebraic side and on the dual topological side was intentional but to a large extent
unnecessary. Much of the theory goes through if we allow total operations, par-
tial operations and relations on both sides. The first development in this direction
was by Hofmann [27], who presented a generalisation of the Duality Compact-
ness Theorem and a Two-for-One Full Duality Theorem. Hofmann’s results make
an important contribution to the theory of natural dualities. He generalises the

2000 Mathematics Subject Classification. Primary: 08A05; Secondary: 08A55, 06D50, 08C15.
Key words and phrases. Natural duality, partial structure, topological partial structure.
Submitted: March 13, 2007

3



basic setting of natural dualities by allowing both the “algebraic” and “topologi-
cal” categories to be determined in an appropriate way by finitary limit sketches.
(See [27] for the details and Adámek and Rosický [1] for the required background
on sketches.) In this way, Hofmann eliminates the asymmetry inherent in the orig-
inal theory of natural dualities. In particular, his approach allows structures with
operations, partial operations and relations on both sides of the duality.

Hofmann’s results suggest many avenues for further investigation within the
theory of natural dualities. For example,

(1) extend results in the original theory to the sketch-based setting,
(2) extend results in the original theory to the case where the algebraic category A

and the topological category X consist of structures, with operations, partial
operations and relations,

(3) give examples of dualities for categories that are truly sketch-based and not
covered by the extension of the theory to classes of structures,

(4) give new examples of dualities for classes of structures.
This paper addresses (2) and (4). These are important as they make the theory,
expanded to structures, available to users of natural dualities without requiring
them first to absorb the theory of sketches. Moreover, work on (2) and (4) will set
the boundaries of the theory of natural dualities for structures and thereby indicate
what might be possible in (1) and (3).

As a contribution to (2), we present the basics of the theory of natural dualities
for structures. We show that a generalisation of the Second Duality Theorem
(Davey and Werner [20, 1.16]), the version of Hofmann’s Duality Compactness
Theorem that applies to structures, and a generalisation of the NU Duality Theorem
(Davey and Werner [20, 1.19]) can all be obtained by easy modifications of the proofs
given in Clark and Davey [5]. We also present proofs of Hofmann’s Two-for-One
Full Duality Theorem for structures and of a generalisation of Clark and Davey’s
Two-for-One Strong Duality Theorem [4]. As a contribution to (4), we close the
paper with a number of applications to quasivarieties of structures of the two-for-
one duality theorems and an application of the generalised NU Duality Theorem.

1. Structures of type �G, H, R�

This section is a brief refresher on quasivarieties and universal Horn classes
generated by finite structures. We present just enough to meet our needs. For
detailed treatments in the setting of partial algebras and more general categories
we refer to Burmeister [3] and Adámek and Rosický [1], respectively.

We begin with sets G of finitary total operation symbols, H of finitary partial
operation symbols, and R of finitary relation symbols. The total operation symbols
may be nullary, but, to remove unnecessary complications, we shall assume that
the arity of each partial operation and relation symbol is positive. A structure,

A = �A; GA, HA, RA�,

of type �G, H, R� is defined in the usual way; see Clark and Davey [5]. If H is
empty, then we refer to A as a total structure; if both H and R are empty, then we
simply refer to A as an algebra. We allow the underlying set A of A to be empty
only if there are no nullary symbols in G. An atomic formula of type �G, H, R� is
an expression of the form

t1 ≈ t2 or r(t1, . . . , tn),
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where t1, t2, . . . , tn are terms of type G ∪ H and r ∈ R is n-ary. For a detailed
discussion of the validity of first-order formulæ in a structure, see Burmeister’s
survey article [3]. Note that in [3], no distinction is made between total and partial
operation symbols in the type. A brief introduction suitable to our needs can be
found in Clark and Davey [5, page 25]. Two important features to note are that,
given a term t of type G∪H , the domain of the corresponding term function tA on
A is its maximum domain, and that, given n-ary terms t1 and t2 and a1, . . . , an ∈ A,
the structure A satisfies tA1 (a1, ..., an) = tA2 (a1, ..., an) if and only if both sides are
defined and equal. In particular, A satisfies tA(a1, ..., an) = tA(a1, ..., an) if and
only if (a1, . . . , an) ∈ dom(tA). A universal Horn sentence of type �G, H, R� is a
universally quantified formula of the form

ϕ,
� n��

i=1

ϕi

�
→ ϕ, or

n��

i=1

¬ϕi,

where ϕ and all the ϕi’s are atomic formulæ of type �G, H, R�, and n ∈ N. We shall
refer to universal Horn sentences of the first and second kinds as atomic sentences
and quasi-atomic sentences, respectively.

Let Σ be a set of universal Horn sentences of type �G, H, R�. Then Mod(Σ)
denotes the class consisting of all non-empty models of Σ, while Mod0(Σ) includes
the empty structure ∅∅∅ of type �G, H, R� in the case that G contains no nullary
symbols. A class A of structures is called a universal Horn class if A = Mod(Σ)
or A = Mod0(Σ), for some set Σ of universal Horn sentences. A class defined by
atomic and quasi-atomic sentences is called a quasivariety, and a class defined by
atomic sentences is called either an atomic class or a variety.

Let I, H, S and P be the usual class operators. We adopt the normal algebraic
convention that S(K) denotes the class consisting of all non-empty substructures
of structures from K. Note that P(K) includes products over an empty index set,
whence P(K) includes the complete one-element structure 1 of type �G, H, R� with
underlying set {∅} and every relation and the domain of every partial operation
non-empty. We also require two further operators, namely S

0, which includes empty
substructures in case G contains no nullary operation symbols, and P

+, which
excludes products over an empty index set.

Theorem 1.1. Let K be a finite non-empty set of finite structures of type �G, H, R�.
(i) The smallest universal Horn class containing K is the class ISP

+(K), if the
empty structure is not allowed, and is IS

0
P

+(K), if the empty structure is
allowed.

(ii) The smallest quasivariety containing K is the class ISP(K), if the empty
structure is not allowed, and is IS

0
P(K), if the empty structure is allowed.

(iii) The smallest atomic class containing K is the class HSP(K), if the empty
structure is not allowed, and is HS

0
P(K), if the empty structure is allowed.

Proof. This is the finitely generated version of Theorems 3.4(i)(iii) and 4.5 of
Burmeister [3]. It is a good exercise to write out a direct proof based on the
version for algebras in Clark and Davey [5, 1.3.4 and Appendix A]. �

If and when to include the empty structure in a class of structures is a matter
of some debate. It still leads to heated discussions between category theorists,
who want their categories to be complete and cocomplete, and algebraists, who are
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usually happy to live without the free structure generated by the empty set when it
happens to be empty, and even without the complete one-element structure when
considering universal Horn classes. Our usual convention will be to exclude the
empty structure when considering algebras (H = R = ∅), and to include the empty
structure when considering purely relational structures (G = H = ∅), and to make
a decision on a case-by-case basis otherwise. Moreover, we almost always allow the
empty structure when working with topological structures; see the discussion at the
start of Section 6 and particularly Lemma 6.2.

The following result is a completely standard but often-required characterisation
of the structures in the class ISP

+(K). It is the non-topological version of the
Separation Theorem [5, 1.4.4], see Lemma 3.1 below.

Lemma 1.2. Let K be a non-empty set of structures of type �G, H, R� and let A
be a non-empty structure of the same type.

(i) The complete one-element structure 1 belongs to ISP
+(K) if and only if some

M ∈ K has a substructure isomorphic to 1.
(ii) Assume that A is not isomorphic to the complete one-element structure 1.

Then A ∈ ISP
+(K) if and only if, for all r ∈ {=} ∪ { dom(h) | h ∈ H } ∪ R

of arity n, and all a1, . . . , an ∈ A with (a1, . . . , an) /∈ rA, there exists M ∈ K
and a homomorphism ϕ : A → M such that (ϕ(a1), . . . , ϕ(an)) /∈ rM.

Later we shall need the fact that every universal Horn class of structures is
closed under direct limits. Indeed, the usual construction for algebras still applies.
Let A be a class of structures of type �G, H, R�, let S = �S; �� be a non-empty
directed ordered set and let {As | s ∈ S } be a direct system in A with connecting
homomorphisms ϕst : As → At, for all s � t in S. Define an equivalence relation
≡ on the disjoint union

.�
{As | s ∈ S } as follows: for a ∈ As and b ∈ At, define

a ≡ b if there exists an upper bound u of {s, t} in S such that ϕsu(a) = ϕtu(b),
and denote the equivalence class of a by [a]. We convert B :=

.�
{As | s ∈ S }/ ≡

into a structure B of type �G, H, R� as follows. For each h ∈ H of arity n, and all
s1, . . . , sn ∈ S and a1, . . . , an, with ai ∈ Asi , define

([a1], . . . , [an]) ∈ dom(hB) ⇐⇒
�

(ϕs1t(a1), . . . , ϕsnt(an)) ∈ dom(hAt),
for some upper bound t of {s1, . . . , sn} in S,

in which case

hB([a1], . . . , [an]) :=
�
hAt(ϕs1t(a1), . . . , ϕsnt(an))

�
.

For each g ∈ G and each r ∈ R, the total operation gB and the relation rB are
defined analogously.

Theorem 1.3. Let A be a universal Horn class of structures of type �G, H, R�.
Let S = �S; �� be a non-empty directed ordered set and let {As | s ∈ S } be a direct
system in A with connecting homomorphisms ϕst : As → At, for all s � t in S.
Then the structure B defined above belongs to A and is a direct limit in A of the
direct system {As | s ∈ S }.

Proof. It is an easy exercise to show that a universal Horn sentence satisfied by
all of the structures As, for s ∈ S, is also satisfied by B, whence B belongs to A.
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A simple argument now shows that B satisfies the universal mapping definition of
the direct limit in A of the direct system. �

Henceforth, we denote the structure B constructed above by lim−→s∈S As. The
following useful fact is well known for algebras (see Grätzer [24]). Its proof is no
more difficult in this more general setting, and we leave it for the reader.

Lemma 1.4. Let A be a structure of type �G, H, R�. Then A is isomorphic to
lim−→s∈S As, where {As | s ∈ S } is the direct system consisting of the finitely gen-
erated substructures of A ordered by inclusion.

A structure A is said to be locally finite if every finitely generated substructure
of A is finite, and a class A is locally finite if every structure in A is locally finite.
As in the case of algebras, finitely generated quasivarieties are locally finite.

Lemma 1.5. Let K be a finite non-empty set of finite structures of type �G, H, R�.
Then the quasivariety ISP(K) generated by K is locally finite.

Proof. Let K = {M1, . . . ,Mk}. Every n-ary term t of type G∪H induces a k-tuple
(tM1 , . . . , tMk), where tMi is an n-ary partial operation on Mi. The number of such
k-tuples of n-ary term functions is bounded above by � := m2mn

k, where m is the
maximum size of a structure in K. Hence, there exist n-ary terms t1, t2, . . . , ts of
type G ∪ H , with s � �, such that, for every n-ary term t of type G ∪ H , there
exists i ∈ {1, . . . , s} such that, for every M ∈ K, we have tM = tMi . So the class K
satisfies the quasi-equations

ti(x1, . . . , xn) ≈ ti(x1, . . . , xn) =⇒ t(x1, . . . , xn) ≈ t(x1, . . . , xn),
t(x1, . . . , xn) ≈ t(x1, . . . , xn) =⇒ t(x1, . . . , xn) ≈ ti(x1, . . . , xn),

which express the fact that t and ti induce identical term functions on every struc-
ture in K. Since every structure in ISP(K) satisfies every quasi-equation true
in K, we conclude that t and ti induce identical term functions on every struc-
ture in ISP(K). It now follows easily that, if A ∈ ISP(K) is n-generated, then
|A| � s. �

The following standard result is a useful consequence of the previous three results.
As usual, we denote the finite members of a class C by Cfin.

Lemma 1.6. Let M = �M ; G, H, R� be a finite structure and let Σ be a set of
universal Horn sentences of type �G, H, R�. If [ISP

+(M)]fin = [Mod(Σ)]fin and
every finitely generated model of Σ is finite, then ISP

+(M) = Mod(Σ).

Proof. By Theorem 1.3 and Lemma 1.4, every universal Horn class is uniquely
determined by its finitely generated structures. By Lemma 1.5, the universal
Horn class ISP

+(M) is locally finite and, by assumption, the universal Horn class
Mod(Σ) is locally finite. It follows at once that [ISP

+(M)]fin = [Mod(Σ)]fin implies
ISP

+(M) = Mod(Σ). �
In order to extend the First and Second Duality Theorems (see Clark and

Davey [5, 2.2.2 and 2.2.7]) to this more general setting, we need to know that
the usual description of free algebras in the class ISP(M) generated by an algebra
M extends to this setting. The proof of the following result is an easy modification
of the proof of the corresponding result for algebras (see, for example, Appendix A
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of [5]). Let M = �M ; G, H, R� be a structure. The term function induced by
an n-ary term of type G ∪ H is an n-ary partial operation tM : D → M , where
D ⊆ Mn. If D = Mn, then we refer to tM : D → M as a total n-ary term function
of M. In this case, even though tM is a total operation, the term t may include
partial operation symbols in H for which the corresponding partial operation hM

is not total. Let S be a non-empty set. A function f : MS → M is a total S-ary
term function of M if, for some n � 0, there exist s1, . . . , sn ∈ S and a total n-ary
term function tM : Mn → M of M such that f(a) = tM(a(s1), . . . , a(sn)), for all
a ∈ MS . Let FM(S) denote the substructure of MMS

consisting of the total S-ary
term functions of M. Clearly, FM(S) is the substructure of MMS

generated by the
projections.

Lemma 1.7. Let M be a non-empty structure and let V := HSP(M) be the atomic
class generated by M. For every non-empty set S, the structure FM(S) is freely
generated in V by the set { πs : MS → M | s ∈ S } of projections.

2. Alter egos

In this section we indicate how the definition of an alter ego of a finite algebra
can be extended to finite structures. Let

M1 = �M ; G1, H1, R1� and M2 = �M ; G2, H2, R2�

be two structures defined on the same set M . To avoid technicalities, we assume
that M is non-empty and that the relations in R1 and R2 and the domains of the
partial operations in H1 and H2 are non-empty. Then M2 is said to be compatible
with M1 if

(a) for all n � 0, each n-ary operation g ∈ G2 is a homomorphism from Mn
1

to M1,
(b) for all n � 1 and each n-ary partial operation h ∈ H2, the domain of h forms a

substructure dom(h) of Mn
1 and h is a homomorphism from dom(h) to M1,

and
(c) for all n � 1, each n-ary relation r ∈ R2 forms a substructure of Mn

1 .
Note that it follows from (a) that, if M2 is compatible with M1 and c is (the value
of) a nullary operation of M2, then {c} forms a substructure of M1 isomorphic to
the complete one-element structure 11 of type �G1, H1, R1�.

Lemma 2.1. Let M1 and M2 be structures defined on the same underlying set.
Then M2 is compatible with M1 if and only if M1 is compatible with M2.

Proof. This is a symbol-pushing exercise. The crux of the proof is the fact that,
given partial operations h1 and h2 of arities m and n on a set M , the domain of h1

is closed under h2 and h1 preserves h2 if and only if the same thing holds with h1

and h2 interchanged. �
Since compatibility is a symmetric relation, we shall simply say that M1 and M2

are compatible. If M = �M ; G, H, R� is a finite structure, then M∼ = �M ; G, H, R, T�
will denote the topological structure obtained by adding the discrete topology T
to M. If M is a finite non-empty set and M1 and M2 are compatible structures
with underlying set M , then we shall refer to the discrete topological structure M∼ 2

as an alter ego of the structure M1. (In the case that M1 is an algebra, instead
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of saying that M∼ 2 is an alter ego of M1, many authors say that M∼ 2 is algebraic
over M1.)

It is now completely straightforward to check that the basics of the theory of
natural dualities extend to structures. We will sketch the details.

Let M1 = �M ; G1, H1, R1� be a finite structure and let M∼ 2 = �M ; G2, H2, R2, T�
be an alter ego of M1. Define A := ISP(M1) to be the quasivariety generated
by M1, and let X := IS

0
cP

+(M∼ 2) be the class consisting of all topological structures
of the same type as M∼ 2 that are isomorphic to a possibly empty closed substructure
of a non-zero power of M∼ 2. With a slight abuse of terminology, the class X is
usually referred to as the topological quasivariety generated by M∼ 2. We also denote
by A and X the corresponding categories obtained by adding as morphisms all
homomorphisms and all continuous homomorphisms, respectively. (As an aid to
the reader, we shall refer to morphisms in A as homomorphisms and reserve the
name morphism for the category X.)

The fact that the structures M1 and M2 are compatible guarantees that we can
set up a dual adjunction �D, E, e, ε� between A and X. The verification of the many
claims below, both implicit and explicit, is straightforward. (See Section 1.5 of [5]
for the details in the case that M1 is an algebra.) Define contravariant hom-functors
D : A → X and E : X → A as follows:

• for each structure A ∈ A, the dual of A is the topologically closed substruc-
ture D(A) of M∼

A
2 formed by the set A(A,M1) of all homomorphisms from

A to M1,
• for each structure X ∈ X, the dual of X is the substructure E(X) of MX

1

formed by the set X(X,M∼ 2) of all morphisms from X to M∼ 2,
• given a homomorphism u : A → B in A, the morphism D(u) : D(B) → D(A)

is defined by D(u)(x) := x ◦ u, for all x ∈ A(B,M1),
• given a morphism ψ : X → Y in X, the homomorphism E(ψ) : E(Y) → E(X)

is defined by E(ψ)(α) := α ◦ ψ, for all α ∈ X(Y,M∼ 2).
For each A ∈ A and each X ∈ X, define the evaluation maps

eA : A → ED(A) and εX : X → DE(X)

by eA(a)(x) := x(a), for all a ∈ A and all x ∈ A(A,M1), and εX(x)(α) := α(x),
for all x ∈ X and all α ∈ X(X,M∼ 2). This defines a pair of natural transformations
e : idA → ED and ε : idX → DE. Moreover, the construction of A and X
via ISP and IS

0
cP

+, respectively, ensures that the maps eA : A → ED(A) and
εX : X → DE(X) are embeddings, for all A ∈ A and all X ∈ X. (For us, embedding
in A means ‘isomorphism onto a substructure’ and in X means ‘isomorphism onto
a topologically closed substructure’.)

The following theorem summarises the basic properties of this construction that
we shall need later.

Theorem 2.2. Let M1 be a finite structure, let M∼ 2 be an alter ego of M1 and
define A = ISP(M1) and X = IS

0
cP

+(M∼ 2). Then
(i) products in both A and X are constructed pointwise,
(ii) �D, E, e, ε�, as defined above, is a dual adjunction between A and X,
(iii) for all A ∈ A and X ∈ X, the maps eA : A → ED(A) and εX : X → DE(X)

are embeddings,
9



(iv) for every non-empty set S, the natural bijection between A(FM1(S),M1) and
MS is an isomorphism between D(FM1(S)) and M∼

S
2 ,

(v) if u : A → B is a surjection in A, then D(u) : D(B) → D(A) is an embedding
in X,

(vi) if ψ : X → Y is a surjection in X, then E(ψ) : E(Y) → E(X) is an embedding
in A.

Proof. Part (iv) follows from the fact that a dual adjunction maps coproducts to
products, along with the additional fact that FM1(S) is an S-fold coproduct of
copies of FM1(1) and D(FM1(1)) is isomorphic to M∼ 2. The remaining parts of the
theorem are straightforward calculations. �

If the map eA is surjective and therefore an isomorphism, for all A ∈ A, then we
say that the alter ego M∼ 2 yields a duality on A or simply that M∼ 2 dualises M1. If
M∼ 2 yields a duality on A, then A is dually equivalent to a full subcategory of the
category X. In this case, we have a representation for A: each structure A in A
is isomorphic to the structure ED(A) consisting of all continuous homomorphisms
from D(A) to M∼ 2. If M∼ 2 yields a duality on A and, in addition, εX is surjective
and therefore an isomorphism, for all X in X, then we say that M∼ 2 yields a full
duality on A or, more fully, that M∼ 2 yields a full duality between A and X or, more
simply, that M∼ 2 fully dualises M1. In this case, the functors D and E give a dual
equivalence between the categories A and X. If M∼ 2 yields a full duality between
A and X and, moreover, M∼ 2 is injective in the category X, then we say that M∼ 2

yields a strong duality on A or that M∼ 2 strongly dualises M1. (Recall that M∼ 2 is
injective in a subclass C of X if M∼ 2 ∈ C and, for every embedding ϕ : X → Y, with
X,Y ∈ C, every morphism α : X → M∼ 2 extends to a morphism β : Y → M∼ 2, that
is, β ◦ ϕ = α.)

Remark 2.3. In the case that G1 contains no nullary symbols, we may wish to
include the empty structure ∅∅∅1 of type �G1, H1, R1� in A. In that case, we must also
add (all isomorphic copies of) the complete structure 12 of type �G2, H2, R2� to X.
Thus, we would redefine A and X to be A := IS

0
P(M1) and X := IS

0
cP(M∼ 2).

Some care must be taken, as this simple change can destroy a duality. Indeed,
assume that M1 has no nullary operations but does have constant total unary
term functions. Then the empty structure ∅∅∅1 and the substructure C1

1 of M1,
consisting of the values of the constant total unary term functions of M1, satisfy
D(∅∅∅1) ∼= D(C1

1) ∼= 12, with ∅∅∅1 � C1
1. See Lemma 6.2 below for further details.

3. Axiomatizing topological quasivarieties

Let X = �X ; GX, HX, RX, TX� be a structure of type �G, H, R� with a topology
added. We say that X is a Boolean topological structure of type �G, H, R� if

• TX is a Boolean topology on X (that is, TX is compact, Hausdorff and has a
basis of clopen sets),

• every relation in RX and the domain of each partial operation in HX is a
closed subspace of the appropriate power of �X ; TX�, and

• every map in GX ∪HX is continuous with respect to TX.
The following result, known as the Separation Theorem [5, 1.4.4], is the topological
version of Lemma 1.2 above. While completely elementary, it is a basic tool when
trying to describe the class IS

0
cP

+(Y) generated by a class Y of Boolean topological
structures.
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Lemma 3.1. Let Y be a non-empty set of Boolean topological structures of type
�G, H, R� and let X = �X ; GX, HX, RX, TX� be a non-empty structure of the same
type with a compact Hausdorff topology added.

(i) The complete one-element structure 1 belongs to IS
0
cP

+(Y) if and only if some
Y ∈ Y has a substructure isomorphic to 1.

(ii) Assume that X is not isomorphic to the complete one-element structure 1.
Then X ∈ IS

0
cP

+(Y) if and only if, for all r ∈ {=} ∪ { dom(h) | h ∈ H } ∪R
of arity n, and all x1, . . . , xn ∈ X with (x1, . . . , xn) /∈ rX, there exist Y ∈ Y
and a morphism ψ : X → Y such that (ψ(x1), . . . , ψ(xn)) /∈ rY.

Recently, a number of authors have addressed the question of how to describe
the topological quasivariety IS

0
cP

+(M∼ ) generated by a finite discrete topological
structure M∼ ; see Clark, Davey, Haviar, Pitkethly and Talukder [7], Clark, Davey,
Freese and Jackson [6], Davey and Talukder [19] and Clark, Davey, Jackson and
Pitkethly [8]. A number of powerful techniques have been developed, but we shall
restrict our attention to just one that will be particularly useful in the examples
considered in Section 7.

Let Σ be a set of universal Horn sentences of type �G, H, R�. A topological
structure X = �X ; GX, HX, RX, TX� is a Boolean topological model of Σ if

• X is a Boolean topological structure of type �G, H, R� and
• the structure �X ; GX, HX, RX� is a model of Σ.

The class consisting of all non-empty Boolean topological models of Σ is denoted by
ModBt(Σ), while Mod0

Bt(Σ) includes the empty structure if G contains no nullaries.
Let M be a finite structure and consider the topological quasivariety IS

0
cP

+(M∼ )
generated by the corresponding discrete topological structure M∼ . By Theorem 1.1,
there is a set Σ of universal Horn sentences with ISP

+(M) = Mod(Σ). Perhaps
the simplest description of IS

0
cP

+(M∼ ) arises when IS
0
cP

+(M∼ ) = Mod0
Bt(Σ), that

is, when IS
0
cP

+(M∼ ) is precisely the class of (possibly empty) Boolean topological
models of Σ. The papers referred to in the first paragraph of this section give many
examples where this is true and many where it fails.

The following important positive result applies to all of our examples in Section 7.
In order to state it, we need to make precise what we mean by a quotient of a total
structure. Let A = �A; G, R� be a total structure. A congruence θ on the algebraic
reduct �A; G� of A determines a quotient structure A/θ: for each r ∈ R, we have
(a1/θ, . . . , am/θ) ∈ rA/θ provided there are b1, . . . , bm ∈ A such that (ai, bi) ∈ θ, for
i = 1, 2, . . . , m, and (b1, . . . , bm) ∈ rA. We say that a class C of total structures is
closed under finite quotients if, whenever A ∈ C and θ is a finite-index congruence
on the algebraic reduct of A, the quotient structure A/θ belongs to C.

Theorem 3.2. [8, 2.13], [6, 4.3 and 6.9] Let M = �M ; G, R� be a finite total struc-
ture. Assume that the quasivariety ISP(M) generated by M is closed under finite
quotients and that the variety generated by the algebraic reduct of M is congruence
distributive.

(i) If Σ is a set of universal Horn sentences such that ISP
+(M) = Mod(Σ), then

IScP
+(M∼ ) = ModBt(Σ) and IS

0
cP

+(M∼ ) = Mod0
Bt(Σ).

(ii) If Σ is a set of quasi-atomic sentences such that ISP(M) = Mod(Σ), then
IScP(M∼ ) = ModBt(Σ) and IS

0
cP(M∼ ) = Mod0

Bt(Σ).

11



Remark 3.3. This is a particularly powerful result. It applies, in particular, to
every finite algebra M with a lattice reduct such that ISP(M) is closed under
homomorphic images. For example, when applied to the two-element bounded
lattice 2, Theorem 3.2(ii) tells us that IScP(2∼) is the class consisting of all Boolean
topological bounded distributive lattices, a result first proved by Numakura [29].

We would also like to be able to derive a first-order axiomatization of the quasi-
variety ISP(M) from a non-first-order description of the topological quasivariety
IS

0
cP

+(M∼ ). The following simple observation will suffice.

Lemma 3.4. Let M = �M ; G, H, R� be a finite structure and let Σ be a set of
universal Horn sentences of type �G, H, R�. Assume that every finitely generated
model of Σ is finite and that [IS0

cP
+(M∼ )]fin = [Mod0

Bt(Σ)]fin. Then ISP
+(M) =

Mod(Σ).

Proof. It follows from the assumptions that [ISP
+(M)]fin = [Mod(Σ)]fin, and hence

ISP
+(M) = Mod(Σ) by Lemma 1.6. �

Remark 3.5. Often we have a description of the topological quasivariety IS
0
cP

+(M∼ )
of the form IS

0
cP

+(M∼ ) = Mod0
Bt(Σ0 ∪Φ), where Φ is some non-first-order topologi-

cal condition. If we can find some set Σ1 of universal Horn sentences such that the
finite models of Σ0 ∪Σ1 are precisely the finite models of Σ0 ∪Φ and every finitely
generated model of Σ0 ∪ Σ1 is finite, then we have ISP

+(M) = Mod(Σ), where
Σ := Σ0 ∪ Σ1. For example, X |= Φ might be the statement that X = �X ; �, T� is
a Priestley space, in which case the natural choice for Σ1 would be the axioms for
an ordered set.

4. Three basic duality theorems

In this section, we present generalisations of the three theorems that have been
used to establish most natural dualities: the Second Duality Theorem, the Duality
Compactness Theorem and the NU Duality Theorem (see Clark and Davey [5, 2.2.7,
2.2.11 and 2.3.4]). All three theorems are concerned with lifting up a duality from
the finite level. Let M1 be a finite structure, let A := ISP(M1) and let M∼ 2 be an
alter ego of M1. If eA : A → ED(A) is an isomorphism, for all A ∈ Afin, then we
say that M∼ 2 yields a duality on Afin, or that M∼ 2 yields a duality at the finite level;
we also say that M∼ 2 dualises M1 at the finite level.

Now assume that M1 is an algebra and define X := IS
0
cP

+(M∼ 2). The Second
Duality Theorem is due to Davey and Werner [20]. It says that, if M∼ 2 has no
partial operations and only a finite number of relations in its type and M∼ 2 yields
a duality at the finite level and is injective in Xfin, then M∼ 2 yields a duality on A
and is injective in X. The Duality Compactness Theorem is due independently to
Willard [33] and Zádori [34]. It says that, if M∼ 2 is of finite type and yields a duality
at the finite level, then M∼ 2 yields a duality on A. The NU Duality Theorem was
proved by Davey and Werner [20] and tells us that if M1 has a (k+1)-ary near-
unanimity term, then the purely relational alter ego M∼ 2 := �M ; R, T�, where R is
the set of all non-empty subuniverses of Mk

1 , yields a duality on A.
The proofs of these theorems given in Clark and Davey [5] extend with only

the obvious changes (replace algebra by structure, etc) to the case where M1 is an
arbitrary finite structure, though in the case of the NU Duality Theorem we need
to assume that M1 is a total structure. We state the structure-theoretic versions
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of the required results from Chapter 2 of [5], and refer to [5] for the proofs. In each
case, we indicate the corresponding result in [5] in square brackets at the start of
the statement.

Let M1 = �M ; G1, H1, R1� be a finite structure, let M∼ 2 = �M ; G2, H2, R2, T�
be an alter ego of M1, and let �D, E, e, ε� be the induced dual adjunction between
A := ISP(M1) and X := IS

0
cP

+(M∼ 2). We say that (CLO) holds, or more precisely,
that M2 satisfies (CLO) with respect to M1 if

(CLO) for each n ∈ N, every homomorphism t : Mn
2 → M2 is a (total)

n-ary term function of M1.
The fact that M1 and M2 are compatible guarantees that, for every non-empty
set S, each total S-ary term function of M1 is a morphism from M∼

S
2 to M∼ 2. Thus

(CLO) says exactly that, for all n ∈ N, the total n-ary term functions of M1 and
the homomorphisms from Mn

2 to M2 agree, that is, the structure M2 determines
the clone of total finitary term functions of the structure M1. The addition of the
discrete topology to M2 extends this to arbitrary non-zero arities.

Theorem 4.1. [5, 2.2.3] Let A := ISP(M1) be the quasivariety generated by the
finite structure M1 and let M∼ 2 be an alter ego of M1.

(i) Fix a non-empty set S and let F := FM1(S). The map eF : F → ED(F) is
an isomorphism if and only if

(CLO)S every morphism t : M∼
S
2 → M∼ 2 is a (total) S-ary term function of M1.

(ii) The following are equivalent:
(1) (CLO) holds;
(2) (CLO)S holds, for every non-empty set S;
(3) eF : F → ED(F) is an isomorphism, for every finitely generated A-free

structure F;
(4) eF : F → ED(F) is an isomorphism, for every A-free structure F.

We note that the First Duality Theorem [5, 2.2.2] holds in the present setting
provided, as above, term function of M1 is replaced by total term function of M1.
While this theorem has the advantage that it gives necessary and sufficient condi-
tions for M∼ 2 to yield a duality on A, we will not state it here as it is rarely used in
practice. Instead, we state a corollary of the First Duality Theorem that provides
sufficient conditions for M∼ 2 to dualise M1.

Theorem 4.2. [5, 2.2.2] Let M1 be a finite structure, let M∼ 2 be an alter ego of M1

and define A := ISP(M1) and X := IS
0
cP

+(M∼ 2). Then M∼ 2 yields a duality on A
provided (CLO) holds and M∼ 2 is injective in X.

By combining (CLO) with the injectivity of M∼ 2 in Xfin, we obtain a natural
interpolation condition. We say that M2 satisfies the interpolation condition (IC)
with respect to M1 if

(IC) for each n ∈ N and each substructure X of Mn
2 , every homomorphism

α : X → M2 extends to a total n-ary term function of M1.
This condition is sufficient to guarantee that M∼ 2 dualises M1 at the finite level.

IC Lemma 4.3. [5, 2.2.5] Let M1 be a finite structure, let M∼ 2 be an alter ego
of M1 and define A := ISP(M1) and X := IS

0
cP

+(M∼ 2). The following are equiva-
lent:

(1) M∼ 2 yields a duality on Afin and is injective in Xfin;
13



(2) M2 satisfies (CLO) with respect to M1 and M∼ 2 is injective in Xfin;
(3) M2 satisfies (IC) with respect to M1.

Assume that M2 satisfies (IC) with respect to M1. By Theorem 4.2, to show
that the duality on Afin lifts to a duality on A, we need to know that the injectivity
of M∼ 2 in X follows from its injectivity in Xfin.

Injectivity Lifting Lemma 4.4. [5, 2.2.7] Let M = �M ; G, R� be a finite total
structure with R finite and define X := IS

0
cP

+(M∼ ). If M∼ is injective in Xfin, then
M∼ is injective in X.

Combining this result with the previous two yields our first major lift-from-the-
finite-level duality theorem.

Second Duality Theorem 4.5. [5, 2.2.7] Let M1 be a finite structure and let
M∼ 2 = �M ; G2, R2, T� be an alter ego of M1 that is a total structure with R2 finite.
Define A := ISP(M1) and X := IS

0
cP

+(M∼ 2). If M2 satisfies (IC) with respect
to M1, then M∼ 2 yields a duality on A and is injective in X.

We turn now to the Duality Compactness Theorem. The following lemma is
proved by an easy application of the fact that the inverse limit of an inverse system
of non-empty finite sets is non-empty.

Lemma 4.6. [5, 2.2.9] Let B be a non-empty substructure of a locally finite struc-
ture A, let D be a finite structure and let h : B → D be a homomorphism. If,
for every finite substructure F of A that intersects B, there is a homomorphism
k : F → D that agrees with h on B ∩ F , then there is a homomorphism g : A → D
that extends h.

We state the following immediate corollary more generally than it is stated in [5].
While this corollary is not needed in the proof of the generalised Duality Compact-
ness Theorem, we include it because of the important role that injectivity plays in
the theory of natural dualities.

Corollary 4.7. [5, 2.2.10] Let A be a locally finite class of structures and assume
that A is closed under forming substructures. If D is injective in Afin, then D is
injective in A.

Let M be a finite structure and let A := ISP(M). By Lemma 1.5, the quasi-
variety A is locally finite. It follows from Corollary 4.7 that if D is injective in
Afin, then D is injective in A. Similarly, if M is a finite total structure and D is
injective in HSP(M)fin, then D is injective in HSP(M).

The conversion of the proof of the Duality Compactness Theorem given in Clark
and Davey [5] to the present setting is a minor search-and-replace exercise and is
left to the reader. Recall that a structure M = �M ; G, H, R� is of finite type if
G ∪H ∪R is finite.

Duality Compactness Theorem 4.8. [5, 2.2.11] Let A := ISP(M1) be the quasi-
variety generated by the finite structure M1. If M∼ 2 is an alter ego of M1 of finite
type that yields a duality at the finite level, then M∼ 2 yields a duality on A.

This theorem is a special case of Hofmann’s Theorem 2.3, [27]. Combining the IC
Lemma 4.3 with the Duality Compactness Theorem yields the following immediate
corollary.
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IC Duality Theorem 4.9. Let A := ISP(M1) be the quasivariety generated by
the finite structure M1 and let M∼ 2 be an alter ego of M1 of finite type. If M2

satisfies (IC) with respect to M1, then M∼ 2 yields a duality on A.

Some care is required when extending other basic results in the theory of natural
dualities to this more general setting. For example, in the case that M1 is an
algebra, it is a common practice when seeking a duality to work interchangeably
with partial operations and their graphs in the type of the alter ego M∼ 2. If M1

includes partial operations or relations in its type, this is no longer possible as the
graph of a partial operation can be compatible with M1 while the partial operation
itself is not.

Another common trick that is used in the case that M1 is an algebra is to take
a finite number of homomorphisms x1, . . . , xn : A → M1, for some A ∈ ISP(M1),
and then use image of the product map x1 � · · ·� xn : A → Mn

1 , that is, the n-ary
relation { (x1(a), . . . , xn(a)) | a ∈ A }, in an alter ego of M1. While this trick is
still available when M1 is a total structure, it cannot be used when the type of M1

includes partial operations, as the image of x1 � · · ·�xn may not be a substructure
of Mn

1 . Two important results whose proofs utilise this trick are the Brute Force
Duality Theorem [5, 2.3.1] and the NU Duality Theorem [5, 2.3.4]. These theorems
continue to hold when M1 is a total structure.

We close this section with the statement of the NU Duality Theorem as it applies
to total structures. For n � 3, a function t : Mn → M is a near unanimity function
on the set M if it satisfies t(a, . . . , a, b) = t(a, . . . , a, b, a) = · · · = t(b, a, . . . , a) = a,
for all a, b ∈ M .

NU Duality Theorem 4.10. [5, 2.3.4] Let k � 2 and assume that M1 is a finite
total structure that has a (k+1)-ary near unanimity term function. Let M2 =
�M ; R�, where R is the set of all non-empty subuniverses of Mk

1 , and define A :=
ISP(M1) and X := IS

0
cP

+(M∼ 2). Then M∼ 2 satisfies (IC) with respect to M1, yields
a duality on A and is injective in X.

5. Lifting full duality up from the finite level

The theorems in the previous section give conditions under which a duality for
the class Afin can be lifted up to a duality for the class A. In this section we turn
our attention to finding conditions under which a full duality for Afin can be lifted
up to a full duality for A. The results are a refinement and simplification, in our
restricted setting, of the presentation given by Hofmann [27].

Let M1 be a finite structure, let M∼ 2 be an alter ego of M1 and consider the classes
A := ISP(M1) and X := IS

0
cP

+(M∼ 2). If eA : A → ED(A) is an isomorphism, for
all A ∈ Afin, and εX : X → DE(X) is an isomorphism, for all X ∈ Xfin, then we say
that M∼ 2 yields a full duality between Afin and Xfin, or simply that M∼ 2 yields a full
duality at the finite level, or that M∼ 2 fully dualises M1 at the finite level. In this
case, the functors D and E yield a dual category equivalence between the categories
Afin and Xfin. If M∼ 2 yields a full duality between Afin and Xfin and, moreover,
M∼ 2 is injective in Xfin, then we say that M∼ 2 yields a strong duality between Afin

and Xfin, or simply that M∼ 2 yields a strong duality at the finite level, or that M∼ 2

strongly dualises M1 at the finite level.
The class X is closed under forming inverse limits. Indeed, let S = �S; �� be a

non-empty directed ordered set and let {Xs | s ∈ S } be an inverse system in X
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with connecting morphisms ηst : Xs → Xt, for all s � t in S. Then the inverse
limit in X of the system is the closed substructure of

�
s∈S Xs on the set

�
x ∈

�
s∈SXs

�� (∀s, t ∈ S) s � t =⇒ ηst(x(s)) = x(t)
�

and is denoted by lim←−s∈S Xs. For a subclass Y of X, we shall use the notation lim←−Y
to denote the full subcategory of X whose objects are (isomorphic copies of) inverse
limits of structures in Y. The following lemma is a simple piece of category theory
and can be formulated much more generally (see, for example, Banaschewski [2]
and Hofmann [27]).

Lemma 5.1. Let M1 be a finite structure and let M∼ 2 be an alter ego of M1.
Define A := ISP(M1) and X := IS

0
cP

+(M∼ 2) and let Y be a subclass of X. Assume
that M∼ 2 yields a duality on A and that εY : Y → DE(Y) is an isomorphism, for
all Y ∈ Y. Then εX : X → DE(X) is an isomorphism, for all X ∈ lim←−Y.

Proof. Let X ∈ lim←−Y. To prove that εX is an isomorphism, it suffices to show that
X ∼= D(A), for some structure A ∈ A. Indeed, if A ∈ A and ϕ : X → D(A) is
an isomorphism, then since �D, E, e, ε� is a dual adjunction between A and X, we
have ϕ = D(E(ϕ) ◦ eA) ◦ εX (see the triangular commutative diagrams on page 5
of Clark and Davey [5], for example). Since ϕ and eA are isomorphisms it follows
immediately that εX is also an isomorphism.

We have X = lim←−s∈S Ys, for some inverse system {Ys | s ∈ S } in Y ⊆ X with
connecting morphisms ηst : Ys → Yt. The structures E(Ys) and the connecting
maps E(ηst), with t � s, form a direct system of structures in A. Let A :=
lim−→s∈S E(Ys) be the direct limit calculated in the quasivariety A. Since �D, E, e, ε�
is a dual adjunction between A and X, the functor D maps direct limits in A to
inverse limits in X (see Mac Lane [28, V.5]). Thus

D(A) = D(lim−→
s∈S

E(Ys)) ∼= lim←−
s∈S

DE(Ys) ∼= lim←−
s∈S

Ys = X,

as Ys ∈ Y and therefore DE(Ys) ∼= Ys. �
We would like to be able to use this observation to lift a full duality at the finite

level up to a full duality between A and X. The first step in this process is another
general category-theoretic observation that can be stated more generally.

Lifting Full Duality Lemma 5.2. Let M1 be a finite structure and let M∼ 2 be
an alter ego of M1. Define A := ISP(M1) and X := IS

0
cP

+(M∼ 2) and assume that
M∼ 2 yields a duality on A. Then M∼ 2 yields a full duality between A and X if and
only if M∼ 2 yields a full duality at the finite level and X = lim←−Xfin.

Proof. First assume that the alter ego M∼ 2 yields a full duality between A and X.
Then it certainly yields a full duality between Afin and Xfin. By Lemma 1.4, every
structure in A is the direct limit of its finitely generated substructures. As A is
locally finite (by Lemma 1.5), every structure in A is therefore a direct limit of
structures from Afin. Since the functors D and E give a dual equivalence between
A and X, it follows that each structure X in X is an inverse limit of structures
from Xfin. Thus, the forward direction holds. The backward direction is an imme-
diate consequence of the previous lemma. �
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In order to lift a full duality at the finite level up to a full duality between A
and X, we now need answers to the following two questions.

(I) If the alter ego M∼ 2 yields a duality between Afin and Xfin, does it follow that
it yields a duality between A and X?

(II) If the alter ego M∼ 2 yields a duality between A and X and a full duality
between Afin and Xfin, does it follow that X = lim←−Xfin?

The Duality Compactness Theorem 4.8 tells us that the answer to (I) is ‘yes’,
provided the type of M∼ 2 is finite. A restriction on the alter ego is necessary here.
For example, if I is the two-element implication algebra, then no alter ego yields a
duality on the class A := ISP(I), yet the alter ego consisting of all finitary relations
that are algebraic over I yields a duality at the finite level (see [5] for details).
Clark, Davey, Jackson and Pitkethly [8, Corollary 2.4] prove that the answer to (II)
is ‘yes’ in the case that M∼ 2 = �M ; G, R, T� is a total structure. Thus we obtain the
following result that can be viewed as a limited Full Duality Compactness Theorem.

Total Structure Full Duality Theorem 5.3. Let A := ISP(M1) be the quasi-
variety generated by the finite structure M1 and let M∼ 2 = �M ; G, R, T� be an alter
ego of M1 that is a total structure.

(i) If M∼ 2 yields a duality on A and yields a full duality at the finite level, then
M∼ 2 yields a full duality on A.

(ii) If M∼ 2 is of finite type and yields a full duality at the finite level, then M∼ 2

yields a full duality on A.

Proof. Part (i) follows immediately from the previous lemma and the fact, proved
in [8], that X = lim←−Xfin provided the type of M∼ 2 includes no partial operations. The
Duality Compactness Theorem 4.8 guarantees that, if the type of M∼ 2 is finite, then
a duality at the finite level lifts to a duality on A. Thus, (ii) follows from (i). �

This is a special case of Theorem 2.5 in Hofmann’s paper [27]. Where we have
assumed that M∼ 2 is a total structure, Hofmann assumes that X has Sur-Inj fac-
torizations. This amounts to assuming that the image of every morphism in X is
a substructure, a condition obviously guaranteed by our assumption that M∼ 2 is a
total structure. In fact, in the case that M1 is an algebra, Exercise 6.5 of Clark and
Davey [5] shows that, in the presence of a full duality, the image of every morphism
in X is a substructure if and only if the alter ego M∼ 2 is structurally equivalent to
a total structure.

As usual, the true role of partial operations in the proof of Theorem 5.3 is
somewhat mysterious. The following example shows that, in the presence of partial
operations, the answer to (II) can be ‘no’: it is possible for M∼ 2 to yield a duality
on ISP(M1) and yield a full duality at the finite level and yet satisfy lim←−Xfin � X.

Let 3L = �{0, a, 1};∨,∧, 0, 1� be the three-element bounded lattice. Then D01 :=
ISP(3L) is the class of all bounded distributive lattices. The non-identity endo-
morphisms of 3L are f and g, given by

f(0) = f(a) = 0, f(1) = 1 and g(0) = 0, g(a) = g(1) = 1.

Davey, Haviar and Priestley [15] proved that 3∼fg := �{0, a, 1}; f, g, T� yields a
duality on the class D01 of bounded distributive lattices. Subsequently, Davey,
Haviar and Willard [17] proved that the alter ego 3∼fgh := �{0, a, 1}; f, g, h, T�,
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h

❝(0, 0)
✿

❝(0, a)
✿

❝(a, 1)
③

❝(1, 1) ③

❝ 0

❝ a

❝ 1

Figure 1. The partial operation h

where h is the binary partial operation shown in Figure 1, yields a duality on D01

that is full at the finite level (but not strong at the finite level).

Example 5.4. Let 3L = �{0, a, 1};∨,∧, 0, 1� and 3∼fgh = �{0, a, 1}; f, g, h, T� be as
above and let X := IS

0
cP

+(3∼fgh). Then
(i) 3∼fgh yields a duality on the class D01 of bounded distributive lattices,
(ii) 3∼fgh yields a full duality on the class D01

fin of finite bounded distributive lat-
tices, but

(iii) not every topological structure in X is an inverse limit of finite structures
in X.

Proof. Since (i) and (ii) are proved in [15] and [17], we turn to (iii). We shall utilise
a construction used in [17]. Let X ∈ X and define PX := fix(f) = fix(g) ⊆ X .
Endow PX with the subspace topology and define a binary relation � on PX by

u � v ⇐⇒ (∃x ∈ X) f(x) = u & g(x) = v.

Davey, Haviar and Willard [17] proved that the structure PX := �PX; �, T� is an
ordered Boolean space, that is, �PX; �� is an ordered set, T is a Boolean topology on
PX and � is a closed subset of PX×PX. In fact, it is easily seen that F : X �→ PX

is (the object half of) a functor from X to the category Z� of ordered Boolean
spaces. Since f (and g) are calculated pointwise in a product of structures from
X and since inverse limits are calculated pointwise in both X and Z�, it follows
by a simple calculation that F preserves inverse limits. Let X = lim←−s∈S Xs be an
inverse limit in X with Xs ∈ Xfin, for all s ∈ S. Then

PX = F (X) = F (lim←−
s∈S

Xs) ∼= lim←−
s∈S

F (Xs) = lim←−
s∈S

PXs .

Thus, since an inverse limit of finite ordered sets is a Priestley space, it follows
that PX is a Priestley space, for all X ∈ lim←−Xfin. In [17] an example is given of a
structure Y in X for which the ordered Boolean space PY is not a Priestley space.
The argument just given shows that Y does not belong to lim←−Xfin. �

The following observation adds to the mystery. While H = ∅ is a sufficient con-
dition for X = lim←−Xfin, it is certainly not necessary. Let M1 be a finite, strongly
dualisable algebra that is not injective in the quasivariety it generates. For example,
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let M1 be the four-element Heyting chain (see Example 7.5 and the discussion pre-
ceding it). Let M∼ 2 be an alter ego that strongly dualises M1. The general theory
tells us that M∼ 2 must have partial operations in its type (see the Total Struc-
ture Theorem [5, 6.1.2]). Since M∼ 2 yields a full duality on ISP(M1), Lemma 5.2
guarantees that X = lim←−Xfin.

We close this section with a result that gives conditions under which a strong
duality can be lifted up from the finite level. Note that by using the Second Duality
Theorem 4.5 instead of the Duality Compactness Theorem 4.8, we have weakened
the assumption that M∼ 2 is of finite type.

Total Structure Strong Duality Theorem 5.5. Let M1 be a finite structure
and let M∼ 2 = �M ; G2, R2, T� be an alter ego of M1 that is a total structure with R2

finite. Define A := ISP(M1) and X := IS
0
cP

+(M∼ 2). If M∼ 2 yields a strong duality
between Afin and Xfin, then M∼ 2 yields a strong duality between A and X.

Proof. Assume that M∼ 2 yields a strong duality at the finite level. By the IC
Lemma 4.3, M2 satisfies (IC) with respect to M1 and hence M∼ 2 yields a duality
on A and is injective in X, by the Second Duality Theorem 4.5. It remains to show
that this duality is full. But this follows immediately from the Total Structure Full
Duality Theorem 5.3(i). �

6. Two-for-one duality theorems

In this section, we investigate when it is possible to remove the topology from M∼ 2,
add it to M1, and thereby convert a full duality for ISP(M1), induced by the alter
ego M∼ 2, into a full duality for ISP(M2), induced by the alter ego M∼ 1. When this
is possible, we get two dualities for the price of one. The following lemma shows
that, in order for this to work, the types of both M1 and M2 must include enough
nullary operations. First, we need some notation and a definition.

Let M be a structure. Define C0 to be the subuniverse of M consisting of the
values of the nullary term functions of M, and define C1 to be the subuniverse of M
consisting of the values of the constant total unary term functions of M. Obviously
we have C0 ⊆ C1. If every element of M that is the value of a constant total unary
term function of M is the value of a nullary term function of M, that is, if C1 = C0,
then we say that M has named constants. Note that C1 = C0 if and only if either
C0 �= ∅ or C1 = ∅.

Now assume that M1 and M2 are compatible structures. For i ∈ {1, 2}, define
C0

i and C1
i as above, and let Ki be the set consisting of all elements of M that form

complete one-element substructures of Mi. Since M1 and M2 are compatible, K1

forms a substructure of M2 and K2 forms a substructure of M1. Moreover, if t is
a constant total unary term function of M2, then t is a constant endomorphism
of M1. Since we have a base assumption that, on M1, the relations in R1 and the
domains of the partial operations in H1 are non-empty, it follows that the image of
t forms a complete one-element substructure of M1. So C1

2 ⊆ K1, and, similarly,
C1

1 ⊆ K2. Thus we have

C0
1 ⊆ C1

1 ⊆ K2 and C0
2 ⊆ C1

2 ⊆ K1.

In the presence of a full duality, all but one of these inclusions become equalities.
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Lemma 6.1. Assume that M1 and M2 are compatible structures.
(i) If M2 satisfies (CLO)1 with respect to M1 (in particular, if M∼ 2 dualises M1

at the finite level), then every element of M that forms a complete one-
element substructure of M2 is the value of a constant total unary term func-
tion of M1, that is, C1

1 = K2.
(ii) If M∼ 2 fully dualises M1 at the finite level, then M2 has named constants.
(iii) If M∼ 2 fully dualises M1 at the finite level, then C1

1 = K2 and C0
2 = C1

2 = K1.

Proof. Assume that M2 satisfies (CLO)1 with respect to M1 and that a ∈ M forms
a complete one-element substructure of M2. Then the constant map ϕ from M to
M with value a is a morphism from M2 to M2. Since M2 satisfies (CLO)1 with
respect to M1, the map ϕ is a constant total unary term function of M1. This
proves (i).

Now define Ai := ISP(Mi) and Xi := IS
0
cP

+(M∼ i), for i ∈ {1, 2}, and assume
that M∼ 2 yields a full duality between (A1)fin and (X2)fin. Let D2 : A1 → X2

and E2 : X2 → A1 be the functors induced by the alter ego M∼ 2 of M1. Suppose
that C0

2 �= C1
2 . Then we must have C0

2 = ∅ and C1
2 �= ∅. Let C0

2 and C1
2 be the

corresponding substructures of M2. Then, by definition, E2(C0
2) = E2(∅∅∅2) = 11,

where ∅∅∅2 denotes the empty structure of type �G2, H2, R2� and 11 denotes the
complete one-element structure of type �G1, H1, R1�. The only element of E2(C1

2)
is the inclusion map of C1

2 into M . An easy calculation, using the fact that, on M1,
each relation in R1 and the domain of every partial operation in H1 is non-empty,
shows that E2(C1

2) ∼= 11. So

C0
2
∼= D2E2(C0

2) ∼= D2(11) ∼= D2E2(C1
2) ∼= C1

2,

a contradiction. Thus, (ii) holds.
We now prove (iii). By (i) and (ii), it remains to prove that C1

2 = K1. First, we
shall prove that M∼ 1 yields a duality between (A2)fin and (X1)fin. To simplify the
notation, our remaining calculations are modulo the obvious addition or removal
of the discrete topology. Thus, we regard (A2)fin as a subclass of (X2)fin ∪ {12}.
Let D1 : A2 → X1 and E1 : X1 → A2 be the functors induced by the alter ego
M∼ 1 of M2. Let A ∈ (A2)fin. If A �∼= 12 or if A ∼= 12 and 12 ∈ X2, then A ∈ X2

and hence E1D1(A) = D2E2(A) ∼= A, as M∼ 2 fully dualises M1 at the finite level.
Otherwise, A ∼= 12 and 12 �∈ X2, in which case D1(A) ∼= D1(12) = ∅∅∅1 and hence
E1D1(A) = E1(∅∅∅1) ∼= 12

∼= A. It follows that M∼ 1 yields a duality between (A2)fin

and (X1)fin. An application of (i) gives C1
2 = K1, as required. �

When can we extend a full duality between ISP(M1) and IS
0
cP

+(M∼ 2) to a full
duality between IS

0
P(M1) and IS

0
cP(M∼ 2)? The next lemma answers this question.

As adding the complete one-element structure 12 to IS
0
cP

+(M∼ 2) cannot affect the
injectivity of M∼ 2, the lemma also holds with ‘full’ replaced by ‘strong’.

Lemma 6.2. Let M∼ 2 be an alter ego of a finite structure M1. Assume that M1

has no constant total unary term functions and that M∼ 2 yields a full duality between
ISP(M1) and IS

0
cP

+(M∼ 2). Then M∼ 2 yields a full duality between IS
0
P(M1) and

IS
0
cP(M∼ 2).

Proof. Since M∼ 2 yields a full duality between ISP(M1) and IS
0
cP

+(M∼ 2), we have
C1

1 = K2, by Lemma 6.1. As C1
1 is empty, by assumption, we have K2 = ∅. Hence
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M2 has no complete one-element substructures and consequently 12 /∈ IS
0
cP

+(M∼ 2),
where 12 denotes the complete one-element structure of type �G2, H2, R2�. As the
empty structure ∅∅∅1 in IS

0
P(M1) and the complete one-element structure 12 in

IS
0
cP(M∼ 2) are dual to each other, the result follows. �
We can now state our two-for-one results. The first, a finite-level two-for-one

lemma, is very easy.

Lemma 6.3. Assume that M1 and M2 are finite compatible structures and define
Ai := ISP(Mi) and Xi := IS

0
cP

+(M∼ i), for i ∈ {1, 2}.
(i) If M∼ 2 yields a full duality between (A1)fin and (X2)fin, then M∼ 1 yields a

duality between (A2)fin and (X1)fin that is full provided M1 has named con-
stants.

(ii) Assume that both M1 and M2 have named constants. Then M∼ 2 yields a full
duality between (A1)fin and (X2)fin if and only if M∼ 1 yields a full duality
between (A2)fin and (X1)fin.

Proof. Ignoring the discrete topology, the only difference between ISP(Mi)fin and
IS

0
cP

+(M∼ i)fin is the inclusion or exclusion of the empty structure and the complete
one-element structure. Assume that M∼ 2 yields a full duality between (A1)fin and
(X2)fin. Then, as in the proof of Lemma 6.1, M∼ 1 yields a duality on (A2)fin. If
M1 has named constants, then by Lemma 6.1(iii), we have C0

1 = C1
1 = K2. Thus

∅∅∅1 ∈ X1 implies that M2 has no complete one-element substructures, whence
D1E1(∅∅∅1) ∼= D1(12) = ∅∅∅1. It follows that M∼ 1 yields a full duality between (A2)fin

and (X1)fin. Thus (i) holds, and (ii) is an immediate consequence of (i). �
By strengthening the assumptions of this lemma in an asymmetrical way and

combining it with the Total Structure Full Duality Theorem 5.3, we obtain the
following ‘One-and-a-Half-for-a-Half’ Full Duality Theorem.

Sesqui Full Duality Theorem 6.4. Assume that M1 is a finite total structure
of finite type that has named constants, let M2 be a structure that is compatible
with M1 and define Ai := ISP(Mi) and Xi := IS

0
cP

+(M∼ i), for i ∈ {1, 2}. If
M∼ 2 yields a full duality between (A1)fin and (X2)fin, then M∼ 1 yields a full duality
between A2 and X1.

Proof. Assume that M∼ 2 yields a full duality between (A1)fin and (X2)fin. As M1

has named constants, it follows from the previous lemma that M∼ 1 yields a full dual-
ity between (A2)fin and (X1)fin. Since M1 is of finite type, M∼ 1 yields a full duality
between A2 and X1, by the Total Structure Full Duality Theorem 5.3(ii). �

The following theorem should be compared with the Two-for-One Strong Duality
Theorem 3.3.2 in [5]. The theorem here has a stronger assumption, namely that
both structures are of finite type, but has the advantage that it separates the fullness
of the resulting dualities from considerations of whether they are strong (that is,
whether the alter egos are injective in the topological quasivarieties they generate).
This is special case of Theorem 2.5 in Hofmann [27].

Two-for-One Full Duality Theorem 6.5. Assume that M1 = �M ; G1, R1� and
M2 = �M ; G2, R2� are finite compatible total structures of finite type and that each
has named constants. Define Ai := ISP(Mi) and Xi := IS

0
cP

+(M∼ i), for i ∈ {1, 2}.
Then the following are equivalent:

(1) M∼ 2 yields a full duality between (A1)fin and (X2)fin;
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(2) M∼ 1 yields a full duality between (A2)fin and (X1)fin;
(3) M∼ 2 yields a full duality between A1 and X2;
(4) M∼ 1 yields a full duality between A2 and X1.

Proof. Apply the previous theorem twice. �
We turn now to two-for-one strong dualities. The injectivity of M1 in A1 and

M∼ 2 in X2 are closely linked. The following lemma is proved exactly as it is in the
case where M1 is an algebra.

Injectivity Transfer Lemma 6.6. [5, 3.2.10] Let M1 be a finite structure, let
M∼ 2 be an alter ego of M1 and define A1 := ISP(M1) and X2 := IS

0
cP

+(M∼ 2).
Assume that M∼ 2 yields a full duality between A1 and X2 [at the finite level ].

(i) If M1 is a total structure and is injective in A1 [in (A1)fin], then M∼ 2 is
injective in X2 [in (X2)fin].

(ii) If M∼ 2 is a total structure and is injective in X2 [in (X2)fin], then M1 is
injective in A1 [in (A1)fin].

An inspection of the proof of 3.2.10 in [5] shows that, in both parts of this lemma,
instead of assuming that the structure is a total structure it suffices to assume that,
in the appropriate category, the image of every morphism is a substructure. Our
first two-for-one strong duality result is a strong-duality version of Lemma 6.3.

Lemma 6.7. Assume that M1 and M2 are finite compatible total structures and
define Ai := ISP(Mi) and Xi := IS

0
cP

+(M∼ i), for i ∈ {1, 2}.
(i) If M∼ 2 yields a strong duality between (A1)fin and (X2)fin, then M∼ 1 yields

a duality between (A2)fin and (X1)fin that is strong provided M1 has named
constants.

(ii) Assume that both M1 and M2 have named constants. Then M∼ 2 yields a
strong duality between (A1)fin and (X2)fin if and only if M∼ 1 yields a strong
duality between (A2)fin and (X1)fin.

Proof. This follows from Lemma 6.3 and the Injectivity Transfer Lemma 6.6. �
The following is our ‘One-and-a-Half-for-a-Half’ Strong Duality Theorem.

Sesqui Strong Duality Theorem 6.8. Let M1 = �M ; G1, R1� be a finite total
structure with R1 finite and assume that M1 has named constants. Let M2 be a
structure that is compatible with M1 and, for i ∈ {1, 2}, define Ai := ISP(Mi) and
Xi := IS

0
cP

+(M∼ i).
(i) If M1 is injective in (A1)fin and M∼ 2 yields a full (and therefore strong)

duality between (A1)fin and (X2)fin, then M∼ 1 yields a strong duality between
A2 and X1.

(ii) If M2 is a total structure and M∼ 2 yields a strong duality between (A1)fin and
(X2)fin, then M∼ 1 yields a strong duality between A2 and X1.

Proof. Note that the parenthetic remark in (i) follows from the Injectivity Transfer
Lemma 6.6(i). Assume that M1 is injective (A1)fin and that M∼ 2 yields a full duality
between (A1)fin and (X2)fin. By Lemma 6.3(i), M∼ 1 yields a full duality between
(A2)fin and (X1)fin, and so M∼ 1 yields a strong duality between (A2)fin and (X1)fin

since M1 is injective in (A1)fin. Thus (i) follows from the Total Structure Strong
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Duality Theorem 5.5 with M1 and M2 interchanged. Part (ii) follows from part (i)
and the Injectivity Transfer Lemma 6.6(ii). �

Combining the Injectivity Lifting Lemma 4.4, the Injectivity Transfer Lemma 6.6
and the Two-for-One Full Duality Theorem 6.5, we see immediately that, under
the assumptions of the Two-for-One Full Duality Theorem, if any one of the four
dualities listed there is strong, then so are all the others. In fact, by appealing to
the Sesqui Strong Duality Theorem 6.8 we can weaken the assumption that M1

and M2 are of finite type.

Two-for-One Strong Duality Theorem 6.9. Assume that M1 = �M ; G1, R1�
and M2 = �M ; G2, R2� are finite compatible total structures with R1 and R2 finite
and that each has named constants. Let Ai := ISP(Mi) and Xi := IS

0
cP

+(M∼ i), for
i ∈ {1, 2}. Then the following are equivalent:

(1) M∼ 2 yields a strong duality between A1 and X2;
(2) M∼ 1 yields a strong duality between A2 and X1;
(3) M∼ 2 yields a strong duality between (A1)fin and (X2)fin;
(4) M∼ 1 yields a strong duality between (A2)fin and (X1)fin;
(5) each of M1 and M2 satisfies (IC) with respect to the other.

Proof. The implications (1) ⇒ (3) and (2) ⇒ (4) are trivial. By Lemma 6.7,
(3) and (4) are equivalent even without the assumption that R1 and R2 are finite.
The IC Lemma 4.3 says that (3) and (4) together are equivalent to (5). Finally, the
implications (3) ⇒ (2) and (4) ⇒ (1) hold by the previous theorem (or (3) ⇒ (1)
and (4) ⇒ (2) hold by the Total Structure Strong Duality Theorem 5.5). �

The Two-for-One Strong Duality Theorem of Clark and Davey [4] ([5, 3.3.2]) is
the special case of this theorem in which R1 = R2 = ∅.

7. Examples

The Two-for-One Strong Duality Theorem 6.9 and, more generally, the Sesqui
Strong Duality Theorem 6.8 allow us to convert a large number of known strong
dualities into new strong dualities, by simply swapping the topology from one side
to the other. Assume that M1 is a finite algebra that is injective in the quasivariety
it generates and for which some alter ego yields a strong duality on A1 := ISP(M1).
Then the Total Structure Theorem (see Clark and Davey [5, 6.1.2]) tells us that
there is an alter ego M∼ 2 of M1 that is a total structure and yields a strong duality
between A1 and X2 := IS

0
cP

+(M∼ 2). Provided M1 has named constants, we con-
clude immediately from the Sesqui Strong Duality Theorem 6.8 that M∼ 1 yields a
strong duality between the categories A2 := ISP(M2) and X1 := IS

0
cP

+(M∼ 1). If
M1 is a lattice-based algebra and A1 is a variety, then an equational description of
A1 yields an equational description of X1 via Theorem 3.2. Moreover, if we have a
suitable description of X2, then we may apply Lemma 3.4 to read off a first-order
description of A2. The first three examples below illustrate these ideas. Our final
example is an application of the NU Duality Theorem 4.10 and does not follow by
simply swapping the topology on a known duality.

Our first example dates back to Banaschewski [2] in 1976 and is obtained from
Priestley duality via the topology-swapping technique described above. It was
reproved by Hofmann [27], but with strong replaced by full.
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Example 7.1. Let 2L := �{0, 1};∨,∧, 0, 1� be the two-element bounded lattice and
let 2O := �{0, 1}; �� be the two-element ordered set with 0 < 1. Then P := IS

0
P(2O)

is the category of ordered sets, D01
Bt := IScP(2∼L) is the category of Boolean topologi-

cal bounded distributive lattices, and 2∼L yields a strong duality between P and D01
Bt.

Proof. Priestley duality [31, 32] (see Clark and Davey [5, 4.3.1 and Exercise 4.5])
tells us that 2∼O yields a strong duality between the category ISP(2L) of bounded
distributive lattices and the category IS

0
cP

+(2∼O) of Priestley spaces. By the Two-
for-One Strong Duality Theorem 6.9, 2∼L yields a strong duality between ISP(2O)
and IScP

+(2∼L), and therefore 2∼L yields a strong duality between IS
0
P(2O) and

IScP(2∼L), that is, between P and D01
Bt, by Lemma 6.2 (taking M1 = 2O and

M2 = 2L).
It is very easy to show directly that IS

0
P(2O) is the category of ordered sets.

(Alternatively, use the fact that the finite Priestley spaces are precisely the finite
ordered sets with the discrete topology and apply Lemma 3.4—see Remark 3.5.)
Since ISP(2L) is the category of bounded distributive lattices, it follows from Theo-
rem 3.2(ii) that IScP(2∼L) is the category of Boolean topological bounded distribu-
tive lattices—see Remark 3.3. �
Remark 7.2. By redefining 2L and 2O in the previous example to be 2L :=
�{0, 1};∨,∧� and 2O := �{0, 1}; 0, 1, ��, respectively, we obtain a strong duality
between the category P01 := ISP(2O) of bounded ordered sets and DBt := IS

0
cP(2∼L)

of Boolean topological distributive lattices. An elementary proof of this duality,
along with applications to canonical extensions of distributive lattices, may be
found in Davey, Haviar and Priestley [16].

Our second example is derived from the author’s natural duality for Stone alge-
bras [12, 13] (see also Clark and Davey [5, 4.3.6]), again via a topology swap.

Example 7.3. Let 3S := �{0, a, 1};∨,∧,∗ , 0, 1�, where �{0, a, 1};∨,∧, 0, 1� is a
bounded lattice with 0 < a < 1 and ∗ is the pseudocomplementation operation, that
is, 0∗ = 1 and a∗ = 1∗ = 0. Define 3D := �{0, a, 1}; d, ��, where �{0, a, 1}; �� is
the ordered set whose only non-trivial relation is 1 < a and d is the unary operation
that maps each element to the unique minimal element below it, that is, d(0) = 0
and d(a) = d(1) = 1. Define A := IS

0
P(3D) and SBt := IScP(3∼S).

(i) A structure �A; d, �� belongs to A if and only if �A; �� is an ordered set in
which each element a is above a unique minimal element, namely d(a).

(ii) SBt consists of all Boolean topological Stone algebras, that is, Boolean topolog-
ical bounded distributive latttices that are pseudocomplemented and in which
the pseudocomplementation operation is continuous and satisfies x∗∨x∗∗ ≈ 1.

(iii) 3∼S yields a strong duality between A and SBt.

Proof. It is proved in both Davey [12] and Davey [13] (see also [5, 1.4.7]) that a
structure �X ; d, � T� belongs to IS

0
cP(3∼D) if and only if �X ; �, T� is a Priestley

space in which each element x is above a unique minimal element, namely d(x),
and the map d is continuous. Thus (i) follows by an easy application of Lemma 3.4.

It is well known that ISP(3S) is the variety of Stone algebras (see Grätzer [23]),
that is, pseudocomplemented distributive lattices satisfying x∗ ∨ x∗∗ ≈ 1. An
application of Theorem 3.2 yields (ii).

Since 3∼D yields a strong duality between ISP(3S) and IS
0
cP

+(3∼D) [12, 13], it
follows by a combination of the Two-for-One Strong Duality Theorem 6.9 and
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Lemma 6.2 (with M1 = 3D and M2 = 3S) that 3∼S yields a strong duality between
IS

0
P(3D) and IScP(3∼S), that is, between A and SBt. �

Remark 7.4. A version of this duality is proved from first principles by Haviar
and Priestley [25]. They replace the topological category SBt with an isomorphic
category consisting of doubly algebraic Stone algebras with morphisms that preserve
pseudocomplements and arbitrary joins and meets. They apply their version of the
duality to show that, in the language of canonical extensions, Stone algebras are
canonical. Applications of natural dualities for structures to the canonicity of other
classes of algebras will appear in a paper by Davey, Gehrke and Priestley [14].

The simple topology-swapping technique illustrated in the two examples above
can be applied to many lattice-based algebras for which we have a well-behaved
strong duality. For example, it can be applied to the known strong dualities for

• double Stone algebras (Davey [13] and [5, 4.3.13 and 4.3.14]),
• Kleene algebras (Davey and Werner [20] and [5, 4.3.9 and 4.3.10]), and
• De Morgan algebras (Cornish and Fowler [10] and [5, 4.3.16]).

This technique can also be applied when M1 is not injective in ISP(M1), but in
this case we must use the Sesqui Full Duality Theorem 6.4. For example, consider
the Heyting chain CH = �{0, a, b, 1};∨,∧,→, 0, 1�, with 0 < a < b < 1. While a
natural duality for ISP(CH) dates back to Davey [11] in 1976, a strong duality was
discovered only in 1995 by Clark and Davey [4]. Let CD := �{0, a, b, 1}; g, h�, where
g is the endomorphism of CH given by g(0) = 0, g(a) = b and g(b) = g(1) = 1,
and h is the partial endomorphism of CH with domain {0, b, 1} given by h(0) = 0,
h(b) = a and h(1) = 1. For an explanation of why C∼D yields a strong duality on
ISP(CH) and a proof of the following axiomatization of IS

0
cP(C∼D), see Davey and

Talukder [19]. A Boolean topological structure X = �X ; g, h, T�, with g a total
unary operation and h a partial unary operation, belongs to IS

0
cP(C∼D) if and only

if X satisfies the following axioms:
(S1) ggg(x) = gg(x),
(S2) x ∈ dom(h) ⇐⇒ gg(x) = g(x),
(S3) g(x) = x ⇐⇒

�
x ∈ dom(h) & h(x) = x

�
,

(S4) x ∈ dom(h) =⇒ gh(x) = x,
(S5) g(x) ∈ dom(h).

We shall now see that an application of the Sesqui Full Duality Theorem 6.4 and
Lemma 6.2 yields a full but not strong duality for the quasivariety generated by
the partial algebra CD. Recall that the Full versus Strong Problem [5, 3.2.7] asks
whether every full duality for the quasivariety ISP(M) generated by a finite total
algebra M is necessarily strong. The example below shows that if we allow M to
include partial operations in its type, then the answer is ‘no’. (Since this paper
was written, the problem has been solved in the negative by Clark, Davey and
Willard [9].)

Example 7.5. Let CH be the four-element Heyting chain and let CD be the four-
element partial algebra described above. Let A := IS

0
P(CD) and C := IScP(C∼H).

(i) A structure �A; g, h� belongs to A if and only if it satisfies axioms (S1)–(S5).
(ii) C consists of all Boolean topological Heyting algebras satisfying the identity

(x0 → x1) ∨ (x1 → x2) ∨ (x2 → x3) ∨ (x3 → x4) ≈ 1.
(iii) C∼H yields a full but not strong duality between A and C.
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Proof. Let Σ := {(S1), . . . , (S5)}. It is easy to check directly that a 1-generated
model of Σ has at most 5 elements. Indeed, if A is a model of Σ then the sub-
structure generated by a ∈ A consists of the elements a, g(a), gg(a) and hg(a), and
h(a) if it is defined; see Table 1. Hence, as the type is unary, an n-generated model
of Σ has at most 5n elements. Since Σ describes IS

0
cP(C∼D), part (i) follows from

Lemma 3.4.

a g(a) gg(a) hg(a) h(a)
g g(a) gg(a) gg(a) g(a) a
h h(a) hg(a) gg(a) g(a) a

Table 1. The substructure generated by a

Hecht and Katriňák [26] proved that a Heyting algebra belongs to ISP(CH) if
and only if it satisfies the identity given in (ii). Thus (ii) follows at once from
Theorem 3.2. As C∼D yields a full duality between ISP(CH) and IS

0
cP(C∼D), the

Sesqui Full Duality Theorem 6.4 and Lemma 6.2 (with M1 = CH and M2 = CD)
show that C∼H yields a full duality between A and C. Finally, C∼H is not injective
in C as the homomorphism h does not extend to an endomorphism of CH . Thus
(iii) holds. �

We close the paper with an application of the NU Duality Theorem 4.10. Let
2b := �{0, 1};∨,∧, b�, where �{0, 1};∨,∧� is the two-element lattice and �{0, 1}; b� is
the directed graph with one edge pointing from 0 to 1. Let 2ud := �{0, 1}; u, d, ��,
where u (for ‘up’) is the partial operation with domain {0} and u(0) = 1, the partial
operation d (for ‘down’) has domain {1} and d(1) = 0, and � is the order on {0, 1}
with 0 < 1. We shall see that, in a certain way, the quasivariety Db := ISP(2b) may
be thought of as the disjoint union of the classes D01 and D of bounded distributive
lattices and distributive lattices, and likewise, X := IS

0
cP

+(2∼ud) may be thought of
as the disjoint union of the classes of Priestley spaces and bounded Priestley spaces.

Example 7.6. Let 2b := �{0, 1};∨,∧, b� and 2ud = �{0, 1}; u, d, �� be as given
above, and define Db := ISP(2b) and X := IS

0
cP

+(2∼ud).
(i) Let A = �A;∨,∧, b� be a structure of the same type as 2b. The following are

equivalent:

(a) A belongs to Db;
(b) �A;∨,∧� is a distributive lattice and A satisfies the quasi-equations

(x, y) ∈ b =⇒ x � z � y;
(c) A is either a distributive lattice with bounds 0 and 1 and with an edge

pointing from 0 to 1, or A is a distributive lattice with no edges.
(ii) Let X = �X ; u, d, �, T� be a Boolean topological structure of the same type

as 2ud. The following are equivalent:

(a) X belongs to X;
(b) �X ; �, T� is a Priestley space and X satisfies the quasi-equations

x ∈ dom(u) =⇒ x � y & u(x) ∈ dom(d),
x ∈ dom(d) =⇒ x � y & d(x) ∈ dom(u);
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(c) X is either a Priestley space with both dom(u) and dom(d) empty, or
X is a bounded Priestley space in which u maps the bottom to the top
and d maps the top to the bottom.

(iii) 2∼ud yields a strong duality between Db and X.

Proof. The equivalences in parts (i) and (ii) follow by standard arguments concern-
ing distributive lattices and Priestley spaces using Lemmas 1.2 and 3.1. Thus, Db

is essentially the disjoint union of D01 and D. The morphism class of Db is just
the disjoint union of the morphisms in D01, the morphisms in D and the class of all
lattice homomorphisms from lattices in D to lattices in D01. Similarly, X can be
thought of as the disjoint union of the categories of Priestley spaces and bounded
Priestley spaces with the continuous order-preserving maps from Priestley spaces
into bounded Priestley spaces added as additional morphisms.

The set of all subuniverses of (2b)2 is
�

�, �, ∆{0,1}
�
∪

�
A×B

�� A, B ⊆ {0, 1}
�
.

Since u and d entail their domains, the structure 2∼ud entails every non-empty
subuniverse of (2b)2 (see [5, 2.4.5]). The NU Duality Theorem 4.10 now tells us
that 2∼ud yields a duality between Db and X, and that 2∼ud is injective in X. The fact
that the duality is full follows from the fact that both the duality between bounded
distributive lattices and Priestley spaces and the duality between (not necessarily
bounded) distributive lattices and bounded Priestley spaces are full. �

This duality is also a candidate for a topology swap. By the Sesqui Strong
Duality Theorem 6.8(i) and Lemma 6.2, the alter ego 2∼b = �{0, 1};∨,∧, b, T� of
the structure 2ud = �{0, 1}; u, d, �� yields a strong duality between A := IS

0
P(2ud)

and Db
Bt := IS

0
cP(2∼b). By Theorem 3.4, a structure A = �A; u, d, �� belongs to

A if and only if �A; �� is an ordered set and A satisfies the quasi-equations in (ii)
above. Since ISP(2b) is closed under (finite) quotients, Theorem 3.2 tells us that
X = �X ;∨,∧, b, T� belongs to Db

Bt if and only if �X ;∨,∧, T� is a Boolean topological
distributive lattice and X satisfies satisfies the quasi-equations in (i) above.
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AN EXAMPLE OF A CONGRUENCE DISTRIBUTIVE
VARIETY HAVING NO NEAR-UNANIMITY TERM

I. Chajda and R. Halaš

Abstract. By a nearlattice is meant a join-semilattice whose every principal filter is
a lattice with respect to the induced order. Every nearlattice can be described as an
algebra with one ternary operation satisfying eight simple identities. This algebra is
called a nearlattice-algebra. Hence, nearlattice-algebras form a variety N . We shall
show that the variety N is congruence distributive but N has not a near-unanimity
term.

By a nearlattice we mean a semilattice S = (A;∨) where for each a ∈ A the principal
filter [a) = {x ∈ A; a ≤ x} is a lattice with respect to the induced order ≤ of S.

Nearlattices were studied by M. Scholander [3,4] under a different name. The
term ”nearlattice” was firstly used by A. S. Noor and W. H. Cornish [2].

Obviously, the operation x∧ y (meet) in S is defined if and only if the elements
x, y have a common lower bound. This implies that for x, y, z ∈ A the operation

m(x, y, z) = (x ∨ z) ∧ (y ∨ z)

is everywhere defined. Moreover, m(x, y, z) satisfies the identities (P1) – (P8):
(P1) m(x, y, x) = x;
(P2) m(x, x, y) = m(y, y, x);
(P3) m(m(x, x, y), m(x, x, y), z) = m(x, x, m(y, y, z));
(P4) m(x, y, p) = m(y, x, p);
(P5) m(m(x, y, p), z, p) = m(x, m(y, z, p), p);
(P6) m(x, m(y, y, x), p) = m(x, x, p);
(P7) m(m(x, x, p), m(x, x, p), m(y, x, p)) = m(x, x, p);
(P8) m(m(x, x, z), m(y, y, z), z) = m(x, y, z).

It was shown in [1] that there is a one-to-one correspondence between nearlattices
and algebras A = (A; m) of type (3) satisfying the identities (P1) – (P8). Hence,
an algebra A = (A; m) of type (3) satisfying (P1) – (P8) will be called a nearlattice-
algebra.

One can easily see that for nearlattice-algebras the relation ≤ defined by

x ≤ y iff m(x, x, y) = y

is an order and (A;≤) is a semilattice where x ∨ y = m(x, x, y) and for each z ∈ A
the filter [z) is a lattice with x∧y = m(x, y, z). Hence, m(x, y, z) = (x∨z)∧ (y∨z).
Now, we can state
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Theorem 1. The variety N of all nearlattice-algebras is congruence distributive.

Proof. By Jónsson’s Theorem, we only need to verify the existence of ternary
Jónsson terms. We take n = 4, and

p0(x, y, z) = x;
p1(x, y, z) = m(z, y, x);
p2(x, y, z) = m(x, x, z);
p3(x, y, z) = m(x, y, z);
p4(x, y, z) = z.

Then we need to show that:

p0(x, y, z) = x; p4(x, y, z) = z;

p0(x, y, x) = p1(x, y, x) = p2(x, y, x) = p3(x, y, x) = p4(x, y, x) = x;

p0(x, x, y) = p1(x, x, y); p2(x, x, y) = p3(x, x, y);

p1(x, y, y) = p2(x, y, y); p3(x, y, y) = p4(x, y, y).

Evidently p0(x, y, z) = x and p4(x, y, z) = z hold.
Clearly

m(x, y, x)
(P1)
= x, m(x, x, x)

(P1)
= x,

so we obtain p0(x, y, x) = x, p1(x, y, x) = m(x, y, x) = x, p2(x, y, x) = m(x, x, x) =
x, p3(x, y, x) = m(x, y, x) = x, p4(x, y, x) = x.

Further,

p0(x, x, y) = x
(P1)
= m(x, y, x)

(P4)
= m(y, x, x) = p1(x, x, y),

p2(x, x, y) = m(x, x, y) = p3(x, x, y).

Finally,

p1(x, y, y) = m(y, y, x)
(P2)= m(x, x, y) = p2(x, y, y)

p3(x, y, y) = m(x, y, y)
(P4)
= m(y, x, y)

(P1)
= y = p4(x, y, y). �

To prove thatN has not a near-unanimity term, we introduce the following concept.
Let p(x1, . . . , xn) be a term of the variety N . By induction of term complexity,

we define: a variable xi is called the right-most of p if
(i) p(x1, . . . , xn) is a projection and p(x1, . . . , xn) = xi or
(ii) p(x1, . . . , xn) = m(p1, p2, p3) where p1, p2, p3 are subterms of p and xi is the

right-most variable of p3.
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Theorem 2. Let A = (A; m) ∈ N has a greatest element 1 and p(x1, . . . , xn) be
an n-ary term of N . If xi is the right-most variable of p and a1, . . . , an ∈ A then
p(a1, . . . , ai−1, 1, ai+1, . . . , an) = 1.

Proof. We proceed by induction of complexity of p(x1, . . . , xn). If p is projection,
the proof is trivial. Hence, suppose p(x1, . . . , xn) = m(p1, p2, p3) for some subterms
p1, p2, p3 and let xi be the right-most variable of p. Then xi is the right-most
variable of p3 and, by the induction hypothesis,

p3(a1, . . . , ai−1, 1, ai+1, . . . , an) = 1.

Thus
p(a1, . . . , ai−1, 1, ai+1, . . . , an) = (p1 ∨ p3) ∧ (p2 ∨ p3) =

= (p1 ∨ 1) ∧ (p2 ∨ 1) = 1 ∧ 1 = 1. �

Example. Let I = ({0, 1}, m) be a two-element nearlattice-algebra. Then it is
the two-element chain but there is no near-unanimity term-function on I since
u(0, . . . , 0, 1, 0, . . . , 0) = 1 (i-th position) whenever xi is the right-most variable of
u. On the contrary, there exists a near-unanimity polynomial on I which is e.g.

t(x, y, z) = m(m(x, y, z), m(x, x, y), 0).

It is in fact the majority term (x ∨ z)∧ (y ∨ z) ∧ (x ∨ y). However, this polynomial
exists only on nearlattices having the least element 0 which need not be the case.

Corollary 1. The variety N is congruence distributive but it has not a near-
unanimity term.
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SYMMETRIC CUBIC GRAPHS OF GIRTH AT MOST 7

Yan-Quan Feng1 and Roman Nedela2

Abstract. By a symmetric graph we mean a graph X which automorphism group
acts transitively on the arcs of X. A graph is s-regular if its automorphism group acts
regularly on the set of its s-arcs. Tutte [31, 32] showed that every finite symmetric
cubic graph is s-regular for some s ≤ 5. It is well-known that there are precisely five
symmetric cubic graphs of girth less than 6. All these graphs can be represented as
one-skeletons of regular polyhedra in the plane, projective plane or in torus. With
the exception of K3,3, we can find an associated regular polyhedron such that the
girth of the graph coincide with the face-size.

In this paper we show that with three more exceptions the symmetric cubic graphs
of girth g ≤ 7 are one-skeletons of trivalent regular maps with face-size g. All the
symmetric cubic graphs of girth 6 except the generalised Petersen graphs GP (8, 3)
and GP (10, 3) are one-skeletons of toroidal regular maps of type {6, 3}. We give a
simple numerical criterium to determine the degree s of s-regularity of these graphs
and derive the presentations of the automorphism groups. As concerns girth 7, the
only exceptional graph is the well-known Coxeter graph on 28 vertices. We prove that
all the other symmetric cubic graphs of girth 7 are underlying graphs of regular maps
of type {7, 3} which are known as Hurwitz maps. Some more results on symmetric
cubic graphs with exactly two girth cycles passing through an edge are proved

1 Introduction

Throughout this paper a graph means an undirected finite graph, without loops or
multiple edges. For a graph X , we denote by V (X), E(X) and Aut(X) its vertex
set, its edge set and its automorphism group, respectively. For further group- and
graph-theoretic notation and terminology, we refer the reader to [15] and [17].

An s-arc in a graph X is an ordered (s+1)-tuple (v0, v1, . . . , vs−1, vs) of vertices
of X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 �= vi+1 for every
1 ≤ i < s; in other words, a directed walk of length s which never includes the
reverse of an arc just crossed. A graph X is said to be s-arc-transitive if Aut(X)
is transitive on the set of all s-arcs in X . In particular, 0-arc-transitive means
vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. An arc-
transitive graph X is said to be s-regular if for any two s-arcs in X , there is a
unique automorphism of X mapping one to the other. An s-regular graph (s ≥ 1)
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is a union of isomorphic s-regular connected graphs and isolated vertices. Thus, in
what follows we consider only non-trivial connected graphs. Tutte [31, 32] showed
that every finite symmetric cubic graph is s-regular for some s ≤ 5. Depending
s = 1, 2, 3, 4, 5 the vertex-stabisers of the respective groups acting s-regularly on
a (connected) cubic graph are respectively isomorphic to the cyclic group Z3, to
the symmetric group S3, to the dihedral group D12 of order 12, to the symmetric
group S4 and to the direct product S4 × Z2. For s = 2 and s = 4 there are
two different possibilities for the edge-stabilisers. Taking into the account possible
vertex- and edge-stabilisers we have 7 sorts of arc-transitive actions of a group
onto a cubic graph. These 7 sorts of actions give rise to 7 universal groups acting
arc-transitively on the infinite cubic tree (see [12, 14]). Presentations of the seven
groups were found by Conder and Lorimer in [6]. It follows that the automorphism
group of a symmetric cubic graph is an epimorphic image of one of the 7 groups.
The corresponding seven families of graphs were proved to be infinite.

In the present paper we consider symmetric cubic graphs with girth constraints.
In particular, we will be interested in symmetric cubic graphs of girth at most 7.
It is well-known that there are five connected symmetric cubic graphs with girth
less than 6, namely the tetrahedral graph, the complete bipartite graph K3,3, the
3-dimensional cube, the Petersen graph and the dodecahedral graph. This can eas-
ily be shown by case to case analysis with respect to girth 3, 4 or 5. Three of the
graphs are one-skeletons of the 3-valent Platonic solids. The Petersen graph has
a highly symmetric 5-gonal embedding into the Projective plane while K3,3 has a
symmetrical 6-gonal embedding into the torus. In all these geometrical representa-
tions girth of the graph is equal to the face size, except for the embedding of K3,3

into torus. Automorphism groups of symmetric cubic graphs of girth 6 were studied
by Miller in [24]. He proved that all but finitely many of them can be defined as
double coset graphs from a family of 2-generator groups

G(s, t, k) = �x, y|x3 = y2 = (xy)6 = [x, y]sk = (xyx−1y)st(x−1yxy)−s = 1�,

where k > 0, 0 < 2t ≤ k + 1 and t2 − t + 1 ≡ 0(mod k). Further, Morton
[25] characterised 4-arc-transitive cubic graphs up to girth 13. It follows that the
automorphism group of such a graph is an epimorphic image of the triangle group
∆+(12, 3, 2) = �x, y|x3 = y2 = (xy)12 = 1� or it is one of the nine exceptional
graphs. Conder in [5] constructed an infinite family of 4-arc-transitive cubic graphs
of girth 12.

In the present paper we deal with the family of symmetric cubic graphs of girth
at most 7 in detail. In Section 5 we prove a classification theorem (Theorem 6.2)
showing that with two exceptions all the symmetric cubic graphs of girth 6 are
one skeletons of toroidal regular maps of type {6, 3}, a popular family of 3-valent
hexagonal maps (see Coxeter-Moser [9]). The two exceptional graphs are well-
known, these are the generalised Petersen graphs GP (8, 3) and GP (10, 3). Using
this geometric characterisation we describe the automorphism groups of the sym-
metric graphs of girth 6 by means of group presentations.

Similarly, we prove that except the Coxeter graph all the symmetric cubic graphs
of girth 7 are underlying graphs of regular, or orientably regular maps of type {7, 3}
(see Theorem 5.2). These maps are in a correspondence with compact Riemann
surfaces of Euler characteristic χ with the maximum possible number of symmetries
reaching the Hurwitz bound −84χ. Thus the maps of type {7, 3} are sometimes
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called Hurwitz maps. As concerns girth 7, to give a list of presentations for the
corresponding groups is a difficult task. It follows from our characterisation that
this problem is equivalent with the problem of classification of normal subgroups
of finite index of the triangle group ∆+(7, 3, 2) and of the extended triangle group
∆(7, 3, 2). Even if we are restricted to simple non-abelian quotients of ∆(7, 3, 2)
or of ∆+(7, 3, 2), a complete list of such groups is not known (see Section 6 for
more details). Some general results on the family of symmetric cubic graphs such
that there are precisely two girth cycles passing through an edge are proved in
Sections 4 and 6. In particular, Propositions 7.1 and 7.2 give existence results of
2- and 1-regular cubic graphs belonging to the family.

2 Maps and groups acting on maps

The aim of this section is to survey some known facts on regular maps with the
emphasis to trivalent regular maps. The proofs of the results mentioned here one
can find in [3, 13, 19]. A map is a cellular decomposition of a closed surface into
0-cells called vertices , 1-cells called edges and 2-cells called faces . The vertices and
edges of a map form its underlying graph. A map is said to be orientable if the
supporting surface is orientable, and is oriented if one of two possible orientations
of the surface has been specified; otherwise, a map is unoriented . Every map can
be described in a purely combinatorial way as follows: Let F be the set of mutually
incident triples of the form vertex-edge-face which we shall call flags of a map M.
There are three fixed-point-free permutations ρ, λ and τ associated with M, ρ
interchanges flags sharing the same vertex and face, λ interchanges flags sharing
the same face and edge. Finally, τ interchanges flags sharing the same vertex and
edge. It follows that (λτ)2 = 1. We shall write M = (F, ρ, λ, τ). On the other hand,
given set F of (abstract) flags and three involutions acting freely and transitively
on F such that two of them commute we can reconstruct the associated topological
map. The vertices, edges and faces are in correspondence with the orbits of �ρ, τ�,
�λ, τ� and �ρ, λ�, respectively. The incidence relation between vertices, edges and
faces is determined by the (non-empty) intersection of the respective orbits. Given
map M = (F, ρ, λ, τ) the map (F, ρ, λτ, τ) will be called the Petrie dual of M.
The underlying graph of the Petrie dual and of the original map are the same.
The following well-known result determines the topological structure of the surface
associated with a map (F, ρ, λ, τ).

Lemma 2.1. Let M = (F, ρ, λ, τ) be a combinatorial map. Denote by G+ =
�ρτ, λτ�, and by v, e and f the respective numbers of orbits of �ρ, τ�, �λ, τ� and
�ρ, λ� in the action of G = �ρ, λ, τ� on F .

Then the Euler characteristic of the underlying surface S is v − e + f and S is
orientable if and only if G+ < G is index two subgroup of G.

A permutation ϕ of flags is an automorphism of M = (F, ρ, λ, τ) if it commutes
with ρ, λ, τ . Every map automorphism act on vertices of the underlying graph and
preserve the incidence relation between edges and vertices. If the graph is simple
and the valency of every vertex is at least 3 we have Aut(M) ≤ Aut(X). Thus
every map automorphism can be viewed as a graph automorphism. Generally, the
action of Aut(M) on flags is semi-regular so |Aut(M)| ≤ |F | = 4|E(X)|. If the
equality holds, the action is regular on flags and the map itself will be called regular.
For regular maps we have the following.
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Proposition 2.2. [3] Let M = (F, ρ, λ, τ) be a map. The following three state-
ments are equivalent:

(1) M is regular,
(2) Aut(M) ∼= �ρ, λ, τ�,
(3) Aut(M) contains three involutory automorphisms mapping a fixed flag x

respectively, onto ρ(x), λ(x) and τ(x).

Hence if M is regular the action of Aut(M) is arc-transitive with dihedral vertex-
stabiliser and with edge-stabiliser isomorphic to the Klein’s group Z2 × Z2. The
backward implication (see [13]) holds true as well. Whenever we have a group
G of automorphisms of a graph X satisfying the above assumptions then we can
construct a regular map M with the underlying graph X such that Aut(M) = G.
In particular, if X is a cubic graph we have

Proposition 2.3. [13] Let X be a (simple) cubic graph. Then there is a regular
map with the underlying graph X and automorphism group G if and only if G ≤
Aut(X) acts 2-arc-transitively with edge-stabiliser Z2 × Z2.
Moreover, the map M is uniquely determined by G up to Petrie duality.

Assume the underlying surface is orientable, i.e. there exists a subgroup G+ =
�ρτ, λτ� = �R, L� ≤ of G with index 2. A permutation of arcs of the map will be
called an orientation preserving automorphism of M if it commutes with R and L.
The group of orientation preserving automorphisms Aut+(M) acts semi-regularly
on arcs of M and if the action is regular then M is called orientably regular. If
the underlying graph X of a map is simple of valency at least 3, we have a faithful
action of both groups on vertices so that Aut+(M) ≤ Aut(M) ≤ Aut(X).

If a surface S is orientable we can fix one of the two global rotations. In such
case we can describe a map on S by means of rotation and arc- reversing involution
acting on the set of arcs of the map. More precisely, by an oriented map we
mean a triple M = (D; R, L), where D is the set of arcs, �R, L� is a transitive
group of permutations of D with L being involutory and R being the rotation. A
permutation ψ of D is called a map automorphisms if it commutes with both R and
L. The map M−1 = (D; R−1, L) is called the mirror image of M. An oriented map
M is called regular if Aut(M) acts regularly on D. Similarly as in the non-oriented
case we have the following characterisation of oriented regular maps.

Proposition 2.4. [19] Let M = (D; R, L) be an oriented map. The following
three statements are equivalent:

(1) M is (oriented) regular,
(2) Aut(M) ∼= �R, L�,
(3) given edge e = uv the automorphism group Aut(M) contains two automor-

phisms, one fixes v and cyclically permutes the incident arcs with v following the
local action of R at v, the other rotates the map round the center of uv by 180
degrees interchanging the two arcs associated with uv.

In particular we have

Proposition 2.5. [13] Let X be a (simple) cubic graph. Then there is an oriented
regular map with the underlying graph X and with Aut(M) = G if and only if
G ≤ Aut(X) acts regularly on arcs.
Moreover, the oriented map M is uniquely determined by G up to mirror image.
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Assume that each vertex of M = (F, ρ, λ, τ) has the same valency k and each
face of M is m-gonal, for some integers k, m ≥ 3. Then (ρτ)k = (ρλ)m = 1. In
this case we say that M is a map of type {m, k}. It follows that G is a quotient of
the extended triangle group with presentation

∆(m, k, 2) = �x, y, z|x2 = y2 = z2 = (xy)k = (xz)m = (yz)2 = 1�.

The kernel N of canonical epimorphism x �→ ρ, y �→ τ and z �→ λ is a normal torsion
free subgroup of ∆(m, k, 2). The group ∆(m, k, 2) is the automorphism group of
a k-valent m-gonal tesselation U(m, k) of a hyperbolic plane. Hence every regular
map arises as a quotient U(m, k)/N , where N is a normal torsion free subgroup of
∆(m, k, 2) of finite index. The vertices of U(m, k)/N are the orbits of the action of
N on the vertices and two orbits A, B are adjacent if there are vertices u ∈ A and
v ∈ B such that uv is an edge in U(m, k). Namely, we have the following statement.

Proposition 2.6. [13] Let X be a cubic graph. Let G be a 2-regular group of
automorphisms of X such that an edge stabiliser is isomorphic to Z2 × Z2. Then
there exists m and a torsion free normal subgroup N � ∆(m, 3, 2) such that G ∼=
∆(m, 3, 2)/N and X ∼= U(m, 3)/N .

Similarly, setting

∆+(m, k, 2) = �x, y|xk = (xy)m = y2 = 1�,

one can establish a correspondence between the normal torsion free subgroups of
finite index of the triangle group ∆+(m, k, 2) and maps of type {m, k}. In particular,
we have

Proposition 2.7. [13] Let X be a cubic graph. Let G be a 1-regular group of
automorphisms of X . Then there exists m and a torsion free normal subgroup
N � ∆+(m, 3, 2) such that G = ∆+(m, 3, 2)/N and X ∼= U(m, 3)/N .

The universal graph U(m, 3) is 2-regular of girth m. A question arises under
what condition a finite quotient U(m, 3)/N by some normal torsion free subgroup
shares the same properties. The following proposition suggests that a combinatorial
condition on the number of girth cycles passing through an edge is important.

Proposition 2.8. Let X be a symmetric cubic graph. Then the number of girth
cycles c passing through an edge is even. If c < 2t then X is at most t-regular, for
t = 2, 3, 4, 5. In particular, if c = 2 then either X is 1-regular or it is 2-regular.

Proof. Let m be the number of girth cycles through a vertex. Then 3c = 2m.
Assuming that X is t + 1-arc-transitive, and considering the automorphisms per-
muting the t + 1-arcs based at a fixed arc x we create at least 2t different girth
cycles passing through x. �

3 Five exceptional graphs

In this section we define five exceptional cubic graphs which will play a key role in
the following text and mention some of their properties. The first four are of girth
6, the last one is the Coxeter graph, the smallest symmetric cubic graph of girth 7.

Let n ≥ 3 and k ∈ Zn\{0}. The generalised Petersen graph GP (n, k) is a graph
with vertex set {xi, yi| i ∈ Zn} and edge set {xixi+1, xiyi, yiyi+k; i ∈ Zn}.
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The generalised Petersen graph GP (8, 3). The graph is a double cover of
GP (4, 3) which is the 3-dimensional cube. Hence its group is isomorphic to a
semidirect product (S4 × Z2) : Z2.

Aut(GP (8, 3)) = �h, a, p|h3 = a2 = p2 = (ap)2 = 1, php = h−1, (ha)3(h−1a)3 = 1�

The graph is 2-regular, the action of the group determines an octagonal embedding
of the graph into the double torus giving rise to a regular map of genus 2 (see
[9 (p. 29, Fig. 3.6c)]). One can easily check that girth of the graph is 6 and there are
six 6-cycles passing through an edge. However, the graph is only 2-regular showing
that the implication in Proposition 2.8 cannot be reversed. More information on
this graph one can find in [22].

The generalised Petersen graph GP (10, 3). Since GP (10, 3) is the canonical
double cover of the Petersen graph its automorphism group is Aut(GP (5, 2))×Z2 =
S5 × Z2. By [7] it has presentation

Aut(GP (10, 3)) = �h, a, p, q|h3 = a2 = p2 = q2 = 1, qp = pq,

h−1ph = p, qhq = h−1, apa = q, pq(h−1a)2(ha)2(h−1a)2 = 1�.

The automorphism group has 240 elements, and consequently, the graph is 3-
regular. Since Aut(GP (10, 3)) contains no 1-regular subgroup, GP (10, 3) has no
regular embedding into an orientable surface. Since it admits a subgroup acting
2-regularly with an edge stabiliser Z2 × Z2, it is the underlying graph of a non-
orientable regular map. There are two such maps both of type {10, 3}. The maps
are Petrie duals of each other.

The Pappus graph 93 is the incidence graph of Pappus configuration

{123, 456, 789, 147, 258, 369, 158, 348, 267},

which is a union of the three parallel classes of lines in the affine geometry AG(2, 3)
(exactly one set of three parallel lines is missing). Consequently, the automorphism
group is a semidirect product (Z3 ×Z3) : Z2 of a group consisting of 9 translations
extended by a point-line duality. The vertex-stabiliser is isomorphic to the dihedral
group D12. A presentation of the automorphism group reads by [7] as follows:

Aut(93) = �h, a, p, q|h3 = a2 = p2 = q2 = 1, qp = pq,

h−1ph = p, qhq = h−1, apa = q, (h−1a)6 = 1�

Consequently, the graph 93 is 3-regular. Another remarkable property of 93 is that
it has a hexagonal embedding in the torus giving rise to a self-Petri regular map,
the map {6, 3}3,0 in the notation of Coxeter and Moser (see Figure 11).

The Heawood graph is the incidence graph of the Fano plane

P = {123, 345, 156, 147, 257, 367, 246}.

It follows that the automorphism group of the Heawood graph is PSL(3, 2).2 ∼=
PGL(2, 7). In [7] it has presentation:
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Aut(He) = �h, a, p, q, r|h3 = a2 = p2 = q2 = r2 = 1, pq = qp, pr = rp,

rq = pqr, h−1ph = q, h−1qh = pq, rhr = h−1, apa = p, aqa = r, p(ha)3(h−1a)3 = 1�

The graph is 4-regular and it admits a 1-regular action. There is a well-known
hexagonal embedding of the Heawood graph giving rise to an irreflexible oriented
regular map, the map {6, 3}2,1 in the Coxeter-Moser notation, see Figure 12.

The Coxeter graph. Vertices are antiflags of the Fano plane P , i.e. γ ∈ V if and
only if γ = (p, �) for some line � and a point not incident to �. Two vertices γ = (p, �)
and δ = (q, m) are adjacent if P = �∪m∪{p, q}. The group PGL(2, 7) has a natural
action on the 28 vertices of the Coxeter graph, indeed by [4 (Theorem 12.3.1)]
the automorphism group has 336 elements and it is isomorphic to PGL(3, 2).2 ∼=
PGL(2, 7). A presentation of the group given in [7] reads as follows

Aut(Cox) = �h, a, p, q|h3 = a2 = p2 = q2 = 1, qp = pq,

h−1ph = p, qhq = h−1, apa = q, pha(h−1a)2(ha)2(h−1a)2 = 1�.

Consequently, the Coxeter graph is 3-regular. The automorphism group of the
Coxeter graph contains no 1-regular subgroup. It contains 2-regular subgroups but
the edge-stabiliser of the respective action is isomorphic to Z4. Hence the Coxeter
graph has no regular embedding into a surface and it is the smallest symmetric
cubic graph with this property. There are some other remarkable properties of this
graph, see [10, 33, 11] for more information.

4 Graphs with more than two girth cycles passing through an edge

In this section we classify symmetric cubic graphs of girth 6 and 7 such that the
number of girth cycles passing through an edge is greater than 2 (Lemma 4.2 and
4.3). It transpires that there are exactly five such graphs. The following Proposition
proved in [26] will be useful.

Proposition 4.1. Let X be an arc-transitive cubic graph of girth g. Then X has
no cycle separating edge-cut of size < g. In particular, X has no edge-cut consisting
of < g independent edges.

Let X be a symmetric cubic graph of girth g. Fix a vertex v ∈ V (X) and denote
by Vi = Vi(v) = {u ∈ V (X)| d(u, v) = i} the set of vertices at distance i from
u. Denote by Ei+1

i the edge-set formed by the edges xy, x ∈ Vi and y ∈ Vi+1.
Note that Ei+1

i is an edge-cut provided it is non-empty. Furthermore, for j ≥ i
we denote by V j

i = Vi ∪ Vi+1 ∪ . . . Vj , and by [V j
i ] the subgraph induced by V j

i .
In what follows we denote by α a fixed element of order 3 in the vertex-stabiliser
Gv of v in G, where G is the automorphism group Aut(X) of X . By the quotient
X̄ = X/�α� we mean a graph which vertices are orbits of the action of α on the
vertex set of X , two orbits [v] and [u] being adjacent if there exist vertices v� ∈ [v]
and u� ∈ [u] such that v�u� is an edge in X . We say that an edge xy in X is of type
AB, if x ∈ A and y ∈ B, where A, B are orbits of α. The notion of the type of an
edge naturally extends to walks in X . In particular, every walk in X projects to a
walk in X̄ and this fact is expressed by saying that it has some type. There may

39



be double adjacency between two 3-orbits meaning that the corresponding induced
subgraph is a 6-cycle. Orbits of length three will be denoted by capital letters while
we use the same small letter for a fixed point as well as for the respective orbit of
length 1. Since we assume g ≥ 6 there are no edges joining vertices belonging to the
same 3-orbit. Hence the mapping X → X̄ taking v �→ [v] restricted to the union of
3-orbits defines a true regular covering between subgraphs.

Lemma 4.2. Let X be a symmetric connected cubic graph with girth 6 and let c
be the number of 6-cycles passing through an edge in X . Then, c = 2, 4, 6, or 8. If
c > 2 then X is isomorphic to one of the following four graphs: Heawood graph,
Pappus graph 93, generalised Petersen graph GP (8, 3), and generalised Petersen
graph GP (10, 3).

Proof. By Proposition 2.8, c is even. There are 8 vertices at distance 2 from a given
edge e and edges joining these 8 vertices are in 1-1 correspondence with 6-cycles
going through e. Since X has valency 3, we have c = 2, 4, 6, or 8.

The proof of the statement is done by a case-to-case analysis. Firstly observe
that α acts freely on the 6 elements of V2 and it fixes at most two vertices in V3.
Indeed, a fixed vertex u in V2 in the action of α implies an existence of a 4-cycle
going through v and u contradicting the assumption. Hence V2 splits into two α-
orbits of length 3, say B and C. If a vertex u in V3 is fixed by α then either it
is adjacent to all the vertices in B, or to all the vertices in C. Assume there are
three vertices in V3 fixed by α. Then two of them share the same vertices in their
neighbourhood which gives rise to a 4-cycle, a contradiction.

Note that there are at least six different 6-cycles passing through v and there is
no 4-cycle in X . Then one of the following cases happens:

(1) there are two vertices fixed by α in V3, and they are adjacent to different
3-orbits in V2;

(2) there is one vertex fixed by α in V3 and at least one 3-orbit of which each
vertex is joined to at least two vertices in V2;

(3) the action of α is free on V3, there are exactly two 3-orbits in V3 and E3
2 is

a union of cycles.

In what follows we denote by A the unique 3-orbit in V1 and by B and C the two
3-orbits in V2.

Case 1. Denote by u the fixed vertex adjacent to B and by w the fixed vertex
adjacent to C. Let E, F be the 3-orbits adjacent to B and C in V3, respec-
tively. Assume E �= F . Consider the set of 6-cycles passing through an edge
e of type AC. The subgraph [V 3

0 ] contains exactly two 6-cycles passing through
e. They are both of type (vACwCA). The only possibility to create another
6-cycle passing through e is to extend the unique path of type EBACF onto a
6-cycle. But there can be at most one such 6-cycle. Hence we have at most three
6-cycles passing through e, a contradiction. Hence E = F . Note that [V 3

0 ] is
uniquely determined. By Proposition 4.1 X cannot contain an independent 3-edge-
cut, hence the 3-orbit E = F is adjacent to a fixed vertex in V4. In this way,
we have constructed a unique graph on 16 vertices, namely GP (8, 3) (see Fig. 1).
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u

w
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B

C

Figure 1. A quotient in Case 1 and the generalized Petersen graph
GP (8, 3)

Case 2. Let there be exactly one vertex u fixed by α in V3 and one 3-orbit D
which vertices are joined to at least two vertices in V2. We may assume that u is
adjacent to B.

Subcase 2.1: D is adjacent to both B and C (see Fig. 2). Denote by E ⊆ V3 the
third 3-orbit adjacent to C. Clearly, the orbit E is not formed by a fixed point,
otherwise we are in Case 1. Assume E �= D. Let e be an edge of type AC. By
the assumption there are at least four 6-cycles passing through e. There are two
6-cycles passing through e in the subgraph [V 3

0 ], one of type (vABDCA), the other
one of type (uBDCAB). The only possibility to create another 6-cycle passing
through e is to extend the unique path of type DBACE containing e onto a 6-
cycle. In this way only one more 6-cycle passing through e can be constructed, a
contradiction. Hence E = D and there is a double adjacency between C and D.
The graph has 14 vertices and it is isomorphic to the Heawood graph.

vv

u

A

B

C
D

Figure 2. A quotient in Case 2.1 and the Heawood graph

Subcase 2.2: D is doubly adjacent to C (see Fig. 3). There is a 3-orbit E in
V3 adjacent to B. We may assume that E �= D, otherwise we get the previously
discussed subcase. As above take an edge e of type AC. There are exactly two
6-cycles in [V 3

0 ] both of type (vACDCA). To create another 6-cycle we need to
extend the unique path of length 3 containing e which is of type EBAC. Since no
4-cycle exists, at most one such 6-cycle is constructed, a contradiction.
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Figure 3. A quotient in Case 2.2

Case 3. We distinguish two subcases.

Subcase 3.1: There are two orbits D, E in V3, both adjacent to both B and C
(see Fig. 4).

Note that every 3-arc based at v extents to a 6-cycle. By the vertex-transitivity it
holds true for any 3-arc. Consider a 3-arc of type ECDB. Then a 6-cycle passing
through it contains an edge of type BE, as well. Hence, two vertices in E are
connected by a path of length 2. This is possible only if the orbit adjacent to E in
V4 is a fixed vertex. Similarly, there is a fixed vertex adjacent to D. In this way a
unique graph on 18 vertices is constructed, namely the Pappus graph 93.

vv A

B

C

D

E

Figure 4. A quotient in Subcase 3.1 and the Pappus graph 93

Subcase 3.2: There are two orbits D, E in V3, doubly adjacent to B and C,
respectively (see Fig. 5).

As above every 3-arc extends to a 6-cycle. Consider a 3-arc of type ECAB.
There is no 6-cycle in [V 3

0 ] passing through such a 3-arc. Hence there is a 3-orbit F
in V4 adjacent to both D and E. Since we cannot have an independent 3-edge-cut,
the orbit adjacent to F in V5 is a fixed point. In this way a unique cubic graph
with 20 vertices is constructed, namely GP (10, 3).

vv A

B

C

D

E

Figure 5. A quotient in Subcase 3.2 and the generalized Petersen graph
GP (10, 3)
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Lemma 4.3. Let X be a symmetric cubic graph of girth 7 such that there are more
than two 7-cycles passing through an edge of X . Then X is the Coxeter graph.

Proof. Since X has girth 7, there are two 3-orbits in V2 denoted by B and C, and
four 3-orbits in V3 denoted by D, E, F and G. We may assume that D and E, F
and G are adjacent to B, C respectively. Let A be the 3-orbit in V1. Then A is
adjacent to B, C and to v. Clearly, α acts freely on Vi for i = 1, 2 or 3. Recall
that we use c to denote the number of 7-cycles passing through an edge in X . The
proof splits into two claims.

Claim 1. Let c ≥ 4. Then c = 4 and [V3] is a perfect matching consisting of 6
edges. Furthermore, every 3-arc is included in precisely one 7-cycle.

Let m be the number of edges in V3. Since α acts freely on V3 and c ≥ 4,
m = 6, 9 or 12. If m = 12 then X has 22 vertices. But there is no symmetric
cubic graph of girth 7 with 22 vertices. If m = 9 we have only 6 edges in E4

3 .
By Proposition 4.1 E4

3 cannot separate cycles. It follows that the complement V̄ 3
0

has at most 4 vertices, and consequently, the whole graph has at most 26 vertices.
However, the least symmetric cubic graph of girth 7 is the Coxeter graph having
28 vertices [7], a contradiction. Thus m = 6. Since each edge in V3 corresponds a
7-cycle passing through v, we have c = 4. Since the girth is 7, two 3-orbits in V3

cannot be doubly adjacent.
Suppose that there is a 3-orbit in [V3], say E, adjacent to two 3-orbits in V3.

We may assume that E is adjacent to F and one of D and G (see Fig. 6). Since
X is vertex-transitive, for any arc v1v2 there is a 3-arc v1v2v3v4 and there are two
7-cycles passing through the 3-arc such that the number of the common vertices
of the two 7-cycles is 4 because it holds true for each arc of type vA. But this
is not true for an arc of type AC. In fact, for a 3-arc of type ACFE or ACGE
there is only one 7-cycle passing through the 3-arc, which is of type (ACFEBAv)
or (ACGEBAv). For a 3-arc of type ACFH or ACGH , where H is an orbit in V4,
any two 7-cycles passing through such a 3-arc have at least 5 vertices in common,
because the two 7-cycles pass through a 4-arc of type BACFH or BACGH as well.

v A

B

C

D

E

F

G

H v A

B

C

D

E

F

G

H

Figure 6. Quotients in Claim 1

Thus, [V3] consists of a perfect matching of 6 edges, implying that each 3-arc
based at v extends to a unique 7-cycle and by the transitivity of the action on
vertices this property holds true for any 3-arc in X . As concerns the matching
between the four 3-orbits in V3, there are two cases to consider: we have either
edges of type DE and FG, or DF and EG.

Claim 2 The graph X has at most 44 vertices.

We shall distinguish two cases.
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Case 1. There are some fixed points in V4.

We may assume that a fixed point u is adjacent to D. If there is a matching
of type DE, FG in V3 then we get a 5-cycle of type uDEBD passing through u,
a contradiction. Thus, we assume that there are edges of type DF , EG in V3. If
there is another fixed point, say w, in V4 then [V 3

0 ∪{u, w}] is separated by a 6-edge
cut, which implies that X has at most 28 vertices. Thus, we may assume that there
is only one fixed point in V4, that is u. Since E4

3 has 12 edges, there are one, two
or three 3-orbits in V4. If there is one 3-orbit in V4 then X has 26 vertices. If there
are two 3-orbits in V4 then one of them, say H , is adjacent to two 3-orbits in V3,
then [V 3

0 ∪ H ∪ {u}] is separated by a 6-edge cut forcing that X has at most 30
vertices. Thus, we may assume that there are three 3-orbits in V4, say H , I and J
with adjacences to E, F and G respectively (see Fig. 7). By the existence of 7-cycle
passing through a 3-arc of type ABEH , ACFI or ACGJ (Claim 1), there are at
least 6 edges in the induced subgraph [H ∪ I ∪J ]. It follows that X has 32 vertices
or [V 4

0 ] is separated by a 6-edge cut. In the latter case, X has at most 36 vertices.

Case 2. The action of α is free on V4.

We distinguish three subcases.

Subcase 2.1. There are four 3-orbits H , I, J , K in V4, say we have edges of type
DH , EI, FJ and GK (see Fig. 7.

By Claim 1, every 3-arc is included in precisely one 7-cycle. Considering the
3-arcs of type ABDH , ABEI, ACFJ and ACGK, we derive that each 3-orbit in
V4 is adjacent to at least one 3-orbit in V4. Furthermore, H and I are adjacent
to one of J or K. It follows that [V4] has 6, 9 or 12 edges. If [V4] has 12 or 9
edges then X has 34 vertices or X has a 6-edge cut. For the later, X has at most
38 vertices. Thus, we may assume that [V4] has 6 edges, that is [V4] consists of a
perfect matching of 6-edges, which are of type HJ and IK or of type HK and IJ .

If there is a matching of type DE, FG in V3 then the existence of 7-cycle passing
through a 3-arc of type HDEB implies that there is a fixed vertex in V5 that is
adjacent to H . Similarly, there are another three fixed vertices in V5 that are
adjacent to I, J and K, respectively. It follows that X has 38 vertices. Thus, we
assume the matching in V3 is of type DF , EG (Fig. 7). Consider the 3-arcs of
type HDFC and IEGC, and the existence of 7-cycles passing through these 3-arcs
implies that there are two 3-orbit L and M in V5 such that L is adjacent to H and
K, and M is adjacent to I and J . It follows that either M is adjacent to L, or
[V 5

0 ] is separated by a 6-edge-cut, implying that X has 40 vertices or at most 44
vertices.
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Figure 7. Two quotients in Case 1 and Subcase 2.1

Subcase 2.2. There are three 3-orbits in V4, say H , I and J (see Fig. 8).
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Since E4
3 has 12 edges, one of 3-orbits in V4, say I, is adjacent to two 3-orbits in

V3 and so H and J are adjacent to one 3-orbit in V3. As above considering a 3-arc
starting at A and terminating at H or J , we derive that H and J is adjacent to
some orbits in V4. Thus, H and J must be adjacent. If [V4] has 6 edges then the
induced subgraph [V 4

0 ] is separated by a 3-edge cut and hence X has 32 vertices.
We may assume that [V4] has 3 edges and so E5

4 has 9 edges. If there is a fixed point
in V5, say u, then the induced subgraph [V 4

0 ∪{u}] is separated by a 6-edge cut and
so X has most 36 vertices. Thus, we assume that there is one, two or three 3-orbits
in V5. If there is one 3-orbit in V5 then the graph X has 34 vertices. If there are
two 3-orbits in V5 then a 3-orbit in V5, say K, is adjacent to two 3-orbits in V4.
This implies that the induced subgraph [V 4

0 ∪K] is separated by a 6-edge cut and
so X has at most 38 vertices. Now, we assume that there are three 3-orbits in V5,
say K, L and M that are adjacent to H , I and J respectively (Fig. 8). Considering
a 3-arc starting at V2 and terminating at V5, Claim 1 implies that [V5] has at least
6 edges. It follows that [V5] has 6 or 9 edges. For the later, X has 40 vertices. Let
[V5] have 6 edges. Then [V 5

0 ] is separated by a 6-edge cut and so X has at most 44
vertices.

Subcase 2.3. There are two 3-orbits in V4, say H and I (see Fig. 8).
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Figure 8. Two quotients in Subcases 2.2 and 2.3
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Figure 9. The Coxeter graph and its quotient

If one 3-orbit in V4, say H , is adjacent to three 3-orbits in V3 then [V 3
0 ∪H ] is

separated by a 3-edge cut. This implies that there is a fixed point in V4, which
is discussed in Case 1. Thus, we may assume that both H and I are adjacent to
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two 3-orbits in V3. If H and I are not adjacent then [V 4
0 ] is separated by a 6-edge

cut. Hence X has at most 32 vertices. If H and I are adjacent then X has 28
vertices. In this case, the Coxeter graph appears (see Fig. 9). The proof of Claim
2 is complete.

Checking the list of arc-transitive cubic graphs in [7] we see that there are only
17 arc-transitive graphs with at most 44 vertices. Out of these 17 graphs only one,
the Coxeter graph has girth 7 and it satisfies the property that there are exactly
four 7-cycles passing through an edge in it. �

5 Symmetric cubic graphs with exactly two girth cycles passing
through an edge

Theorem 5.1. Let X be a symmetric connected cubic graph of girth g such that
there are exactly two girth cycles passing through an edge. Then one of the following
three cases happen:

(1) X is 2-regular, and Aut(X) is a quotient of ∆(g, 3, 2) = �x, y, z|x2 = y2 =
z2 = (xy)g = (yz)3 = (xz)2 = 1� by some normal torsion free subgroup,

(2) X is 1-regular, and Aut(X) is a quotient of ∆+(g, 3, 2) = �x, y|x3 = y2 =
(xy)g = 1� by some normal torsion free subgroup,

(3) X is 1-regular and g is even, there exists m > g such that Aut(X) is a
quotient of ∆+(m, 3, 2; g/2) = �x, y|x3 = y2 = (xy)m = [x, y]g/2 = 1� by
some normal torsion free subgroup.

Proof. By Proposition 2.8 X is either 1-regular or 2-regular. Let G = Aut(X) and
let e = vu be an edge in X . Let {2, 4, u} and {1, 3, v} be the neighbors of v and u,
respectively. Since there are exactly two girth cycles passing through an edge there
is at most one girth cycle passing through a 2-arc. Thus, we may assume that two
girth cycles, say C and C�, pass through the 3-arcs 1uv2 and 3uv4, respectively.
Then, C and C� are the only two girth cycles passing through e.

Assume X is 2-regular. Since Gv
∼= S3, there are two involutions y and z in Gv

such that y interchanges 2 and u, and z interchanges 2 and 4. Then, Gv = �y, z� and
yz has order 3. Let x ∈ G interchange u and v. We claim that x is an involution.
Otherwise, x permutes the neighbors of e as (1234) or (1432) and hence x sends the
3-arc 1uv2 onto 2vu3 or 4vu1. This is impossible because there is no girth cycle
passing through 2vu3 or 4vu1. Thus, x is an involution and Ge = �x, z� ∼= Z2×Z2.
One can easily check that either x or xz preserve the cycle C, say it is x. Thus, x
interchanges u and v, 1 and 2, and 3 and 4. Furthermore, xy fixes C and maps the
2-arc 1uv onto uv2. By the 2-regularity of X , |xy| = g and by the symmetry and
connectivity, G = �Gv, x� = �x, y, z�.

Assume that X is 1-regular. Let x ∈ Gv permute the neighbors of v as (4u2)
and let y be the involution in G interchanging u and v. Then, x takes C� onto
C and y permutes the neighbors of e as (12)(34) or (14)(23), which corresponds y
fixing C and C�, or interchanging C and C�. If y interchanges C and C� then yx
fixes C and takes 1u onto uv. Thus, |yx| = |xy| = g and we have the Case (2).
If y fixes C and C� then [x, y] = xyx−1y−1 fixes C� and takes 4v onto u3, that is
[x, y] rotates C� with step two. If g is odd then both [x, y]

g+1
2 and xy take 4v onto

vu. By the 1-regularity, [x, y]
g+1
2 = xy and hence [x, y]

g−1
2 = yx. It follows that

yx[x, y] = xy and so x2y = yx2. This implies x and y commute because x has
order 3. Clearly, it is impossible. Thus, g must be even and [x, y]

g
2 = 1. Now, we
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show that if (xy)m = 1 then m > g. In fact, xy sends 4v onto vu, vu onto u1. By
considering the action of xy on the arc 4v, we can get a cycle containing the 3-arc
4vu1. Since no girth cycle passing through 4vu1, xy has order more than g. �

Theorem 5.2. Let X be a symmetric cubic graph of girth 7. Then the following
statements hold true:

(0) there is no 4-arc-transitive cubic graph of girth 7,
(1) X is 3-regular if and only if it is the Coxeter graph,
(2) X is 2-regular if and only if X = U(7, 3)/N , where N �∆(7, 3, 2) is a proper

normal subgroup of finite index, Aut(X) ∼= ∆(7, 3, 2)/N .
(3) X is 1-regular if and only if X = U(7, 3)/N , where N�∆+(7, 3, 2) is a normal

subgroup of finite index but N � ∆(7, 3, 2), Aut(X) ∼= ∆+(7, 3, 2)/N .

Moreover, U(7, 3)/N is of girth 7 for any non-trivial normal subgroup N �∆+(7, 3, 2)
of finite index.

Proof. By Lemma 4.3, if X is not the Coxeter graph it has exactly two girth cycles
passing through an edge. Consequently, X is either 1- or 2-regular. Applying
Theorem 5.1 (1) we get that if X is 2-regular then X ∼= U(7, 3)/N for some normal
subgroup N � ∆(7, 3, 2) of finite index. Let X be 1-regular. Since the girth is odd
Case (2) of Theorem 5.1 applies proving X = U(7, 3)/N for some N � ∆+(7, 3, 2)
but N � ∆(7, 3, 2). To see the opposite direction observe that ∆(7, 3, 2)/N acts
2-regularly on X = U(7, 3)/N provided N �∆(7, 3, 2). Similarly, ∆+(7, 3, 2)/N acts
1-regularly on X = U(7, 3)/N if N � ∆+(7, 3, 2). Finally, observe that a nontrivial
N � ∆+(7, 3, 2) is torsion free. Hence, the respective quotient X = U(7, 3)/N is a
symmetric cubic graph of girth at most 7. Since 7 divides the number of vertices of
X = U(7, 3)/N , if X is exceptional of girth ≤ 6 then X is the Heawood graph, which
cannot be since X has cycles of length 7. Thus assuming that the girth of X is at
most 6 we get that Aut(X) is either isomorphic to ∆(6, 3, 2)/K or ∆+(6, 3, 2)/K
for some normal subgroup K � ∆+(6, 3, 2). Since ∆+(6, 3, 2) ∼= (Z × Z) : Z6

is solvable (see the next section) Aut(X) is solvable as well. However, a non-
trivial finite quotient of ∆(7, 3, 2), or of ∆+(7, 3, 2) is insolvable. Hence the girth
of X = U(7, 3)/N is 7. �

6 Quotients of the tesselation U(6, 3) and graphs of girth 6

Let us consider the hexagonal infinite tessellation U(6, 3) of the Euclidean plane
E2. Assume E2 is endowed with the standard Cartesian coordinate system. Let
�i = (1, 0) and �j = (1/2,

√
3/2) be two vectors based at (0, 0). Note that �j arises

by counterclockwise rotation of �i by 60 degrees. Without loss of generality we
may identify the centers of the hexagons of the tesselation with points of the plane
with coordinates m�i + n�j, where m and n are integers. Hence we can identify
the center of every hexagon with a couple (m, n) of integers. Let us denote by
ψm,n = m�i + n�j the translation of E2 shifting the points by the vector m�i + n�j,
hence �xψm,n = �x + m�i + n�j. Let ρ be the counterclockwise rotation of the plane by
60 degrees around the point (0, 0). See Figure 10.
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Figure 10. Construction of the G(m, n)

Let N = N(m, n) = �ψm,n, ρ−1ψm,nρ� = �ψm,n, ψ−n,m+n�. It follows that the
group of translations N(1, 0) = �ψ1,0, ψ0,1� acts regularly on the set of centers of
all hexagons and it forms a semidirect product G = N(1, 0) � �ρ�. Observe that
G acts 1-regularly on arcs of U(6, 3), hence it is isomorphic to ∆+(6, 3, 2). Indeed,
it is easy to check that the assignment x �→ ρ2ψ1,0 and y �→ ρ3ψ1,0 extends to
an isomorphism ∆+(6, 3, 2) = �x, y|x3 = y2 = (xy)6 = 1� → G. This shows that
∆+(6, 3, 2) ∼= N(1, 0) � �ρ�. Since ∆(6, 3, 2) is an 2-extension of ∆+(6, 3, 2) by an
element of order 2 taking x �→ x−1 and y �→ y we have ∆(6, 3, 2) ∼= ∆+(6, 3, 2)�Z2.
Using the above interpretation of the triangle group ∆+(6, 3, 2) in the group of
isometries of the Euclidean plane one can prove (see [9]) that N(m, n) � ∆+(6, 3, 2)
is a torsion-free normal subgroup of ∆+(6, 3, 2) for any two non-negative integers
m, n, m + n �= 0 and any torsion free normal subgroup of the triangle group
∆+(6, 3, 2) is of this form. Moreover, every torsion free normal subgroup of the
extended triangle group ∆(6, 3, 2) is N(m, n) for some m, n satisfying mn = 0 or
m = n. It follows that U(6, 3)/N(m, n) is an (oriented) regular map of type (6, 3)
in the torus, and the respective arc-transitive graph will be denoted by G(m, n). It
is easy to get a picture of the graph G(m, n) by identifying the parallel sides of the
fundamental region (a connected sector of the plane containing representatives of
the orbits in the action of N(m, n)). In this particular case, the fundamental region
forms a parallelogram which corners coincide with the centers of four hexagons with
coordinates (0, 0), (m, n), (−n, m + n), (m − n, m + 2n) in the coordinate system
defined by the unit vectors �i, �j.

The automorphism group of G(m, n) contains a 1-regular subgroup isomorphic to
∆+(6, 3, 2)/N(m, n) and it contains a 2-regular subgroup of the form ∆(6, 3, 2)/N(m, n)
if and only if mn(m − n) = 0 (see [9] (p. 107)). Since G(m, n) ∼= G(n, m) in what
follows we will assume m ≤ n.

Lemma 6.1. Let G = �x, t| x3 = t2 = [x, t]3 = 1�. Then G ≤ ∆(6, 3, 2) is an
index 2 subgroup and every normal torsion free subgroup N � G of finite index is a
normal torsion free subgroup of ∆(6, 3, 2) as well. In particular, N ∼= N(m, m) or
N ∼= N(0, m) for some positive integer m.

Proof. Identifying x with an element of order 3 in the stabiliser of a vertex v of
U(6, 3) and t with a reflection taking v onto one of its neighbours we get a 1-regular
action of G on U(6, 3). Since ∆(6, 3, 2) ∼= Aut(U(6, 3)) and it acts 2-regularly,
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G ≤ ∆(6, 3, 2) and it is an index 2 subgroup. Moreover, G+ = ∆+(6, 3, 2) ∩ G
consists of elements expressed as words in terms of the generators containing even
number of appearances of t. Hence G+ is an index 2 subgroup of G. If N � G is
a normal torsion free subgroup of finite index, then N+ = N ∩ G+ ≤ ∆+(6, 3, 2)
is such a group as well. Hence N+ = N(m, n) for some integers m, n. Since it
is normal in G, N+ is invariant under the conjugation by the reflection t. Hence
N+ � ∆(6, 3, 2) as well. Either N = N+, or N = �N+, t�. However, the latter case
is excluded since we assume that N is torsion free. Hence N = N+ and we are
done. �

Figure 11. Pappus graph represented as G(3, 0)

Now we are ready to prove the following classification theorem.

Theorem 6.2. Let X be a symmetric cubic graph of girth 6. Then the following
statements hold:

(0) there is no 5-regular cubic graph of girth 6,
(1) X is 4-regular if and only if it is the Heawood graph,
(2) X is 3-regular if and only if it is the Pappus graph, or the generalized

Petersen graph GP (10, 3),
(3) X is 2-regular if and only if X is the generalized Petersen graph GP (8, 3) or

X ∼= G(m, n) = U(6, 3)/N(m, n) with Aut(X) ∼= ∆(6, 3, 2)/N(m, n), where
0 < m = n or 0 = m < n, and (m, n) is different from (0, 1), (1, 1), (0, 2),
(0, 3),

(4) X is 1-regular if and only if X ∼= G(m, n) = U(6, 3)/N(m, n), with
Aut(X) ∼= ∆+(6, 3, 2)/N(m, n) for some integers m,n satisfying 0 < m < n,
and (m, n) �= (1, 2).

Proof. Assume the number of 6-cycles passing through an edge is grater than 2. By
Lemma 4.2 X is one of the four exceptional graphs. Note that 3-arc-transitivity of
X implies that X has more than two 6-cycles passing through an edge and thus if
X is 3-arc-transitive it is one of the exceptional graphs. Checking the symmetries
of the exceptional graphs we get the first three items of the statement. The graph
GP (8, 3) is 2-regular although it has more than two girth cycles passing through
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an edge. In what follows we assume that there are exactly 2 girth cycles passing
through an edge in which case X is at most 2-regular.

If X is 2-regular Theorem 5.1 (1) applies. Since every normal torsion free sub-
group of ∆(6, 3, 2) of finite index is either N(m, m) or N(0, m) for some positive
integer m we have proved item (3). The exceptional groups N(0, 1), N(1, 1), N(0, 2)
and N(0, 3) give rise, respectively, to a graph with multiple edges, to the complete
bipartite graph K3,3 of girth 4, to the cube Q3 of girth 4 and to the Pappus graph
which is known to be 3-regular, see Fig. 11. From the remaining cubic graphs which
are 2-regular of girth at most 5 the graphs K4, GP (5, 2) and the dodecahedron are
not isomorphic to G(m, m), or to G(0, m). An easy argument to see it comes from
the fact that the number of vertices of G(m, m) is 6m2, while the number of vertices
of G(0, m) is 2m2 (see [9 (p. 107)]).

If X is 1-regular then by Lemma 6.1 case (3) of Theorem 5.1 cannot hap-
pen. Hence Theorem 5.1 (2) applies. Consequently, X is one of G(m, n) =
U(6, 3)/N(m, n) for some integers 0 < m < n. The exceptional group N(2, 1)
gives rise to the Heawood graph which is known to be 4-regular, see Fig. 12. �

Figure 12. The Heawood graph as G(2, 1)

Corollary 6.3. Let X be a symmetric cubic graph of girth 6. Then X ∼= G(m, n)
for some integers m ≤ n, m + n > 1, except X is the generalized Petersen graph
GP (8, 3) or GP (10, 3). In particular, all symmetric cubic graphs of girth 6 are
bipartite.

Proof. First part follows from Theorem 6.2 The biparticity of GP (8, 3) and GP (10, 3)
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can be verified directly from the definition. As concerns the graphs G(m, n), ob-
serve that the group of translations N(1, 0) acts on the vertices of U(6, 3) with two
orbits forming a bipartition of the vertex set. It follows that the vertex-orbits of
N(1, 0)/N(m, n) ≤ Aut(G(m, n)) form a bipartition of G(m, n) = U(6, 3)/N(m, n).
�
Theorem 6.4. Let X = G(m, n), where 0 ≤ m ≤ n and

(m, n) /∈ {(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3)}.

Then either
(1) 0 < m < n and Aut(X) = �x, y| x3 = y2 = (xy)6 = 1, (x−1yxy)m(xyx−1y)n =

1�;
or

(2) Aut(X) = �t, u, z| t2 = u2 = z2 = (tu)3 = (uz)2 = (tz)6 = 1, (utuztz)m(tzutuz)n =
1�, where mn(m− n) = 0.

Proof. By the assumptions X is 1-regular or 2-regular. By Theorem 6.2 Aut(X) ∼=
∆+(6, 3, 2)/N(m, n) provided 0 < m < n. Hence AutX = �x, y| x3 = y2 =
(xy)6 = 1, . . . � is a quotient by N(m, n) = �ψm,n, ψ−n,m+n� ∼= Z×Z. Without loss
of generality we may identify x with the 120 degree counterclockwise rotation of
U(6, 3) around the point (0, 0) and y with the 180 degree turn round the center of
the common edge of the hexagons with centers (0, 0) and (1, 0). This identification
establishes an embedding of ∆+(6, 3, 2) = �x, y| x3 = y2 = (xy)6 = 1� in the
group of isometries of the Euclidean plane. Direct computation of images of the
points (0, 0) and (1, 0) shows that ψ2,−1 = x−1yxy and ψ1,1 = xyx−1y. Hence
the relation (x−1yxy)m(xyx−1y)n = 1 transforms to ψm

2,−1ψ
n
1,1 = ψ2m+n,n−m = 1.

Since ψ2m+n,n−m ∈ N(m, n) and N(n, m) = Cl�ψ2m+n,n−m� is the normal closure
of �ψ2m+n,n−m� in ∆+(6, 3, 2), we are done.

Let mn(m−n) = 0. In this case X is 2-regular and the automorphism group has
presentation of the form Aut(X) = �t, u, z| t2 = u2 = z2 = (tu)3 = (uz)2 = (tz)6 =
1, . . . �. In this case t, u generate the vertex stabiliser and we may assume that x = tu
and y = uz = zu. The automorphism group contains as an index two subgroup a
1-regular subgroup generated by x and y and satisfying (x−1yxy)m(xyx−1y)n = 1.
Putting x = tu and y = uz = zu we get the required relation. The equality
mn(m− n) = 0 guarantees then N(m, n) = Cl�ψ2m+n,n−m� � ∆+(6, 3, 2) is normal
in the extended triangle group ∆(6, 3, 2) as well. �

7 Graphs with two girth cycles passing through an edge, existence
problems

It follows from Theorem 5.1 that a symmetric cubic graph X of girth g such that
there are two girth cycles passing through an edge is either 2-regular, or 1-regular
and in the 1-regular case there are two sorts of the action on the compact surface S
arising by gluing 2-cells to each girth cycle. It is clear, that every graph automor-
phism extends to a self-homeomorphism of S and hence the embedding of X into
S gives rise to a regular map, or to an oriented regular map which automorphism
group coincide with the full automorphism group of the graph, or it is the Petrie
dual of an oriented (chiral) regular map. In this section, we shall discuss the exis-
tence of such graphs and maps for g ≥ 7. In a correspondence with Theorem 5.1
we distinguish the above mentioned three cases.
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Case 1: X is 2-regular.

The following statement holds true.

Proposition 7.1. For every g ≥ 6 there are infinitely many 2-regular cubic graphs
X with girth g. Moreover, each such X is a quotient X ∼= U(g, 3)/N , where N is
an appropriate normal torsion-free subgroup of ∆(g, 3, 2).

The history of the proof of this statement is quite long. In the context of per-
mutation groups it was proved in 1902 in [23], later rediscovered, reproved and
improved by many other authors (see [27] for more information). A general argu-
ment to see the existence of infinitely many finite quotients of ∆(g, 3, 2) uses the
residual finiteness of ∆(g, 3, 2). A group G is called residually finite if for any finite
set A ⊆ G of elements of G and for any x ∈ A, x �= 1 there exists a normal subgroup
N � G of finite index such that x /∈ N . The idea of the proof of Proposition 7.1
is to take A to be the set of all elements in ∆(g, 3, 2) expressible in terms of the
three involutory generators by all words of length at most d for some d. By residual
finiteness of ∆(g, 3, 2), for every d there is a normal subgroup N � ∆(g, 3, 2) of
finite index such that a part of the universal graph U(g, 3) formed by the images
of a particularly chosen arc under the elements of A is mapped isomorphically into
U(g, 3)/N . Thus U(g, 3)/N is a 2-regular cubic graph of girth g. Taking different d
we can construct an infinite family of non-isomorphic graphs satisfying the required
properties.

A standard argument to see the residual finiteness of triangle groups is by using
a deep theorem of Malcev [20] saying that any finitely generated matrix group is
residually finite. Concrete matrix representations of ∆(g, 3, 2) one can find in [29,
30]. Proofs based on permutation representation of some quotients of ∆(g, 3, 2) can
be found for instance in [18, 27].

Case 2. X is 1-regular, and Aut(X) is a quotient of ∆+(g, 3, 2) = �x, y|x3 = y2 =
(xy)g = 1� by some normal torsion free subgroup.

To prove that there are infinitely many 1-regular cubic graphs of girth g ≥ 7 of
this sort it is not enough to argue by the residual finiteness of the triangle group
∆+(g, 3, 2). We need an additional argument to guarantee that an appropriate
normal subgroup N �∆+(g, 3, 2) of finite index used to produce the graph U(g, 3)/N
is not normal in ∆(g, 3, 2). In general, this is not easy. In what follows we show
that it is true for any g divisible by 6.

Proposition 7.2. For every g divisible by 6 there are infinitely many 1-regular
cubic graphs X of girth g such that X ∼= U(g, 3)/N , for some normal torsion free
subgroup N of ∆+(g, 3, 2).

Proof. By Theorem 6.2 the graphs G(m, 1) are for any m ≥ 3 one-regular quotients
of U(6, 3) of girth 6. The least 2-regular cubic graph of girth 6 covering X = G(m, 1)
is of the form Y = U(6, 3)/K for some normal subgroup K � ∆(6, 3, 2). It follows
that K ≤ N(m, 1) ∩ N(1, m). Since N(m, 1) ∩ N(1, m) � ∆(6, 3, 2) we get K =
N(m, 1)∩N(1, m). Let κ be the index of the covering Y → X . By the isomorphism
theorem κ is equal to the index of the covering X → Z = U(6, 3)/(N(m, 1)N(1, m)).
An easy calculation shows that the product N(m, 1)N(1, m) = N(1, 0). Hence Z
is a 2-vertex graph. Since X has 2(m2 + m + 1) vertices we have κ = m2 + m + 1.

Let X(g) = U(g, 3)/N be a symmetric cubic graph of girth g for some normal
subgroup N�∆+(g, 3, 2). Since 6|g we have a natural epimorphism φ : ∆+(g, 3, 2)→
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∆+(6, 3, 2). Choose m such that m > |Aut+(X)| = |∆+(g, 3, 2)/N |. We claim that
the graph W = U(g, 3)/N ∩ φ−1(N(m, 1)) is 1-regular of girth g.

Firstly, since W contains a 1-regular subgroup ∆+(g, 3, 2)/N∩φ−1(N(m, 1)) iso-
morphic to a subgroup of ∆+(g, 3, 2)/N×∆+(g, 3, 2)/φ−1(N(m, 1)) ∼= Aut+(X(g))×
Aut(G(m, 1)) (see [34,1] for more details) the number of arcs of W cannot exceed
6m(m2 + m + 1). On the other hand, assuming that W is 2-regular we get a
graph φ(W ) = U(6, 3)/φ(N) ∩N(m, 1), where φ(N) ∩N(m, 1) � ∆(6, 3, 2). Hence,
it is a 2-regular graph of girth 6 covering X . Consequently, φ(W ) has at least
κ6(m2 + m + 1) = 6(m2 + m + 1)2 arcs, a contradiction. Since W covers X(g),
its girth is at least g, but since it is a quotient of U(g, 3) its girth is at most g.
Choosing different values for m we create an infinite family of graphs satisfying the
required properties. �

Let us note that the above proof employs some general ideas on the ‘chirality’ of
oriented regular maps and hypermaps developed in [1] and later generalised in [2].

Problem 1. Prove that for every g ≥ 6 there are infinitely many 1-regular cubic
graphs with girth g of the form U(g, 3)/N for some N � ∆+(g, 3, 2).

Case 3. As concerns the existence of 1-regular cubic graphs of girth g for some
even g ≥ 8 such that the girth cycles come from the relation [x, y]g/2 = 1, see
Theorem 5.1 (3) we cannot say too much. The following example shows that for
girth g = 8 this case happens.

Example. Checking the list of all symmetric cubic graphs up to 768 vertices [7]
we see that there exists a 1-regular graph X of girth 8 on 400 vertices which group
has presentation

G =< h, a|h3 = a2 = [h, a]4 = (ha)12 = 1, (ha)5h−1a(ha)2(h−1a)2ha(h−1a)5 = 1 > .

It follows X admits a 1-regular action of G of the third type.

As concerns the existence of some other examples of this sort, the following state-
ment proved in [16] supports a conjecture that most probably there are infinitely
many such graphs for any even g ≥ 8.

Theorem 7.3. [16] With possible exceptions of (m, q) = (13, 4) and (7, 11) the
group ∆+(m, 3, 2; q) = �x, y|x3 = y2 = (xy)m = [x, y]q = 1� is infinite if and only if
m and q satisfy one of the following conditions: m = 7, q ≥ 9; m = 8 or m = 9 and
q ≥ 6; m = 10 or m = 11 and q ≥ 5; m ≥ 12 and q ≥ 4.

Inspired by the above result we give the following problem.

Problem 2. Prove that for every even g ≥ 8 there are infinitely many 1-regular cu-
bic graphs of girth g which automorphism group is an epimorfic image of �x, y|x3 =
y2 = [x, y]g/2 = 1�.
Girth 7. A particular instance of Proposition 7.1 for g = 7 establishing the exis-
tence of infinitely many 2-regular cubic graphs of girth 7 (Case (2) of Theorem 5.2)
is a consequence the theorem of McBeath [21] showing that there are infinitely
many Hurwitz maps. A regular, or an oriented regular map of type {7, 3} is called
a Hurwitz map. It follows from Theorem 5.2 that the family of symmetric cubic
graphs of girth 7 coincide with the exception of the Coxeter graph with the family
of underlying graphs of Hurwitz maps.
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By Theorem 5.2 a 1-regular cubic graph of girth 7 is a quotient U(7, 3)/N by some
nontrivial subgroup N �∆+(7, 3, 2) = �x, y|x3 = y2 = (xy)7 = 1� of finite index such
that the mapping x �→ x−1, y �→ y does not extend to a group automorphism. The
residual finiteness of ∆+(7, 3, 2) is not sufficient to see that there are infinitely many
such normal subgroups N . This can be done by presenting some finite groups by
means of two generators x, y satisfying x3 = (xy)7 = y2 = 1 and using an argument
to show a non-existence of a group automorphism taking x �→ x−1 and y �→ y. In
particular, the Ree group G = Re(3f ), for odd f > 1, is a simple epimorphic image
of the triangle group ∆+(2, 3, 7), with generators x and y of orders 3 and 2. As
shown in [28], x is not inverted by any automorphism of G.

Proposition 7.4. There are infinitely many 1-regular cubic graphs of girth 7.

As concerns the problem to classify symmetric cubic graphs of girth 7 it seems
to be difficult if possible at all. The core of the problem consists in the fact that
the structure of normal subgroups of the triangle groups ∆+(7, 3, 2) (∆(7, 3, 2)) of
finite index is too complex. Infinite families of simple nonabelian groups appear as
epimorphic images of these groups. In fact, one can show that the automorphism
group of every symmetric cubic graph of girth 7 is insolvable, which is in a clear
contrast to the situation for the graphs of girth 6 in which case the automorphism
groups are solvable with a well-understandable structure, or the graph is one of the
exceptional graphs discussed in Section 3.

Remark Recently main results of this paper were generalized by Conder and Nedela
[8] by proving that a symmetric cubic graphs of girth at most 9 is either 1-regular
or 2�-regular or it belongs to a small family of 15 exceptional graphs. In contrast
to the approach used in this paper, the proof is computer-assisted.
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USING TRACE TO IDENTIFY IRREDUCIBLE POLYNOMIALS

Ondrej Šuch

Abstract. We prove a criterion to check whether a polynomial is irreducible. This
criterion is related to trace map computations. It may be effectively used to detect
irreducibility of polynomials of prime degree over their base field.

1 Introduction

Motivation for our paper is to provide a new way to check if a polynomial with
coefficients in a finite field is irreducible. In computer science as well as experimental
mathematics, this is a crucial problem to solve in order to generate an explicit finite
field.

The context is as follows. Let F be a finite field of cardinality q, and a polynomial
f(x) of degree n over F. For any m ≥ 1 one can define F -linear trace map

Trm : y �→ yqm−1
+ . . . + yq + y

that maps F [x] to itself. It induces an F -linear map on F [x]/(f), which we denote
by Trm,f .

If f is irreducible, then E := F [x]/(f) is a field and in fact E/F is a cyclic
Galois extension of degree n. Its Galois group is generated by the Frobenius map
F : x �→ xq. For any element e ∈ E the sum

e + F (e) + F 2(e) + . . . + Fn−1(e) = Trn,f(e)

is clearly invariant under the Frobenius F and thus belongs to F . In fact, the image
of Trn,f is precisely F . All this holds if the polynomial f is irreducible. (see e.g.
[3 (VI, §5, Theorem 5.2, p. 286)], or [2 (Chaper 12)] for basic properties of finite
fields).

In this paper we investigate whether a converse holds with the intention of pro-
ducing a criterion to check irreducibility of f . This paper builds upon our previous
paper [4] where we studied irreducibility of quadratic polynomials. Here we deal
with polynomials of arbitrary degree. We note that our main result, Theorem 5,
essentially proves Conjecture 3 from [4].

2000 Mathematics Subject Classification. Primary: 12Y05; Secondary: 12E05, 12E20.
Key words and phrases. exponential sums, monodromy, additive characters.
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2 Trace maps

It is well known that xqn − x is the product of all monic irreducible polynomials of
degree dividing n with coefficients in a finite field of cardinality q [3 (V, §6, exercise
22, p. 254)]. The following is a less known, but closely related fact.

Lemma 1. For any element a in F , the polynomial ga,m(x) := Trm(x) − a has
no repeated roots, and its divisors are only the irreducible polynomials of degree
dividing m.

Proof. Since the derivative of ga,m(x) is 1, it clearly has no repeated roots. Now
we proceed to prove the rest of the lemma.

Suppose h(x) is an irreducible polynomial of degree k. Then Trk,h(x) is a con-
stant, in fact if

h(x) = akxk + ak−1x
k−1 + . . . + a0,

then Trk,h(x) = −ak−1/ak. Moreover, for any mutiple of k we have

Trkj,h(x) = j Trk,h(x) = −jak−1/ak.

It follows that h(x) divides Trkj,h(x) + jak−1/ak.
Consider the product P of all irreducible monic polynomials of degree dividing

m. By the above reasoning

P |
�

a∈F

(Trm(x) − a)

On the other hand, the product P is known to equal to

P = xqm

− x

Since each polynomial Trm(x) − a is monic of degree qm−1, it follows that

qm = deg P = deg
�

a∈F

(Trm(x)− a) = qm

and thus
P =

�

a∈F

(Trm(x) − a)

and the lemma is proved. �
Corollary 2. If Trn,f (x) is a constant in F [x]/(f), then f has no repeated roots.

Proof. To say that Trn,f (x) is a constant is to say that f divides Trn(x) − a for
some a in F . But Trn(x) − a is squarefree by the above lemma.

3 Key lemma

Lemma 3. Let p be a prime and n an integer ≥ 1. Denote Mn,p the set of
positive integers k dividing n such that (p, n/k) = 1. If f(x) is a monic irreducible
polynomial of degree d in Mn,p over a finite field F of characteristic p, then knowing
Trn,f(xi) for i = 1, . . . , 2n−1 uniquely determines f(x) among all irreducible monic
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polynomials of degree from Mn,p. If char(F ) > n, then it is sufficient to know
Trn,f(xi) for i = 1, . . . , n.

Proof. For brevity, let us denote Si = Trd,f(xi) and write f(x) =
�

k akxk. Well
known Newton identities state

ad−1 + adS1 = 0
2ad−2 + ad−1S1 + adS2 = 0

...
da0 + a1S1 + . . . + ad−1Sd−1 + adSd = 0

For k = 1, 2, 3, . . .

(1) a0Sk + a1Sk+1 + . . . ad−1Sk+d−1 + adSk+d = 0

Consider now the matrix

A :=





Sd Sd−1 . . . S0

Sd+1 Sd . . . S1

. . .
S2d−1 S2d−2 . . . Sd−1





We claim that A has rank d.
In fact the determinant of the minor gotten from A by leaving out the first

column is nonzero. It is the discriminant of the trace form which is equal to [3 (VI,
§Ex, exercise 32, pg. 325)] the discriminant of f , which is nonzero, because f is
irreducible. Thus the right nullspace W of A is a rank 1 vector space over F . An
obvious element of W is the column vector (ad, ad−1, . . . , a0). It is the only element
of W whose first coordiate equals to 1. It follows that the only element of W whose
first coordinate is 0 is the zero vector.

Let us return to traces Trn,f (xi) = (n/d)Si. Suppose there was another polyno-
mial f �(x) =

�
a�kxk of degree d� ≥ d such that

Trn,f �(xi) = Trn,f(xi)

Then we would have for k ≥ 0

a�0Sk + a�1Sk+1 + . . . a�d�−1Sk+d�−1 + a�d�Sk+d� = 0(2)

Let us write
f �(x) = f(x)g(x) + h(x), deg h(x) < d

where

g(x) =
�

k

bkxk

h(x) =
�

k

ckxk

We can substract a linear combination of shifted relations (1) from (2) to arrive at

c0Sk + c1Sk+1 + . . . cd−1Sk+d−1 = 0, k ≥ 0

Vector (0, bd−1, . . . , b0) belongs to W , thus by above analysis, it has to be the zero
vector. It follows that f �(x) is divisible by f(x).

If char(F ) > n, then one can use Newton formulae to recursively compute
ad−1, . . . , a0. �
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Example 4. Note that over field of three elements F = Z/3Z, the polynomials
f1(x) = (x4 + x3 + 2) and f2(x) = (x4 + x3 + 2x + 1) have identical matrix of
trace form. Thus knowing the trace quadratic form by itself does not determine
the underlying monic irreducible polynomial uniquely. In particular it implies that
knowing Trn,f(xi) for i ≤ 2n− 2 is not sufficient to determine a monic irreducible
polynomial.

4 Main result

Now we can prove our main result.

Theorem 5. Polynomial f(x) of degree n over a finite field F of cardinality q
is irreducible, if and only if the image of the trace map Trn,f are precisely the
constants.

Proof. If f(x) is irreducible, then any element of F [x]/(f) can viewed as an element
of the splitting field of f , and its trace is necessarily constant. Since the trace form
is nondegenerate, the image of trace map cannot consists of only 0. This proves
the “if” part.

Suppose now that Trn,f consists only of constants. By Corollary 2, f(x) is a
squarefree polynomial. Let f = f1 · · · fr be its factorization over F . Then

F [x]/(f) ≈ F [x]/(f1)⊕ · · ·⊕ F [x]/(fr)

and Trn,f = Trn,f1 ⊕ · · ·⊕Trn,fr . The constants in F [x]/(f) are precisely elements
(a, a, . . . , a) with a in F , the so called Berlekamp subalgebra. From Lemma 1 it
follows that deg fi divides n for i = 1, . . . , n. Since the image of Trn,f does not
consists of only zero, the same is true for Trn,fi . Therefore for all i, n/ deg(fi) are
not divisible by p. But it follows from Lemma 3 that this implies that all fi are
equal. Since f(x) is squarefree, it follows that f(x) is irreducible.

5 Applications

In [1 (Section 5], an algorithm is presented that computes the trace map Trn,f using
O (̃n(ω+1)/2 +n log q) and tests irreducibility of degree n polynomial with the same
complexity. Here ω denotes the complexity of the algorithm used for multiplying
two n×n matrices (one can choose ω < 2.376, while standard algorithm uses ω = 3),
and g = O (̃h) means that g = O(h(log h)k) for some constant k.

Our main result, Theorem 5, implies an algorithm to test irreducibility of f(x).
Namely, compute trace values Trn,f (xi) for i = 1, . . . (n − 1) and the polynomial
is irreducible if and only if they are all constants. However, complexity of this
algorithm is O (̃n(n(ω+1)/2 + n log q)) steps, which is worse than known algorithms,
e.g. above, if n is large.

It would be nice if it were sufficient to check whether a single Trn,f (xi) is a
constant. This is not true however.

Example 6. We can construct an example from polynomials shown in Example 4.
Consider f(x) = (x4 + x3 + 2)(x4 + x3 + 2x + 1) over the field of cardinality three.
Then Tr8,f(xi) is constant for i = 1, . . . , 6. It is only Tr8,f(x7) that is not constant.

But there is one special case, when our algorithm is equally fast, because it is
sufficient to test whether single Trn,f (x) is constant.
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Lemma 7. If the degree of f(x) is prime and not divisible by char(F ), then f(x)
is irreducible if and only if Trn,f (x) is a constant in F [x]/(f).

Proof. If f(x) is irreducible, then Trn,f (x) is clearly constant. In fact it is the minus
of coefficient of xn−1 of f(x).

Suppose now Trn,f (x) is a constant. From Lemma 1 it follows that either f(x) is
irreducible, or that f(x) is the product of distinct linear factors (x−a1) · · · (x−an).
In the latter case the trace Trn,f (x) is then n(a1, . . . , an) in

F [x] ≈ F [x]/(x− a1)⊕ · · ·⊕ F [x]/(x− an)

which cannot be constant if p does not divide n. �

6 Errata

In our previous paper [4], in the proof of Proposition 1, we incorrectly stated that
f(x) is irreducible if and only if Pq(x, y) = 0. In fact f(x) is irreducible if and only
if Pq(x, y) = −1. The rest of proof stands as written. The author would like to
thank Ms. Soontharanon from Thailand for pointing this out.
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