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TL AND SL EVALUATORS: AGGREGATION
AND MODIFICATION

SLÁVKA BODJANOVÁ

Abstract. TL and SL evaluators were introduced in [1] and their basic
properties were studied. In this paper we discuss which aggregation of
TL (SL) evaluators yields a TL (SL) evaluator and which modification of
an evaluator will change it into a TL (SL) evaluator. Duality of evaluators
is also studied.

1. Evaluators and aggregation operators

We will consider a complete lattice (L,≤,⊥,�) with the least and the greatest
elements ⊥ and �, respectively. Normalized scalar evaluators of elements from
L were characterized in [3] by a function ϕ : L → [0, 1] satisfying properties

(i) ϕ(⊥) = 0, ϕ(�) = 1,
(ii) for all a, b ∈ L, if a ≤ b then ϕ(a) ≤ ϕ(b).

Evaluator ϕ is called existentional if for a ∈ L,

(1) ϕ(a) = 0 ⇒ a = ⊥.

Evaluator ϕ is called universal if for a ∈ L,

(2) ϕ(a) = 1 ⇒ a = �.

In applications, different properties of the same object are evaluated by differ-
ent evaluators. For comparison of two or more objects, an aggregation of evalua-
tions is needed. An aggregation operator [2, 6, 9] is a function A:

�
n∈N [0, 1]n →

[0, 1] such that
(i) A (x1, . . . , xn) ≤ A (y1, . . . , yn) whenever

xi ≤ yi for all i ∈ {1, . . . , n},

(ii) A (x) = x for all x ∈ [0, 1],
(iii) A (0, . . . , 0) = 0 and A (1, . . . , 1) = 1.
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Each aggregation operator A can be canonically represented by a family
(An)n∈N of n-ary operations, e.g., functions An : [0, 1]n → [0, 1] given by

(3) An(x1, . . . , xn) = A(x1, . . . , xn).

Function An is an evaluator on the lattice
([0, 1]n,≤,⊥,�), where ⊥ = (0, . . . , 0) and � = (1, . . . , 1). If A(x1, . . . , xn) = 0
implies that xi = 0 for i = 1, . . . , n, we say that aggregation operator A does
not have zero divisors. In this case, function An is an existentional evaluator and
A is an existentional aggregator. If A(x1, . . . , xn) = 1 implies that xi = 1 for
i = 1, . . . , n, function An is a universal evaluator and A is a universal aggregator.

Proposition 1. Let Φ = {ϕ1, . . . , ϕn} be a set of evaluators on a complete lattice

(L,≤,⊥,�) and let A be an aggregation operator. Then function AΦ : L → [0, 1]
defined for all a ∈ L by

(4) AΦ(a) = A(ϕ1(a), . . . , ϕn(a))

is an evaluator on L.

Obviously, aggregation of existentional evaluators by an existentional aggre-
gator yields an existentional evaluator and aggregation of universal evaluators by
a universal evaluator yields a universal evaluator.

Frequently used aggregation operators are averaging operators. We will con-
sider only arithmetic mean

M(x1, . . . , xn) = (x1 + . . . + xn)/n.

Aggregator M is existentional as well as universal.
Arithmetic mean belongs to the family of ordered weighted averaging operators

(OWA operators) introduced in [10].

OWA(x1, . . . , xn) =
n�

j=1

wjyj ,

where yj is the jth largest value of xi, wj ∈ [0, 1] and
�n

j=1 wj = 1. More about
OWA operators can be found in [4, 9].

A special class of aggregation operators is the class of triangular norms (t-
norms) and triangular conorms (t-conorms). For more details refer to [7, 8, 9].
The four basic t-norms are:
the minimum TM (x, y) = min(x, y),
the product TP (x, y) = x.y,
the �Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0),
and the drastic product

TD(x, y) =
�

0 if (x, y) ∈ [0, 1[2,
min(x, y) otherwise.
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The four basic t-conorms are:
the maximum SM (x, y) = max(x, y),
the probabilistic sum SP (x, y) = x + y − x.y,
the �Lukasiewicz t-conorm SL(x, y) = min(x + y, 1),
and the drastic sum

SD(x, y) =
�

1 if (x, y) ∈ ]0, 1]2,
max(x, y) otherwise.

It can be shown that TM , TP , TL and TD are universal aggregators while
SM , SP , SL and SD are existentional aggregators.

The relationship between evaluators and �Lukasiewicz t-norm and t-conorm
was studied in [1], where the notions of TL and SL evaluators were introduced.

Definition 1. Consider a complete lattice (L,≤,⊥,�). A normalized evaluator

ϕ on L is called a TL evaluator if and only if for all a, b ∈ L

(5) TL(ϕ(a), ϕ(b)) ≤ ϕ(a ∧ b),

and it is called an SL evaluator if and only if

(6) SL(ϕ(a), ϕ(b)) ≥ ϕ(a ∨ b).

Proposition 2. Consider a complete lattice (L,≤,⊥,�).
A normalized evaluator ϕ is a TL evaluator if and only if for all a, b ∈ L

(7) ϕ(a ∧ b) ≥ ϕ(a) + ϕ(b)− 1,

and it is an SL evaluator if and only if

(8) ϕ(a ∨ b) ≤ ϕ(a) + ϕ(b).

Example 1. Let F(X) denote the family of all fuzzy sets on a universal fi-
nite set X. For A, B ∈ F(X), A ≤ B means that A(x) ≤ B(x) for all
x ∈ X, (A ∨ B)(x) = max{A(x), B(x)} and (A ∧ B)(x) = min{A(x), B(x)}.
Obviously, (F(X),≤) is a complete lattice with ⊥ = ∅ and � = X. Some nor-
malized scalar evaluators on F(X) are height ht, plinth pl and relative cardinality
RC defined for A ∈ F(X) by (9), (10) and (11), respectively.

ht(A) = max
x∈X

A(x),(9)

pl(A) = min
x∈X

A(x),(10)

RC(A) =
|A|
|X| ,(11)

where |.| denotes cardinality. Because X is a finite set,

(12) |A| =
�

x∈X

A(x).
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Evaluator ht is an SL evaluator, pl is a TL evaluator and RC is both SL and TL

evaluator.

Example 2. All fuzzy measures defined on the power set of a nonempty crisp set
X are evaluators on the complete lattice (2X ,⊆, ∅, X). Well known examples of
fuzzy measures are probability measure Pr, possibility measure Pos and necessity
measure Nec. Then Pos is anSL evaluator, Nec is a TL evaluator, and Pr is an
SL as well as a TL evaluator.

2. Aggregation of TL and SL evaluators

We already know that aggregation of evaluators yields an evaluator (Proposition
1). Now we will focus on aggregation of TL and SL evaluators. We will consider
as possible aggregation operators some OWA operators ( arithmetic mean), some
t-norms (TM and TL) and some t-conorms (SM and SL). We would like to know
what aggregation of TL (SL) evaluators yields a TL (SL) evaluator.

Proposition 3. Arithmetic mean of TL (SL) evaluators is a TL (SL) evaluator.

Proof: Let Φ = {ϕ1, . . . , ϕn} be a set of TL evaluators on a complete lattice
(L,≤,⊥,�). Then for all a, b ∈ L we have

ϕi(a ∧ b) ≥ ϕi(a) + ϕi(b)− 1,

for all i ∈ {1, . . . , n}. Therefore
n�

i=1

ϕi(a ∧ b) ≥
n�

i=1

ϕi(a) +
n�

i=1

ϕi(b)− n.

Then
MΦ(a ∧ b) = M(ϕ1(a ∧ b), . . . , ϕn(a ∧ b))

=

�
n�

i=1

ϕi(a ∧ b)

�
/n

≥
�

n�

i=1

ϕi(a)

�
/n +

�
n�

i=1

ϕi(b)

�
/n− 1

= MΦ(a) + MΦ(b)− 1,

and therefore MΦ is a TL evaluator.
Analogously we can prove that arithmetic mean of SL evaluators yields an SL

evaluator.

Corollary 1. Let Φ = {ϕ1, . . . , ϕn} be a set of TL(SL) evaluators on a complete

lattice (L,≤,⊥,�). Let for all a ∈ L, ϕ1(a) ≤ . . . ≤ ϕn(a). Then OWAΦ =
OWA(ϕ1, . . . , ϕn) is a TL (SL) evaluator on L.
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Proposition 4. Aggregation of TL evaluators by t-norm TM yields a TL evalu-

ator. Aggregation of SL evaluators by t-conorm SM yields an SL evaluator.

Proof. Let Φ = {ϕ1, . . . , ϕn} be a set of TL evaluators on a complete lattice
(L,≤,⊥,�). Then for all a, b ∈ L

ϕi(a ∧ b) ≥ ϕi(a) + ϕi(b)− 1,

for all i ∈ {1, . . . , n}. Let min(ϕ1(a∧b), . . . , ϕn(a∧b)) = ϕr(a∧b), r ∈ {1, . . . , n}.
Then

TMΦ(a ∧ b) = ϕr(a ∧ b) ≥ ϕr(a) + ϕr(b)− 1
≥ min(ϕ1(a), . . . , ϕn(a)) + min(ϕ1(b, . . . , ϕn(b))− 1
= TMΦ(a) + TMΦ(b)− 1,

and therefore TMΦ is a TL evaluator.
Analogously we can prove that aggregation of SL evaluators by t-conorm SM

yields an SL evaluator. �

Proposition 5. Aggregation of TL evaluators by �Lukasiewicz t-norm yields a TL

evaluator. Aggregation of SL evaluators by �Lukasiewicz t-conorm yields an SL

evaluator.

Proof. Let Φ = {ϕ1, . . . , ϕn} be a set of TL evaluators on a complete lattice
(L,≤,⊥,�). Then for all a, b ∈ L we have

ϕi(a ∧ b) ≥ ϕi(a) + ϕi(b)− 1,

for all i ∈ {1, . . . , n}. For a, b ∈ L we obtain

TLΦ(a ∧ b) = TL(ϕ1(a ∧ b), . . . , ϕn(a ∧ b))

= max

�
n�

i=1

ϕi(a ∧ b)− (n− 1), 0

�
.

Then, because

n�

i=1

ϕi(a ∧ b) ≥
n�

i=1

ϕi(a) +
n�

i=1

ϕi(b)− n,
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we have that

TLΦ(a ∧ b) ≥
n�

i=1

ϕi(a ∧ b)− (n− 1) ≥

≥
n�

i=1

ϕi(a) +
n�

i=1

ϕi(b)− n− (n− 1) =

=
n�

i=1

ϕi(a) +
n�

i=1

ϕi(b)− n− (n− 1) + 1− 1 =

=
n�

i=1

ϕi(a)− (n− 1) +
n�

i=1

ϕi(b)− (n− 1)− 1.

Because max (
�n

i=1 ϕi(a ∧ b)− (n− 1), 0) ≥ 0, we can rewrite the inequality
above as follows:

TLΦ(a ∧ b) = max

�
n�

i=1

ϕi(a ∧ b)− (n− 1), 0

�
≥

≥ max

�
n�

i=1

ϕi(a)− (n− 1), 0

�
+

+ max

�
n�

i=1

ϕi(b)− (n− 1), 0

�
− 1 =

= TLΦ(a) + TLΦ(b)− 1,

which shows that TLΦ is a TL evaluator.
Now we will prove that aggregation of SL evaluators by �Lukasiewicz t-conorm

results in an SL evaluator.
Let Φ = {ϕ1, . . . , ϕn} be a set of SL evaluators on a complete lattice (L,≤

,⊥,�). Then for all a, b ∈ L we have

ϕi(a ∨ b) ≤ ϕi(a) + ϕi(b),

for all i ∈ {1, . . . , n}. For a, b ∈ L we obtain
SLΦ(a ∨ b) = SL(ϕ1(a ∨ b), . . . , ϕn(a ∨ b))

= min

�
n�

i=1

ϕi(a ∨ b), 1

�
.

Then, because
n�

i=1

ϕi(a ∨ b) ≤
n�

i=1

ϕi(a) +
n�

i=1

ϕi(b),

we have that
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SLΦ(a ∨ b) ≤
�n

i=1 ϕi(a ∨ b) ≤
�n

i=1 ϕi(a) +
�n

i=1 ϕi(b).
Because min (

�n
i=1 ϕi(a ∨ b), 1) ≤ 1, we can rewrite the inequality above as

follows:

SLΦ(a ∨ b) = min

�
n�

i=1

ϕi(a ∨ b), 1

�
≤

≤ min

�
n�

i=1

ϕi(a), 1

�
+ min

�
n�

i=1

ϕi(b), 1

�
=

= SLΦ(a) + SLΦ(b),
which shows that SLΦ is an SL evaluator.

In the following example we will show that aggregation of TL evaluators by
�Lukasiewicz t-conorm does not need to result in a TL evaluator. �
Example 3. Let (F(X),≤) be the lattice from Example 1, where X = {x1, x2, x3}.
Consider A, B ∈ F(X) defined by membership functions A = 0.6/x1 + 1/x2 +
0.6/x3 and B = 0.9/x1 + 0.2/x2 + 0.1/x3, respectively. We will use the following
set of TL evaluators: Φ = {pl, RC}, where pl is plinth and RC is relative cardi-
nality. Then pl(A) = 0.6, RC(A) = 0.73 and pl(B) = 0.1, RC(B) = 0.4. For
A ∧B = 0.6/x1 + 0.2/x2 + 0.1/x3 we have
pl(A ∧B) = 0.1, RC(A ∧B) = 0.3). Then
SLΦ(A∧B) = SL(pl(A∧B), RC(A∧B)) = SL(0.1, 0.3) = min(0.1+0.3, 1) = 0.4.
On the other hand,
SLΦ(A) = SL(0.6, 0.73) = min(0.6 + 0.73, 1) = 1 and
SLΦ(B) = SL(0.1, 0.4) = min(0.1 + 0.4, 1) = 0.5.
Obviously,
0.4 = SLΦ(A ∧B) < SLΦ(A) + SLΦ(B)− 1 = 0.5,
and therefore SLΦ is not a TL evaluator.

Analogously, aggregation of SL evaluators by �Lukasiewicz t-norm does not
need to be an SL evaluator.

Example 4. Let (F(X),≤) be the lattice from Example 1, where X = {x1, x2, x3}.
Consider A, B ∈ F(X) defined by membership functions A = 0.4/x1 + 0/x2 +
0.9/x3 and B = 0.1/x1 + 0.8/x2 + 0.2/x3, respectively. We will use the following
set of SL evaluators: Φ = {ht, RC}, where ht is height and RC is relative car-
dinality. Then ht(A) = 0.9, RC(A) = 0.433 and ht(B) = 0.8, RC(B) = 0.367.
For A ∨B = 0.4/x1 + 0.8/x2 + 0.9/x3 we have
ht(A ∨B) = 0.9, RC(A ∨B) = 0.7. Then
TLΦ(A∨B) = TL(ht(A∨B), RC(A∨B)) = TL(0.9, 0.7) = max(0.9+0.7−1, 0) =
0.6.
On the other hand,
TLΦ(A) = TL(0.9, 0.433) = max(0.9 + 0.433− 1, 0) = 0.333 and
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TLΦ(B) = TL(0.8, 0.367) = max(0.8 + 0.367− 1, 0) = 0.167. Obviously,
0.6 = TLΦ(A ∨B) > TLΦ(A) + TLΦ(B) = 0.5,
and therefore TLΦ is not an SL evaluator.

3. Composition of evaluators

Properties of evaluators can be changed by appropriate modifications of evalu-
ators. We will explore how evaluators on a complete lattice (L,≤,⊥,�) can be
transformed (modified) into TL and SL evaluators. In this section we will discuss
modification of evaluators on L by a composition with evaluators on the lattice
([0, 1],≤, 0, 1).

Proposition 6. Consider a lattice (L,≤,⊥,�). Function ϕ : L → [0, 1] is an

evaluator on L if and only if there exists an evaluator ψ on L and an evaluator

f on ([0, 1],≤, 0, 1) such that

(13) ϕ = f ◦ ψ.

If ψ and f are universal (existentional) evaluators then ϕ is a universal (exis-

tentional) evaluator.

Proof. If ϕ is an evaluator on L, we can choose ψ = ϕ and f = id (identity).
Then for all a ∈ L,

ϕ(a) = (id ◦ ψ)(a) = id(ψ(a)) = id(ϕ(a)) = ϕ(a).
Now we will show that ϕ = f ◦ ψ is an evaluator on L.
(i) ϕ(⊥) = (f ◦ ψ)(⊥) = f(ψ(⊥)) = f(0) = 0,
and ϕ(�) = (f ◦ ψ)(�) = f(ψ(�)) = f(1) = 1.
(ii) For all a, b ∈ L, if a ≤ b then ϕ(a) = (f ◦ ψ)(a)
= f(ψ(a)) ≤ f(ψ(b)) = (f ◦ ψ)(b) = ϕ(b).
Therefore ϕ is an evaluator on L.

If f and ψ are universal, then for all a ∈ L,
ϕ(a) = f(ψ(a)) = 0 ⇒ ψ(a) = 0 ⇒ a = ⊥, and therefore ϕ is universal.
If f and ψ are existentional, then for all a ∈ L,
ϕ(a) = f(ψ(a)) = 1 ⇒ ψ(a) = 1 ⇒ a = �, and therefore ϕ is existentional.

For an evaluator ϕ on L we want to find an evaluator f on [0, 1] such that
f ◦ ϕ is an TL (SL) evaluator. �
Proposition 7. Let f be an evaluator on ([0, 1],≤, 0, 1) such that for all x ∈
[0, 1[, f(x) ∈ [0, 0.5]. Let ϕ be a universal evaluator on (L,≤,⊥,�). Then

ϕf = f ◦ ϕ is a universal TL evaluator on L.

Proof. Because f is a universal evaluator, from Proposition 6 it follows that ϕf

is a universal evaluator on L.
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Now we will show that for all a, b ∈ L,

(14) ϕf (a ∧ b) ≥ ϕf (a) + ϕf (b)− 1.

If a = � or b = � then ϕf (a ∧ b) = min{ϕf (a), ϕf (b)}, and ϕf (a) + ϕf (b) =
min{ϕf (a), ϕf (b)}+1. Therefore ϕf (a)+ϕf (b)−1 = min{ϕf (a), ϕf (b)} = ϕf (a∧
b) and inequality (14) holds.
Let a �= � and b �= �. Because ϕ is universal, ϕ(a) < 1, ϕ(b) < 1 and f(ϕ(a)) ≤
0.5, f(ϕ(b)) ≤ 0.5. Hence ϕf (a) + ϕf (b) = f(ϕ(a)) + f(ϕ(b)) ≤ 1. Therefore
ϕf (a) + ϕf (b)− 1 ≤ 0 ≤ ϕf (a ∧ b), which proves inequality (14). �

Some examples of a function f satisfying properties from Proposition 7 are:
1) For x ∈ [0, 1] and α ∈ [0, 0.5],

f1(x) =






1 if x = 1,
α if α ≤ x < 1,
0 otherwise.

Evaluator ϕ on L modified by composition f1 ◦ϕ is the alpha-lower levelization of
ϕ discussed in [1]. For α = 0, composition f1 ◦ϕ is the trivial universal evaluator

ϕU (a) =
�

1 if a = �,
0 otherwise.

2) For x ∈ [0, 1] and α ∈ [0, 0.5],

f2(x) =
�

1 if x = 1,
min(α, x) otherwise.

For α = 0, f2 ◦ ϕ = ϕU .
3) For x ∈ [0, 1],

f3(x) =
�

1 if x = 1,
1− 0.5x otherwise.

Proposition 8. Let g be an evaluator on ([0, 1],≤, 0, 1) such that for all x ∈
]0, 1], f(x) ∈ [0.5, 1]. Let ϕ be an existentional evaluator on (L,≤,⊥,�). Then

ϕg = g ◦ ϕ is an existentional SL evaluator on L.

Proof. Because g is an existentional evaluator, from Proposition 6 it follows that
ϕg is an existentional evaluator on L. Now we will show that for all a, b ∈ L,

(15) ϕg(a ∨ b) ≤ ϕg(a) + ϕg(b).

If a = ⊥ or b = ⊥ then ϕg(a ∨ b) = max{ϕg(a), ϕg(b)}, and ϕg(a) + ϕg(b) =
max{ϕg(a), ϕg(b)}+0. Therefore ϕg(a)+ϕg(b) = max{ϕg(a), ϕg(b)} = ϕg(a∨ b)
and inequality (15) holds.
Let a �= ⊥ and b �= ⊥. Because ϕ is existentional, ϕ(a) > 0, ϕ(b) > 0 and
g(ϕ(a)) ≥ 0.5, g(ϕ(b)) ≥ 0.5 Hence ϕg(a) + ϕg(b) = g(ϕ(a)) + g(ϕ(b)) ≥ 1.
Therefore ϕg(a) + ϕg(b) ≥ ϕg(a ∨ b), which proves inequality (15). �
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Some examples of a function g satisfying properties from Proposition 8 are:
1) For x ∈ [0, 1] and α ∈ [0.5, 1],

g1(x) =






0 if x = 0,
α if 0 < x ≤ α,
1 otherwise.

Evaluator ϕ on L modified by composition g1 ◦ ϕ is the alpha-upper levelization
of ϕ discussed in [1]. For α = 1, composition g1 ◦ ϕ is the trivial existentional
evaluator

ϕE(a) =
�

0 if a = ⊥,
1 otherwise.

2) For x ∈ [0, 1] and α ∈ [0.5, 1],

g2(x) =
�

0 if x = 0,
max(α, x) otherwise.

For α = 1, g2 ◦ ϕ = ϕE .
3) For x ∈ [0, 1],

g3(x) =
�

0 if x = 0,
0.51−x otherwise.

One can recognize duality between Proposition 7 and Proposition 8 and also
between functions (fi, gi), i = 1, 2, 3. We will discuss duality of evaluators in the
next section.

4. Duality of evaluators

We will consider a complemented lattice (L,≤, �,⊥,�), where for each a ∈ L,
there is complement a� ∈ L such that a ∧ a� = ⊥ and a ∨ a� = �. For a, b ∈ L,

(16) a ∧ b = (a� ∨ b�)�.

The proof of the following proposition is trivial.

Proposition 9. Let ϕ be an existentional (universal) evaluator on a comple-

mented lattice (L,≤, �,⊥,�). Then function ϕ̄ : L → [0, 1] defined for all a ∈ L
by

(17) ϕ̄(a) = 1− ϕ(a�)

is a universal (existentional) evaluator on L.

Evaluator ϕ̄ given by (17) will be called the dual evaluator to ϕ.
Assume the lattice of fuzzy sets from Example 1. The standard complement

of a fuzzy set A is fuzzy set A�, where A�(x) = 1−A(x) for all x ∈ X. Evaluators
height (ht) and plinth (pt) of fuzzy sets are dual to each other. Evaluator relative
cardinality (RC) is dual to itself.
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Assume the lattice of crisp sets from Example 2. For each crisp set A ∈ 2X ,
complement is defined by A� = X − A. Fuzzy measures necessity (Nec) and
possibility (Pos) are dual evaluators on the lattice (2X ,⊆, �, ∅, X). Fuzzy measure
probability (Pr) is dual to itself.

Proposition 10. Let (L,≤, �,⊥,�) be a complemented lattice and let ϕ be a TL

and also SL evaluator on L. Then for all a ∈ L,

(18) ϕ(a) + ϕ(a�) = 1.

Proof: If ϕ is a TL evaluator on L, then 0 = ϕ(a∧ a�) ≥ ϕ(a) + ϕ(a�)− 1, and
therefore

(19) ϕ(a) + ϕ(a�) ≤ 1.

If ϕ is an SL evaluator on L, then 1 = ϕ(a ∨ a�) ≤ ϕ(a) + ϕ(a�), and therefore

(20) ϕ(a) + ϕ(a�) ≥ 1.

From (19) and (20) it follows that ϕ(a) + ϕ(a�) = 1.
Note that one can find an evaluator ϕ on L such that for all a ∈ L, ϕ(a) +

ϕ(a�) = 1, but ϕ is neither TL nor SL evaluator.
Example 5 Let X = {x1, x2, x3, x4}. Consider lattice (2X ,⊆, �, ∅, X). Let

fuzzy measure m : 2X → [0, 1] be given as follows: m(∅) = 0, m(X) =
1, m(x1) = m(x2) = m(x3) = 0.2, m(x4) = 0.5, m(x1, x2) = m(x2, x3) =
m(x1, x3) = 0.2, m(x3, x4) = m(x1, x4) = m(x2, x4) = 0.8, m(x2, x3, x4) =
m(x1, x3, x4) = m(x2, x1, x4) = 0.8, m(x1, x2, x3) = 0.5. Function m is an evalu-
ator on 2X such that for each A ∈ 2X , m(A) + m(A�) = 1.
However, m((x1, x2)∪ (x2, x3)) = m(x1, x2, x3) = 0.5 is greater than m(x1, x2)+
m(x2, x3) = 0.2 + 0.2 = 0.4, and therefore m is not an SL evaluator. We also
obtain that m((x3, x4) ∩ (x1, x4)) = m(x1) = 0.5 is less than max{m(x3, x4) +
m(x1, x4) − 1, 0} = max{0.8 + 0.8 − 1, 0} = 0.6, and therefore m is not a TL

evaluator.

Proposition 11. Let ϕ be a TL (SL) evaluator on a complemented lattice (L,≤
, �,⊥,�). Then dual evaluator of ϕ is an SL (TL) evaluator on L.

Proof. Let ϕ be a TL evaluator. Then for all a, b ∈ L, ϕ(a∧b) ≥ ϕ(a)+ϕ(b)−1.
Because of (16), (a ∨ b)� = a� ∧ b� and we obtain:
ϕ̄(a∨ b) = 1−ϕ((a∨ b)�) = 1−ϕ(a� ∧ b�) ≤ 1− (ϕ(a�) + ϕ(b�)− 1) = 1−ϕ(a�) +
1− ϕ(b�) = ϕ̄(a) + ϕ̄(b), and therefore ϕ̄ is an SL evaluator.
Let ϕ be an SL evaluator. Then for all a, b ∈ L, ϕ(a∨ b) ≤ ϕ(a) + ϕ(b). Because
of (16), (a ∧ b)� = a� ∨ b� and we obtain:
ϕ̄(a∧ b) = 1−ϕ((a∧ b)�) = 1−ϕ(a� ∨ b�) ≥ 1− (ϕ(a�) + ϕ(b�)) = 1−ϕ(a�) + 1−
ϕ(b�)− 1 = ϕ̄(a) + ϕ̄(b)− 1, and therefore ϕ̄ is a TL evaluator. �
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Corollary 2. Assume evaluator ψ on (L,≤, �,⊥,�) and evaluator f on([0, 1],≤
, �, 0, 1). Let f ◦ ψ be a TL (SL) evaluator on L. Then f̄ ◦ ψ̄ is an SL (TL)
evaluator on L.

Proof: It is enough to show that f̄ ◦ ψ̄ is dual evaluator of f ◦ψ. For all a ∈ L
we obtain:
f ◦ ψ(a) = 1−(f◦ψ)(a�) = 1−f(ψ(a�)) = f̄([(ψ(a�)]�) = f̄(1−ψ(a�)) = f̄(ψ̄(a)) =
f̄ ◦ ψ̄(a).

5. Conclusion

We have shown that aggregation of evaluators by an aggregation operator yields
an evaluator. Aggregation of TL evaluators by arithmetic mean, t-norm TM or
by �Lukasiewicz t-norm results in a TL evaluator. Aggregation of SL evaluators
by arithmetic mean, t-conorm SM or by �Lukasiewicz t-conorm results in an SL

evaluator. A normalized evaluator on a complete lattice can be transformed into
a TL or SL evaluator by composition with an appropriate evaluator on [0, 1]. Dual
evaluator of a TL (SL) evaluator is an SL (TL) evaluator. An evaluator which
is TL and also SL is dual of itself. However, not every evaluator which is dual
of itself is a TL and SL evaluator. Successful applications of TL (SL) evaluators
were already reported in [5]. More applications will be presented in our future
paper.
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T-FILTERS AND T-IDEALS

ZUZANA HAVRANOVÁ AND MARTIN KALINA

Abstract. This paper is devoted to generalizing of fuzzy filters and fuzzy
ideals and to studying the relationship between maximal T -filters (i.e. max-
imal elements of the lattice of all T -filters) and T -ultrafilters (which are
so-called T -and S-evaluators).

1. Introduction and basic definitions

Filters are broadly used in topology and in set-theoretical constructions (ultra-
products). Since a couple of years the notion of filters has been fuzzified (as
stated below) to generalized filters and to �Lukasiewicz filters. The main impor-
tance of �Lukasiewicz filters lies in preserving of TL-transitivity when constructing
a fuzzy relation by aggregating some partial TL-transitive fuzzy relations. More
the reader can find in [9].

For the purposes of this paper we will use the following definition of a (proper)
filter on a non-empty set X:

Definition 1. Let X �= ∅. A function F : 2X → {0, 1} is said to be a filter on

X iff the following is satisfied:

• F (X) = 1, F (∅) = 0
• for A, B ⊆ X if A ⊂ B, then F (A) ≤ F (B)
• for A, B ⊆ X we have F (A ∩B) ≥ F (A) · F (B).

As a complementary notion to filters we have a (proper) ideal on the set X �= ∅
(more precisely, on the Boolean lattice of subsets of X, equipped with union and
intersection):

Definition 2. Let X �= ∅. A function I : 2X → {0, 1} is said to be an ideal on

X iff the following is satisfied:

• I(X) = 0, I(∅) = 1
• for A, B ⊆ X if A ⊂ B, then I(A) ≥ I(B)
• for A, B ⊆ X we have I(A ∪B) ≥ I(A) · I(B).
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The relationship between a filter on X and an ideal on X gives the following
lemma:

Lemma 1. Let X �= ∅. F : 2X → {0, 1} is a filter on X if and only if I :
2X → {0, 1}, defined by I(A) = F (Ac) for each A ∈ 2X

, is an ideal on X, where

Ac = X \ A.

An important notion is that of an ultrafilter on X:

Definition 3. Let X �= ∅. A function U : 2X → {0, 1} is said to be an ultrafilter

on X iff U is a filter on X and moreover if for each A ⊆ X either U(A) = 1 or

U(Ac) = 1.

The following assertions may be used as alternative definitions of ultrafilters
on X:

Proposition 1. Let us denote Ψ(X) the system of all filters on X. Then

(Ψ(X),∧,∨) is a lattice with

(1) F0(A) =
�

1, if A = X
0, otherwise

as its bottom element. Ultrafilters on X are its maximal elements.

Proposition 2. Let X �= ∅ and F : 2X → {0, 1} be a filter on X. Then F is an

ultrafilter on X if and only if I = 1− F is an ideal on X.

As Proposition 2 states, we have two possibilities how to define ideals via an
ultrafilter U on X: I1(A) = U(Ac), I2(A) = 1 − U(A). An easy consideration
gives I1 = I2.

To avoid confusion, filters, ultrafilters and ideals on X will be called crisp
filters on X, crisp ultrafilters on X and crisp ideals on X, respectively.

Filters were already fuzzified to so-called generalized filters in [2, 3, 5, 6] in
the following way:

Definition 4. Let X �= ∅. A function G : 2X → [0, 1] is said to be a generalized

filter on X iff the following is satisfied:

• G(X) = 1, G(∅) = 0
• for A, B ⊆ X if A ⊂ B, then G(A) ≤ G(B)
• for A, B ⊆ X we have G(A ∩B) ≥ min{G(A), G(B)}.

Before proceeding, we give the definition of a t-norm, which will be a very
important notion for us (for details on t-norms an their duals, t-conorms, see
[12]):

Definition 5. T : [0, 1]× [0, 1] → [0, 1] is said to be a t-norm iff the following is

satisfied:

• for each y ∈ [0, 1] T (1, y) = y
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• for all x, y1, y2 ∈ [0, 1] if y1 ≤ y2 then T (x, y1) ≤ T (x, y2)
• for all x, y ∈ [0, 1] T (x, y) = T (y, x)
• for all x, y, z ∈ [0, 1] T (x, T (y, z)) = T (T (x, y), z).

There are the following four basic t-norms:
(1) minimum t-norm, TM (x, y) = min{x, y}
(2) product t-norm, TP (x, y) = x · y
(3) �Lukasiewicz t-norm, TL(x, y) = max{0, x + y − 1}
(4) drastic product,

TD(x, y) =
�

0, if max{x, y} < 1
min{x, y}, if max{x, y} = 1

To each t-norm T : [0, 1] × [0, 1] → [0, 1] we may define its dual t-conorm S :
[0, 1]× [0, 1] → [0, 1] by

S(x, y) = 1− T (1− x, 1− y)

i.e. to each of the basic four t-norms we have a t-conorm respectively:
(1) maximum t-conorm, SM (x, y) = max{x, y}
(2) probabilistic sum, SP (x, y) = x + y − xy
(3) �Lukasiewicz t-conorm, SL(x, y) = min{1, x + y}
(4) drastic sum,

SD(x, y) =
�

1, if min{x, y} > 0
max{x, y}, if min{x, y} = 0

If we replace in Definition 4 min by the �Lukasiewicz t-norm TL, we get the
�Lukasiewicz filter, which was proposed in [10]. In papers [7, 8, 11] the properties
of �Lukasiewicz filters were studied.

Definition 6. Let X �= ∅. A function F : 2X → [0, 1] is said to be a �Lukasiewicz

filter on X iff the following is satisfied:

• F(X) = 1, F(∅) = 0
• for A, B ⊆ X if A ⊂ B, then F(A) ≤ F(B)
• for A, B ⊆ X we have

(2) F(A ∩B) ≥ TL{F(A), F(B)}.

Some useful properties of �Lukasiewicz filters, when constructing fuzzy prefer-
ence relations, were shown in [9]. �Lukasiewicz ideals were introduced in [8] and
their connections to �Lukasiewicz ultrafilters and fuzzy preference relations were
studied in [9].

Definition 7. Let X �= ∅. A function I : 2X → [0, 1] is said to be a �Lukasiewicz

ideal on X iff the following is satisfied:

• I(X) = 0, I(∅) = 1
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• for A, B ⊆ X if A ⊂ B, then I(A) ≥ I(B)
• for A, B ⊆ X we have

(3) I(A ∪B) ≥ TL{I(A), I(B)}.

Similarly to crisp filters, each �Lukasiewicz filter F defines a �Lukasiewicz ideal
I by I(A) = F(Ac).

2. �Lukasiewicz ultrafilters

In the whole paper by X will be denoted a fixed non-empty set.
As it was already stated above, there are at least three possible characteriza-

tions of crisp ultrafilters U on X:
• ultrafilters are maximal elements of the lattice (Ψ(X),∧,∨)
• ultrafilters are such filters that for each A ⊆ X U(A) + U(Ac) = 1
• a filter U is an ultrafilter on X if 1− U is an ideal on X.

In [4] evaluators were characterized. In [1] so-called TL and SL evaluators were
proposed:

Definition 8. Let (L,∧,∨,⊥,�) be a lattice with its bottom and top elements ⊥
and �, respectively. Then ϕ : L → [0, 1] is a normalized evaluator if

• ϕ(⊥) = 0, ϕ(�) = 1
• for a, b ∈ L a ≤ b implies ϕ(a) ≤ ϕ(b).

A normalized evaluator ϕ is said to be a TL evaluator if

• for a, b ∈ L ϕ(a ∧ b) ≥ TL(ϕ(a), ϕ(b)).
A normalized evaluator ϕ is said to be an SL evaluator if

• for a, b ∈ L ϕ(a ∨ b) ≤ SL(ϕ(a), ϕ(b)).

Theorem 1 ([1]). Let us have the lattice (2X ,∩,∪, ∅, X). Then ϕ : 2X → [0, 1]
is a TL evaluator iff it is a �Lukasiewicz filter. ψ : 2X → [0, 1] is an SL evaluator

iff 1− ψ is a �Lukasiewicz ideal.

As a direct corollary to the definitions of �Lukasiewicz t-norm TL and t-conorm
SL and to Theorem 1 we get the following

Lemma 2 ([1]). ϕ : 2X → [0, 1] is a TL and SL evaluator iff for each A ⊆ X

ϕ(A) + ϕ(Ac) = 1

Denote Φ(X,TL) the system of all �Lukasiewicz filters on X. Theorem 1 and
Lemma 2 imply

Theorem 2. Let F ∈ Φ(X,TL). Then the following are equivalent:

(1) for each A ⊆ X F(A) + F(Ac) = 1
(2) 1−F is a �Lukasiewicz ideal

(3) F is a maximal element of the lattice (Φ(X,TL),∧,∨).
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Since property 2 plays an important role in construction of fuzzy preference
relations (particularly, in decision wether there is some incomparability or not,
see [9]) we define �Lukasiewicz ultrafilters by the following:

Definition 9. U ∈ Φ(X,TL) is a �Lukasiewicz ultrafilter iff 1−U is a �Lukasiewicz

ideal.

As Theorem 2 states, from the algebraic point of view �Lukasiewicz ultrafilters
behave exactly as crisp ultrafilters.

3. T -filters and T -ideals

If we replace in formulae (2) and (3) the �Lukasiewicz t-norm by some other t-
norm T , we get the definition of a T -filter and T -ideal, respectively. Let us denote
Φ(X,T ) the system of all T -filters on X.

Definition 10. U ∈ Φ(X,T ) is a T -ultrafilter iff 1− U is a T -ideal.

Obviously, if T1 ≥ T2 are some t-norms, then Φ(X,T1) ≤ Φ(X,T2), and since
each T -filter defines some T -ideal, the same inequality holds also for systems of
T -ideals. As a result we get

Lemma 3. Let T1 ≥ T2 be arbitrary t-norms. Then, if U1 is a T1-ultrafilter,

then it is also a T2-ultrafilter.

The definition of T -ultrafilters implies that each T -ultrafilter U defines two
T -ideals on X:

(4) I1(A) = U(Ac), I2(A) = 1− U(A)

As we will see later on, unlike crisp ultrafilters and �Lukasiewicz ultrafilters, for a
general t-norm T we may get I1 �= I2.

By definitions of a T -ultrafilter and T -ideal we get the following for each T -
ultrafilter U on X and each A ⊆ X:

U(A ∩Ac) ≥ T (U(A), U(Ac))
1− U(A ∪Ac) ≥ T (1− U(A), 1− U(Ac)) = 1− S(U(A), U(Ac))

hence we get the following system of equations:

(5) T (U(A), U(Ac)) = 0
S(U(A), U(Ac)) = 1

Now, we will distinguish a couple of types of t-norms T . For each of the type we
will study the structure of the system of T -ultrafilters:
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3.1. T-norms with no 0-divisors. A t-norm T has no 0-divisors iff

T (x, y) = 0 ⇔ min{x, y} = 0

The above condition gives the following for each F ∈ Φ(X,T ):

(∀A ⊆ X)F(A) > 0 ⇒ F(Ac) = 0

Hence we get that only crisp ultrafilters are T -ultrafilters and moreover crisp
ultrafilters are the only maximal elements of (Φ(X, T ),∧,∨).

3.2. Left-continuous T-norms T > TL with 0-divisors. We split this para-
graph into two parts:

(1) Let us consider t-norms T such that

T (x, y) = 0& 0 < x < 1 ⇒ x + y < 1

As an example of such a t-norm is the Yager t-norm

TY (x, y) = max
�

0, 1−
�

(1− x)2 + (1− y)2
�

.

Let T > TL be an arbitrary t-norm with 0 divisors. Then for the dual
t-conorm S we get

S(x, y) = 1 & 0 < x < 1 ⇒ x + y > 1

Hence we get that only crisp ultrafilters are T -ultrafilters. Since T is
left-continuous, there exists

z = max{x;T (x, x) = 0}.
If we put

F(A) =






1, if A = X
0, if A = ∅
z, otherwise,

then F is a maximal element of the lattice (Φ(X,T ),∧,∨). I.e., in this
case the system of T -ultrafilters does not coincide with the system of
maximal elements of (Φ(X,T ),∧,∨).

(2) Let TN be the nilpotent minimum, which means the following t-norm:

TN (x, y) =
�

0, if x + y ≤ 1
min{x, y}, otherwise.

Then the dual t-conorm SN is the following:

SN (x, y) =
�

1, if x + y ≥ 1
max{x, y}, otherwise.

The system of equations (5) has the following solution for each TN -
ultrafilter U :

∀A ⊆ X U(A) + U(Ac) = 1
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We get the following result:

Theorem 3. Let F ∈ Φ(X,TN ). Then the following are equivalent:

(a) for each A ⊆ X F(A) + F(Ac) = 1
(b) 1−F is a TN -ideal

(c) F is a maximal element of the lattice (Φ(X,TN ),∧,∨).

The following is an example of a TN -ultrafilter and of a �Lukasiewicz
ultrafilter, which is not a TN -ultrafilter:

Example 1. Let X = {a, b, c}. The following table defines a TN -
ultrafilter on X:

A X ∅ {a} {b} {c} {a, b} {a, c} {b, c}
U(A) 1 0 0.1 0.2 0.8 0.2 0.8 0.9

The next example is that of a �Lukasiewicz ultrafilter on X, which is not
a TN -ultrafilter (nor a TN -filter):

A X ∅ {a} {b} {c} {a, b} {a, c} {b, c}
U(A) 1 0 0.1 0.1 0.8 0.2 0.9 0.9

3.3. Left-continuous t-norms T < TL. Left-continuous t-norms T < TL have
the following property:

0 < x < 1 & z = max
y

{x, y} = 0 ⇒ x + z > 1.

As an example for such t-norms we can take again a Yager t-norm

TY (x, y) = max
�

0, x + y − 1− 2
�

(1− x)(1− y)
�

.

Evidently, �Lukasiewicz ultrafilters are not maximal elements of (Φ(X, T ),∧,∨),
where T < TL is an arbitrary left-continuous t-norm, however they are T -
ultrafilters, since the system of T -ultrafilters is antitone with respect to t-norms
(as it was already stated above).

If we take the, just defined Yager t-norm TY , we get the following example:

Example 2. Let X �= ∅. We have the following TY -ultrafilter U on X:

U(A) =






1, if A = X
0, if A = ∅
3
4 , otherwise
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The ultrafilter U defines two different TY -ideals:

I1(A) =






0, if A = X
1, if A = ∅
3
4 , otherwise

I2(A) =






0, if A = X
1, if A = ∅
1
4 , otherwise

where I1(A) = U(Ac), I2(A) = 1− U(A).

We can formulate the following characterization of T -ultrafilters and T -ideals:

Theorem 4. Let T < TL be an arbitrry left-continuous t-norm. Each maximal

element of (Φ(X,T ),∧,∨) is a T -ultrafilter on X. There are ultrafilters on X
which are not maximal elements of (Φ(X,T ),∧,∨). Let U be a T -ultrafilter on X.

Then T -ideals I1(A) = U(Ac) and I2(A) = 1 − U(A) may be different. I1 = I2

if and only if U is a �Lukasiewicz ultrafilter.

3.4. Drastic product t-norm TD. This t-norm is not left-continuous. This
implies that the only maximal elements of (Φ(X, TD),∧,∨) are crisp ultrafilters
on X. However, by definition of TD and SD we get that a TD-ultrafilter is each
crisp ultrafilter and each monotonic function F : 2X → [0, 1] such that

F(∅) = 0,

F(X) = 1,

F(A) ∈ ]0, 1[ for A /∈ {X, ∅}.
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A NOTE ON AN EXAMPLE OF USE OF FUZZY
PREFERENCE STRUCTURES

DANA HLINĚNÁ AND PETER VOJTÁŠ

Abstract. In this paper we present a problem of multicriterial optimiza-
tion and different models to solve it. We illustrate various alternatives on a
practical example.

1. Motivation Example

In this paper we illustrate several aspects of a multicriterial problem that we
try to approach from different perspectives – deductive, inductive, and different
formal models – Choquet integrals, fuzzy preference structures.

Example 1. (Michel Grabisch, Marc Roubens [3])
In [3] the authors consider the problem of the evaluation of trainees learning

to drive military vehicles. The instructors evalueted the trainees according to 4
criteria:

C1. Firing precision: The percentage of success during the exercise is com-
puted.

C2. Target detection rapidity: The elapsed time between the appearance of
the target and the detection is measured in tu (time unit).

C3. Driving: In order to go from one point to another, the trainee has
to choose a suitable trajectory, or to follow a given one as precisely as
possible. A qualitive score is given by the instructor, ranging from A
(excelent) to E (hopeless).

C4. Communication: The trainee is supposed to belong to some unit, and
thus he should understand and obey orders, and also report actions. As
for the driving criterion, a qualitative score is given by the instructor,
ranging from A (perfect) to E (incontrollable).

2000 Mathematics Subject Classification. 68T30, 68T05, 03E72.
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Table 1. Performances of the different trainees, cf. [3].

name precision (%) rapidity (tu) driving communication

Arthur 90 2 B D
Lancelot 80 4 B B

Yvain 95 5 C A
Perceval 60 6 B B

Erec 65 2 C B

Table 2. Scores on the different criteria, cf. [3]

precision rapidity driving communication

Table 3. Numerical scores on criteria, cf. [3].

name precision rapidity driving communication

Arthur 1.000 1.000 0.750 0.250
Lancelot 0.750 0.750 0.750 0.750

Yvain 1.000 0.625 0.500 1.000
Perceval 0.250 0.500 0.750 0.750

Erec 0.375 1.000 0.500 0.750

In this example, Grabisch and Roubens consider 5 trainees, whose names and
performances on each criterion are given in Table 1.

Instructor’s comments:
C.1 (precision): over 90% of success is perfect, below 50% is totally unac-

ceptable.
C.2 (rapidity): below 2 tu is perfect, over 10 tu is totally unacceptable.
C.3 and C.4: these criteria are already expressed in the form of an equidis-

tant numerical score.
This permits us to draw utility functions which give the following numerical

scores for the trainees in Tables 2, 3.
Looking at the performances of the different trainees, the instructor is able to

rank the trainees, as given in Table 4. There are three predetermined classes,
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Table 4. Ranking of the five trainees, cf. [3].

name class rank in the class

Arthur bad 2
Lancelot good 1

Yvain good 2
Perceval bad 1

Erec average 1

Table 5. Mapping from class and rank to [0, 1], cf. [3].

class interval for the global score

good [0.75, 1.0]
average [0.4, 0.75]

bad [0.0, 0.4]

called good, average, bad. In each class, a ranking is done, labelling by 1 the best
in the class, by 2 the second best, etc.
Inductive task. Now we are in a multicriterial situation. In [3] the authors
solve the inductive problem, given a global evaluation, how to learn an objective
function which explains global ranking from particular attributes. This is the
point where different models have different representations of a utility function.

In [3] an approach is taken, where the global ranking is represented as Choquet
integral, and we have to learn the measure. The condition for learning is either;

1. approach by the minimization of the quadratic error,
or

2. approach based on constraint satisfaction.
For this, [3] assignes intervals to classes as in Table 5.

Grabish and Roubens [2] present an algorithm which specifies a measure such
that the Choquet integral mimics the global evaluation. The idea of the first
approach (minimization of squared errors) is to identify the fuzzy measure in
a Choquet integral: We suppose that the decision maker is able to assess a
numerical score for each act and each criterion, and also a numerical global score
for each act. So we want to find the fuzzy measure which minimizes the total
squared error of the model.

In the second approach (constrained satisfaction) we assume that we have
an expert who is able to tell the relative importance of criteria and kind of
interaction between them, if any. All this information can be transformed in
terms of linear equalities or inequalities linking the unknown weights. These
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Table 6. Numerical data on criteria and global performance, cf. [3].

name precision rapidity driving communication global 1st
Arthur 1.000 1.000 0.750 0.250 0.133

Lancelot 0.750 0.750 0.750 0.750 0.917
Yvain 1.000 0.625 0.500 1.000 0.833

Perceval 0.250 0.500 0.750 0.750 0.276
Erec 0.375 1.000 0.500 0.750 0.575

name precision rapidity driving communication global 2nd
Arthur 1.000 1.000 0.750 0.250 0.3

Lancelot 0.750 0.750 0.750 0.750 0.75
Yvain 1.000 0.625 0.500 1.000 0.7

Perceval 0.250 0.500 0.750 0.750 0.35
Erec 0.375 1.000 0.500 0.750 0.5

methods are in fact not comparable, since they do not take exactly the same
input, nor provide the same kind of output.

The results of both aproaches are given in Table 6.

Our approach is based on conenction between fuzzy and annotated logic pro-
grams [5] and an inductive logic programming method for learning rules of an-
notated programs [4]. In this approach we start from an instructors evaluation
expressed in a lineary ordered scale, here it can be

bad2 < bad1 < average < good2 < good1

or any order preserving mapping into [0, 1] (here understood as an ordinal scale).
Then the task has a possible input as in the following Table 7.

Table 7. Linear ranking of the five trainees

name global rank

Arthur 0.125
Lancelot 0.875

Yvain 0.75
Perceval 0.375

Erec 0.625

This global numerical rank gives a partial function f from [0, 1]4 into [0, 1],
as depicted in Table 8. This function can be extended to F on whole [0, 1]4
preserving monotonicity, in the following sense.
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Table 8. Function on attributes

name precision rapidity driving communication global rank

Arthur 1.000 1.000 0.750 0.250 0.125
Lancelot 0.750 0.750 0.750 0.750 0.875

Yvain 1.000 0.625 0.500 1.000 0.75
Perceval 0.250 0.500 0.750 0.750 0.375

Erec 0.375 1.000 0.500 0.750 0.625

Denote Lancelot’s attribute scores as xL = (xL
1 , xL

2 , xL
3 , xL

4 ) and Perceval’s
attribute scores as xP = (xP

1 , xP
2 , xP

3 , xP
4 ). Note that xP

i ≤ xL
i for i = 1, ..., 4 and

f(xP ) ≤ f(xL). Hence global score of trainees does not violate monotonicity. A
straitforward way to prolongate it the whole [0, 1]4 is the definition

F (y1, y2, y3, y4) = max{f(xT ) : T ∈ {A, E, L, P, Y } and (∀i)xT
i ≤ yi}

Note that max ∅ = 0. Our method from [4] is able to learn such a monotonic
extension of any function given in a multirelational set of data and different
preferences. This si especialy interesting on bigger data and intervals asigned
to global score violating colinearity (Choqeut integral is able to represent only
colinear functions).
Deductive task. In a similar setting, having trainees and their achievements
(same data) we can assume that from previous experiments we already have a
utility function. Now the problem is about efficient algorithms to find the best
trainee, assuming we have a huge set of data, possibly distributed, and so the
question of efficiency becomes crucial.

In this paper we describe the problem setting which is a common starting
point for different approaches.

2. Introduction to preference structures and
fuzzy preference structures

The preference structure is a basic step of preference modeling. Given two alter-
natives, decision maker defines three binary relation-preference, indifference and
incomparability.

A preference structure is a basic concept of preference modelling. In a classical
preference structure (PS) a decision-maker makes three decission for any par (a, b)
from the set A of all alternatives. His decision define a triplet P, I, J of a crisp
binary relations on A:

1) a is prefered to b ⇔ (a, b) ∈ P (strict preference).
2) a and b are indifferent ⇔ (a, b) ∈ I (indifference).
3) a and b are incomparable ⇔ (a, b) ∈ J (incomparability).
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A preference structure (PS) on a set A is a triplet (P, I, J) of binary relations
on A such that

(ps1) I is reflexive, P and J are irreflexive.
(ps2) P is asymmetric, I and J are symmetric.
(ps3) P ∩ I = P ∩ J = I ∩ J = ∅.
(ps4) P ∪ I ∪ J ∪ P t = A×A where P t(x, y) = P (y, x).
A preference structure can be characterized by the reflexive relation R = P ∪I

called the large preference relation. The relation R can be interpreted as

(a, b) ∈ R ⇔ a is prefered to b or a and b are indifferent.

It can be easily proved that
co(R) = P t ∪ J

where coR(a, b) = 1−R(a, b) and

P = R ∩ co(Rt), I = R ∩Rt, J = co(R) ∩ co(Rt).

It allows us to construct a preference structure (P, I, J) from a reflexive binary
operation R only.

Decision-makers are often uncertain even inconsistent in their judgements.
The restriction on two-valued relations have been an important drawback to
their practical use. A natural demand led researchers to the introduction of a
fuzzy preference structure (FPS). The original idea of using numbers between
zero and one to describe the strenth of links between two alternatives goes back
to Menger. The introduction of fuzzy relations allowed to express degrees of
preference, indifference and incomparability. Of course, the attempts simply to
replace the notion used in the definition of (PS) by their fuzzy equivalents have
met some problems.

To define (FPS) it is necessary to consider some fuzzy connectives. We shall
consider a continuous De Morgan triple (T, S,N) consisting of a continuous t-
norm T, continuous t-conorm S and a strong negator N such that T (x, y) =
N(S(N(x), N(y))). The main problem consists in the fact that the completeness
condition (ps4) can be written in many forms, e.g.:

co(P ∪ P t) = I ∪ J, P = co(P t ∪ I ∪ J), P ∪ I = co(P t ∪ J).

Let (T,S,N) be De Morgan triplet. A fuzzy preference structure (FPS) on a set
A is a triplet (P, I, J) of binary fuzzy relations on A such that

(f1) I is reflexive, P and J are irreflexive. I(a, a) = 1, P (a, a) = J(a, a) = 0
(f2) P is T-asymmetrical, I and J are symmetrical. T (P (a, b), P (b, a)) = 0
(f3) T (P, I) = T (P, J) = T (I, J) = 0. for all pair of alternatives
(f4) (∀(a, b) ∈ A2)S(P, P t, I, J) = 1 or N(S(P, I)) = S(P t, J) or another

completeness conditions.
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Note that it was proved [1, 7] that reasonable constructions of fuzzy preference
structure (FPS) should use a nilpotent t-norm only. Since any nilpotent t-norm
(t-conorm) is isomorphic to the Lukasiewicz t-norm (t-conorm), it is enough to
restrict our attention to De Morgan triple (TL, SL, 1− x).

3. Preference structures and fuzzy
preference structures and their applications

Let us turn our attention to motivation example. We denote by M =
{A, E, L, P, Y } the set of all trainees. We are able to construct the large pref-
erence relations RP , RR, RD and RC derived from orderings in our four criteria
(precision, rapidity, driving, communication):

RP A E L P Y
A 1 1 1 1 1
E 0 1 0 1 0
L 0 1 1 1 0
P 0 0 0 1 0
Y 1 1 1 1 1

RR A E L P Y
A 1 1 1 1 1
E 1 1 1 1 1
L 0 0 1 1 1
P 0 0 0 1 0
Y 0 0 0 1 1

RP = {[A, A], [E, E], [L, L], [P, P ], [Y, Y ], [A, Y ],
[Y, A], [A, L], [A, E], [A, P ], [Y, L], [Y, E], [Y, P ],
[L, E], [L, P ], [E, P ]}

RR = {[A, A], [E, E], [L, L], [P, P ], [Y, Y ], [A, E],
[E, A], [A, L], [A, Y ], [A, P ], [E, L], [E, Y ], [E, P ],
[L, Y ], [L, P ], [Y, P ]}

RD A E L P Y
A 1 1 1 1 1
E 0 1 0 0 1
L 1 1 1 1 1
P 1 1 1 1 1
Y 0 1 0 0 1

RC A E L P Y
A 1 0 0 0 0
E 1 1 1 1 0
L 1 1 1 1 0
P 1 1 1 1 0
Y 1 1 1 1 1

RD = {[A, A], [E, E], [L, L], [P, P ], [Y, Y ], [A, L],
[L, A], [A, P ], [P, A], [L, P ], [P, L], [A, E], [A, Y ],
[L, E], [L, Y ], [P, E], [P, Y ], [E, Y ], [Y, E]}

RC = {[A, A], [E, E], [L, L], [P, P ], [Y, Y ], [Y, L],
[Y, P ], [Y, E], [Y, A], [L, P ], [P, L], [L, E], [E, L],
[P, E], [E, P ], [L, A], [P, A], [E, A]}

And we are able to construct large preference relation RI which is derived
from instructor’s global ordering, too:

RI A E L P Y
A 1 0 0 1 0
E 1 1 0 1 0
L 1 1 1 1 1
P 1 0 0 1 0
Y 1 1 1 1 1

RI = {[A, A], [E, E], [L, L], [P, P ], [Y, Y ], [L, Y ], [Y, L], [L, E], [L, A], [L, P ], [Y, E], [Y, A], [Y, P ],

[E, A], [E, P ], [A, P ], [P, A]}
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The relation RI is not linear order set. For global evaluation we will modify
this ordering to linear ordering. First, we need order the criteria.

The first idea is; we can pairwise compare the relations RP , RR, RD and RC

with respect to relation RI by the following rule:

(1) X > Y ⇐⇒ |RX ∩RI |
|RX�RI |

>
|RY ∩RI |
|RY�RI |

,

where X,Y ∈ {P,R, D,C}. The idea is; the more RX is similar to RI , the
more important criterion are X is. This method gives the following ordering of
criteria: communication >precision >rapidity > driving. Note that this method
is not the only one possible, and investigation of other possibilities is subject of
ongoing research.

Generaly speaking, we obtain the ordering of criteria from the relation prefer-
ence which is given by P = R∩co(Rt). However, in this example we have got the
same ordering of criteria via both the preference relations and the large relations
(with respect to previous method (1) for comparing the relations).

PP A E L P Y
A 0 1 1 1 0
E 0 0 0 1 0
L 0 1 0 1 0
P 0 0 0 0 0
Y 0 1 1 1 0

PR A E L P Y
A 0 0 1 1 1
E 0 0 1 1 1
L 0 0 0 1 1
P 0 0 0 0 0
Y 0 0 0 1 0

PP = {[A, L], [A, E], [A, P ], [Y, L], [Y, E],
[Y, P ], [L, E], [L, P ], [E, P ]}

PR = {[A, L], [A, Y ], [A, P ], [E, L], [E, Y ],
[E, P ], [L, Y ], [L, P ], [Y, P ]}

PD A E L P Y
A 0 1 0 0 1
E 0 0 0 0 0
L 0 1 0 0 1
P 0 1 0 0 1
Y 0 0 0 0 0

PC A E L P Y
A 0 0 0 0 0
E 1 0 0 0 0
L 1 0 0 0 0
P 1 0 0 0 0
Y 1 1 1 1 0

PD = {[A, E], [A, Y ], [L, E], [L, Y ], [P, E],
[P, Y ]}

PC = {[Y, L], [Y, P ], [Y, E], [Y, A], [L, A],
[P, A], [E, A]}

PI A E L P Y
A 0 0 0 0 0
E 1 0 0 1 0
L 1 1 0 1 0
P 0 0 0 0 0
Y 1 1 0 1 0

PI = {[L, E], [L, A], [L, P ], [Y, E], [Y, A], [Y, P ], [E, A], [E, P ]}
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Fuzzification. For better expresion of reality, we can use fuzzy preference struc-
tures. Natural way of fuzzification of preference relations PP , PR, PD and PC

from our motivation example is given as follows:
The value of fuzzy preference in precision (FPP ) for Arthur and Erec, we

compute from Table 3 as FPP (A, E) = max{xA
1 − xE

1 , 0}, where xA
1 and xE

1 are
Arthur’s and Erec’s precision score in Table 3, etc. The fuzzification of preference
relation PI is given in the last table and it is derived from Tables 6 and 7.

FPP A E L P Y
A 0 0.625 0.25 0.75 0
E 0 0 0 0.125 0
L 0 0.375 0 0.5 0
P 0 0 0 0 0
Y 0 0.625 0.25 0.75 0

FPR A E L P Y
A 0 0 0.25 0.5 0.375
E 0 0 0.25 0.5 0.375
L 0 0 0 0.25 0.125
P 0 0 0 0 0
Y 0 0 0 0.125 0

FPD A E L P Y
A 0 0.25 0 0 0.25
E 0 0 0 0 0
L 0 0.25 0 0 0.25
P 0 0.25 0 0 0.25
Y 0 0 0 0 0

FPC A E L P Y
A 0 0 0 0 0
E 0.5 0 0 0 0
L 0.5 0 0 0 0
P 0.5 0 0 0 0
Y 0.75 0.25 0.25 0.25 0

FPI A E L P Y
A 0 0 0 0 0
E 0.5 0 0 0.25 0
L 0.75 0.25 0 0.5 0.125
P 0.125 0 0 0 0
Y 0.75 0.25 0 0.5 0

Using the formula for comparing the relations (compare to (1))

(2) X � Y ⇐⇒

�
i,j

|{fpxij} ∩ {fpIij}|
�
i,j

|{fpxij}�{fpIij}|
>

�
i,j

|{fpyij} ∩ {fpIij}|
�
i,j

|{fpyij}�{fpIij}|
,

where X, Y are our criteria, m is a number of alternatives, fpxij , fpyij are values
of fuzzy preference structures of criterion X, Y, fpIij are values of fuzzy preference
relation which is based on expert’s global score and i, j ∈ {1, 2 . . . m}, we obtain
the following ordering � of our criteria:

communication � precision = driving � rapidity.
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Note that our intersection ∩ and symmetric difference � are ordinary. We can
see, this ordering is different from ordering, which we obtain via strict preference
structure. Note, that another fuzzification leeds to different ordering of criteria
and subsequently to different ordering of trainees.
Simple deduction. Let us imagine the next situation: We have ordering �, and
now look at another trainee Bruno with scores given in the Table 9.

Table 9. Function on attributes

name precision rapidity driving communication

Arthur 1.000 1.000 0.750 0.250
Lancelot 0.750 0.750 0.750 0.750

Yvain 1.000 0.625 0.500 1.000
Perceval 0.250 0.500 0.750 0.750

Erec 0.375 1.000 0.500 0.750
Bruno 0.400 0.750 0.600 0.750

Our task is to compare Bruno with others. Denote Bruno’s attribute scores as
xB = (xB

1 , xB
2 , xB

3 , xB
4 ) and Erec’s attribute scores as xE = (xE

1 , xE
2 , xE

3 , xE
4 ). We

can see that xE
i ≤ xB

i for i = 1, 3, 4. Since there is a tie in the most important
criterion (communication) so we decide based on the next criteria (precision and
driving) in our ordering �. This results in Bruno’s superiority over Erec. The
final ordering of trainees is: Yvain > Lancelot > Bruno > Erec > Perceval >
Arthur.
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(D. Hliněná) Dept. of Mathematics, FEEC, Brno University of Technology, Tech-
nická 8, 616 00 Brno, Czech Rep.

E-mail address, D. Hliněná: hlinena@feec.vutbr.cz
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DISTANCE BETWEEN FUZZY SETS
AS A FUZZY QUANTITY

VLADIMÍR JANIŠ AND SUSANA MONTES

Abstract. The traditional methods of comparing images, like using the
Hamming distance, may sometimes fail, especially if we do not insist on
careful checking all the details of the images, but compare them just broadly.
An n-dimensional image with various grades of grey colours can be repre-
sented by a fuzzy set. We introduce a method of estimating the difference
between such images by a fuzzy set, which corresponds to various levels
of identifying close parts of the given images, or, in other words, to the
grade of accuracy, with which the images are observed. Examples and some
properties of such a distance are shown.

1. Introduction

A fuzzy subset of a space X can be interpreted as a model for the image
on X containing various shapes of gray colour. The membership degrees then
correspond to grades of darkness, when 0 can be assigned to white and 1 to
black colour (or vice versa). Conversely, a gray image can be represented by a
corresponding fuzzy set.

A natural question is to estimate the grade of similarity of two such images,
which is analogical to estimating the distance between two fuzzy sets. There are
several attitudes to this problem, which can be divided into two groups. The
first one works with differences between membership values at particular points
of X. Another one is based on differences between cuts at particular levels (see
e.g. Cabrelli et al. in [2], [3] and [4]).

However, both mentioned concepts can lead to unsatisfactory results from the
applications point of view. The examples of such cases can be found in [8], where
Lowen and Peeters also show the way how to avoid such problems. They suggest
a way to estimate the distance between two fuzzy sets accounting both differences
between membership values and between cuts. However, the result is a single real
number, which may in some applications mean the loss of information. Our aim
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is to develop the results of Lowen and Peeters so that we obtain a fuzzy quantity
which reflects the difference between two given fuzzy sets.

Another problem, which may appear for example in pattern recognition is,
that not all the points in the space X may have the same importance. The noise
at the edge of a screen can be sometimes considered not so important as the noise
in its centre. Although this is just a technical problem, we also incorporate it in
our consideration.

2. Concepts of measuring differences between
fuzzy sets

There are many different attitudes to comparing fuzzy sets that can be found
in the literature. Generally they are based on one of the two principles, which
we shortly describe below.

In many occasions the comparison of two fuzzy sets is done by quantifying the
degree of similarity or equality between them (see, for instance [5], [11] or [12]),
but there hardly are references related to the degree of inequality or difference
between them.

In [1] the authors proposed a measure of similarity between fuzzy sets and also
a measure of dissimilarity. Thus, they defined a µ-measure of dissimilarity on X
as a function S : F (X)× F (X) → [0; 1] such that

S(m, n) = FS(µ(m ∩ n), µ(n−m), µ(m− n)),

where µ is a measure on X and FS : [0;∞)3 → [0; 1] is a function independent of
the first coordinate, increasing in the other two and such that F (x, 0, 0) = 0 for
all x ∈ [0;∞).

The most frequent definitions of classical distances between fuzzy sets m, n in
a universe X are:

• The Hamming distance:

d(m, n) =
�

x∈X

|m(x)− n(x)|.

• A generalization of the Hamming distance proposed by Kacprzyk in [6]

d(m, n) =
�

x∈X

|m(x)− n(x)|2.

• The generalization of the previous ones, using the Minkowski distance
(see e.g. [7])

d(m, n) =

�
�

x∈X

|m(x)− n(x)|r
� 1

r

, r ≥ 1.
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This class of distances includes, as a particular case, the supremum dis-
tance, used to compare fuzzy sets among others by Nowakowska in [10]
and Wenstøp in [13]. Its definition is

d(m, n) = sup
x∈X

|m(x)− n(x)|.

All these distances are particular cases of the dissimilarity measures defined
in [1].

In relation to dissimilarities Montes et al. introduced in [9] the definition of
divergence measure as a map D : F (X)2 → R such that for all m, n, ρ ∈ F (X)
the following conditions are satisfied:

(1) D(m, n) = D(n, m),
(2) D(m, m) = 0,
(3) max{D(m ∪ ρ, n ∪ ρ), D(m ∩ ρ, n ∩ ρ)} ≤ D(m, n).

This definition generalizes, except for the symmetry property (that could be
excluded from the set of axioms in some particular cases) the concept of dissim-
ilarity measures previously proposed. Moreover, local divergencies are distances
between fuzzy sets according to the definition proposed in [14], which will be
recalled in Definition 3.

All these measures were applied in different fields, but they are not too appro-
priate for some very natural circumstances as we will explain in the following.

3. Distance function and distance

Suppose (X, d) is a pseudometric space, let F (X) denote the system of all
its fuzzy subsets. Let m, n ∈ F (X). For each x ∈ X we assign a nonincreasing
function fx such that fx : [0, 1] → [0;∞]. To be compatible with [8] we may call fx

a tolerance function for x. The shape of this function depends on the importance
of the point x in the image (for better understanding see the examples later in
this paper).

First we define a distance function at a point.

Definition 1. Let S(x, r) be the closed neighborhood of x with diameter r, let

m, n ∈ F (X). If x ∈ X, then the mapping gm,n
x : [0; 1] → [0; 1] such that

gm,n
x (α) = inf{|m(z)− n(y)|; z, y ∈ S(x, fx(α))}

is called the distance function at a point x.

Here we follow the idea of a tolerance introduced by Lowen and Peeters in [8],
but in our attitude the tolerance is not constant.
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It is easy to see that any distance function is nondecreasing. The purpose
of such a function is to model the grade of accuracy with which the image is
observed. The value α = 0 corresponds to the “least careful” view of the image,
while the value of α = 1 models the “most detailed” look at it. A good example
has been given in [8], namely two chessboards with a very large number of rows
and columns, inverse to each other. At a close look we see that they are totally
different, but from a large distance we do not distinguish small squares, but
observe two identical large (gray) squares.

The distance function at a point enables us to define the main notion of this
work.

Definition 2. Let for each x ∈ X be gm,n
x its distance function. The distance

between the fuzzy sets m and n is then given by the fuzzy set gm,n : [0, 1] → [0, 1]
defined for α ∈ [0, 1] as follows:

gm,n(α) = sup{gm,n
x (α), x ∈ X}.

Thus we obtain a fuzzy quantity which gives us more information about two
fuzzy sets than a single number, as it can be seen from examples in the following
section.

The distance defined above has properties similar to some of the distance
measure, as it was introduced in [14]. We recall its definition:

Definition 3. Let F (X) be the system of al fuzzy sets on a universe X. A func-

tion δ : F (X)2 → [0,∞[ is called a distance measure if it satisfies the following

properties:

(1) δ(A, B) = δ(B,A) for all A, B ∈ F (X),
(2) δ(A, A) = 0 for all A ∈ F (X),
(3) δ(D,X \ D) = maxA,B∈F (X) δ(A, B) for all crisp subsets D of X,

(4) if A ⊆ B ⊆ C, then δ(A, B) ≤ δ(A, C) and δ(B,C) ≤ δ(A, C) for all

A, B, C ∈ F (X).

Clearly the distance as we have defined it, cannot be a distance measure, as its
values are not real numbers, but fuzzy quantities. However, it has some similar
properties, which are formulated in the following propositions.

Proposition 1. If m, n ∈ F (X), then gm,n = gn,m
.

Proposition 2. If m ∈ F (X), then gm,m
is a zero function.

Both propositions follow directly from the definition of the distance. The
transitivity for our definition is preserved by means of the fact, that for m, n, p ∈
F (X), m ≤ n ≤ p the difference n −m differs less from the zero function, than
the difference p−m.
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Proposition 3. If m, n, p ∈ F (X), m ≤ n ≤ p, then g0,n−m ≤ g0,p−m
.

Proof. Clearly it is sufficient to prove the statement for r, s ∈ F (X), r ≤ s,
as n−m ≤ p−m. But if r ≤ s, then

inf{r(y), y ∈ S(x, fx(α))} ≤ inf{s(z), z ∈ S(x, fx(α))}
for all x ∈ X,α ∈ [0, 1]. This means that g0,r

x ≤ g0,s
x for all x ∈ X. Using

suprema to get the distance functions and the fact that the inequality remains
also for them, we conclude g0,r ≤ g0,s. Putting r = n −m, s = p −m we finish
the proof.

The only property of distance measure, which cannot be mechanically trans-
ferred for our distance, is the third one, stating that any crisp set and its com-
plement have the maximal possible distance measure. This is no surprise, as our
attitude is based on the principle that (using the language of pattern recognition)
considers the white patterns with small pieces of black color as a kind of fuzzy
sets. However, for sets, that are “crisp enough” a kind of a similar property holds.

Proposition 4. Let D be a (crisp) subset of X. Then

gD,X\D = max{gm,n;m, n ∈ F (X)}
if and only if there is an x0 ∈ D such that S(x0, fx0(0)) ⊆ D.

Proof. Let D be a (crisp) subset of X. For the convenience we will denote by
the same letter its characteristic function, as well as for its complement. Suppose
there is an x0 ∈ D such that S(x0, fx0(0)) ⊆ D. Then for the distance function
at x0 we have

gD,X\D
x0

(0) = inf{d(D(y), (X \ D)(z)); y, z ∈ S(x0, fx0(0))} = 1

due to the assumption which asserts that D(y) = 1 and (X \ D)(z) = 0 for any
y, z ∈ S(x0, fx0(0)).

As any distance function is nondecreasing, we have gD,X\D
x0 (α) = 1 for all

α ∈ [0, 1], hence also gD,X\D(α) = 1 for all α ∈ [0, 1]. Evidently this is the
maximal possible distance for any pair of fuzzy sets in F (X).

To show the reverse implication let us assume that for all x ∈ D there is

S(x, fx(0)) ∩ (X \ D) �= ∅.
Then for any x ∈ D we have

gD,X\D
x (0) = inf{d(D(y), (X \ D)(z)); y, z ∈ S(x, fx(0))} = 0

as in each S(x, fx(0)) there is a point belonging to D and also a point in its
complement.
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4. Examples

In the following we present a series of simple examples which demonstrate
some properties of the distance. In all of them the space X will be the interval
[0, 2] with the usual metric. The tolerance function for all the points of X in
Examples 1 – 4 will be fx(α) = 1− α. In each example we present the graphs of
m, n and their difference gm,n. For better understanding it is good to think of the
fuzzy sets used in the examples as of image representations, where 1 represents
black and 0 white color and the values between correspond to degrees of grey
color. In all the graphs m is sketched in a full line, n in a dashed one.

Example 1. m(x) = 1, n(x) = 1 for x ∈ [0, 1], otherwise n(x) = 0.

Here the fuzzy set n is in the sense of Proposition 4 sufficiently crisp to have the
maximal possible distance from m.

Example 2. m(x) = 1, n(x) = 1 for x ∈ [0, 0.5], n(x) = 1.5 − x for
x ∈]0.5, 1.5[ , n(x) = 0 otherwise.

As we see, considering only the membership degrees close to edge values (not
mentioning the shades of gray), both sets are far from each other. If we consider
also degrees of gray color, they are closer than in the previous example.
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Example 3. m(x) = 1 for x ∈ [0, 1], m(x) = 0 otherwise, n is the same as
in the previous example.

In this example we see that the more attention is paid to the grey colors, the
closer are the images.

Example 4. m(x) = 1 for x ∈ [0, 1], m(x) = 0 otherwise, Let n be the crisp
set [0; 1.2]. In the graph of the distance function we see that these sets are closer
to each other than the pair in the previous example. Although the difference
in colours in the middle of the image is sharp, it is just on a set with a small
measure and in the broader view these sets tend to coincide.

The following example shows the possibility to assign various importance to dif-
ferent parts of the underlying space. We see that although the measure of the
space where noise (white color in a black image) is present is the same, the
distance is bigger if the noise appears in the center of the space X.

Example 5. Let for x ∈ [0.5, 1.5] the tolerance function be fx(α) = 1 − α,
for the remaining points in X let fx(α) = 2 − 2α. Let m be the crisp set [0, 2],
let n be the crisp set [0, 0.9] ∪ [1.1, 2], let p be the crisp set [0.1, 1.9].
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Here we see that due to the smaller importance of the points closer to the end-
points, the distance between m and n is larger than the distance between m and
p.

5. Concluding remarks

We have defined a distance of a pair of fuzzy sets expressed by a mapping
which enables us to estimate the similarity of given fuzzy sets depending on the
level, on which we identify points close to each other. As we have shown, the
properties of such a distance have much in common with the properties of the
distance measure from [14]. Moreover, it has the following properties, which are
quite obvious:

If fx is a zero function for all x, then our distance is equivalent to the supremum
distance usually denoted by d∞, (the distance used in [10] or [13]). This means
that in such case gm,n is a constant function with its value d∞(m, n).

If fx are all equal to the same constant τ , then our distance is equivalent to
that introduced in [8].

If fx(1) > 0, then the noise in the singleton {x} is ignored. Moreover, if
fx(1) ≥ c for all x ∈ X, then also the noise on sets with diameter not exceeding
c is ignored.

By putting sm,n = 1 − gm,n we obtain s with properties similar to similarity
measure as was introduced in [14].
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A GEOMETRICAL APPROACH TO AGGREGATION

J. RECASENS

Abstract. Considering the family F of contour curves F = {h(x, y) =
k) of an (idempotent) aggregation operator h in two variables as a one-
parametric family of curves, the differential equation y� = f(x, y) having F
as general solution is associated to h. Properties of h have then be translated
to properties of its differential equation. Reciprocally, for a differential
equation fulfilling some easy properties its general solution can be seen as
the contour curves of an idempotent aggregation operator so that properties
of the equation can have their counterpart in the ones of the aggregation
operator.

1. Introduction

It is well known that the orthogonal projection of a point P = (a, b) of the plane
on the line l with equation y = x is the point (a+b

2 , a+b
2 ), so that the coordinates

of the projection of P are the arithmetic mean of the coordinates of P . This
gives a nice geometrical interpretation to the arithmetic mean of two numbers.
In a similar way, if we project the point P following the direction given by the
vector (−q, p) (with p, q > 0 and p + q = 1) the projection on l is the point with
coordinates (pa + qb, pa + qb) obtaining the weighted arithmetic mean in, again,
a geometrical way.

Going back to the arithmetic mean, two points lying in a line perpendicular to
l will have the same orthogonal projection onto l and therefore their coordinates
will have the same arithmetic mean. In this way, we have a one-parametric family
of lines F = {x + y = k} with the property that all points of a given line of F
have the same arithmetic mean.

A similar situation occurs for weighted arithmetic means where, given the
weights p, q > 0, p + q = 1, the one-parametric family {px + qy = k} plays the
same role as F .

It seems therefore interesting to study what happens if we permit points to
move toward l without the constraint of following a straight line, but allowing
more general curves. This paper is devoted to this study.
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Next Section will determine which conditions a family of curves must fulfill
to be associated to an (idempotent) aggregation operator and which ones are
related to desirable properties of these operators.

Of course, if an aggregation operator should be obtained from a family of
curves, they must satisfy at least the following two conditions:

• There must pass a curve of the family through every point of the plane
(or some restricted domain).

• No two curves can pass through the same point.
These are necessary conditions for the existence of an ordinary differential

equation having the family as solution. If the curves are ”smooth enough”, then
the aggregation operator will have associated this differential equation as well.

Two very easy examples are the arithmetic mean and weighted arithmetic
means, the family associated to the first one being the solution of the differential
equation y� = −1 while the latter to the equation y� = −p

q .
Reciprocally, a differential equation fulfilling some conditions will generate an

aggregation operator and the properties of this operator can be translated to the
equation.

Section 3 will study the relation with aggregation operators, one-parametric
families of curves and differential equations.

As particular cases, the one-parametric family of curves and differential equa-
tions of the most popular aggregation operators will be given; namely: means,
quasi-arithmetic means and OWA operators.

2. Contour curves

Definition 2.1. An aggregation operator (in two variables) is a map h : X×X →
X where X is some subset of the real line satisfying

(1) Min(x, y) ≤ h(x, y) ≤Max(x, y) ∀x, y ∈ X
(2) h(x1, y1) ≤ h(x2, y2) if x1 ≤ x2 and y1 ≤ y2 ∀x1, x2, y1, y2 ∈ X (mono-

tonicity)

h is symmetric if and only if

h(x, y) = h(y, x) ∀x, y ∈ X

It is straightforward to prove that aggregation operators are idempotent, i.e.:
they satisfy

h(x, x) = x ∀x ∈ X

Throughout the paper we will assume that all aggregation operators are con-
tinuous.
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Given an aggregation operator h, we can consider its contour curves, i.e. the
sets of points (x, y) in the domain of h with h(x, y) = k where k is a given
constant. In this way we associate a continuous one-parametric family F of
curves to h with the particularity that the coordinates of all points P of the same
curve have the same aggregation with h, which geometrically are the coordinates
of the intersecting point (p, p) of this curve with l. (We will write in short that
the point (p, p) is the aggregation of P ). Some of the properties of h can be
translated to F and visualized by its behavior.

Reciprocally, a continuous one-parametric family F of curves of the plane
satisfying certain conditions can be seen as the contour curves of h.

Let us consider a family F of continuous parameterized curves ck(t) = (xk(t), yk(t)),
k ∈ X ⊂ R of the plane such that all of them intersect the line l of equation
y = x in a single point and let (pk, pk) be the intersection of the curve ck with l.
If we want that (pk, pk) could be considered an aggregation of any point (a, b) of
ck(t), some restrictions should be imposed to ck(t).

First, pk must be between a and b for any point (a, b) ∈ ck(t) (Min(a, b) ≤
pk ≤Max(a, b)) which means that (pk, pk) must lay between the intersections of
the lines x = a and y = b with l.

Proposition 2.2. Let F = {ck} be a one-parametric family of continuous curves

such that each curve ck of F intersects the line l in a point (pk, pk). If F is the

family of contour curves of an aggregation operator, then for all points (ak, bk) of

the curve ck (pk, pk) must lay between the intersections of the lines x = ak and

y = bk with l.

For example, the curve partly represented in Figure 1 could be a member of a
family F generated by an aggregation operator, while the one of Figure 2 could
not.

Next proposition provides a geometric translation of monotonicity.

Proposition 2.3. Let F = {ck} be the contour family of a map h satisfying 2.1.1.

h is non-monotonic if and only if there exists a curve c of F with P = (x0, y0)
and Q = (x1, y1) two points of c with x0 ≤ x1 and y0 < y1.

Proof. ⇐)
In this case, there would be a point R = (x2, y1) with x2 < x1 in the region

of points of the plane above c belonging to another curve c� of the family. Since
c ∩ c� = ∅, the aggregation of (x2, y1) is greater than the aggregation of (x1, y1)
and therefore the aggregation operator is non-monotonic. (See Figure 3).
⇒)
Trivial.
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Figure 1

Figure 2

In the case that the curves ck of F are functional, i.e. we can describe ck with
a map y = fk(x), Proposition 2.3 simply means that the associated map h is
monotonic if and only if fk are non-increasing monotonic maps. �

Symmetry of an aggregation operator can also be easily translated to the
behavior of their contour curves.
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Figure 3

Proposition 2.4. Let F = {ck} be the contour family of an aggregation operator

h. h is symmetric if and only if all curves of F are symmetric with respect to the

line l (i.e., if (a, b) is a point of curve ck, then (b, a) is a point of ck as well).

If the curves of F are functional (y = fk(x)) then the associated aggregation
operator is symmetric if and only if the maps fk are strictly decreasing with
fk = f−1

k ∀k.

3. Differential equations

In the previous Section we have seen the relation between the properties of an
aggregation operator h and its family of contour curves F = {h(x, y) = k}. Let us
now suppose that the aggregation has nice differential properties, namely that in
some region of the plane there exist hx = ∂h

∂x and hy = ∂h
∂x �= 0. In this situation,

the family F is determined by the differential equation y� = −hx
hy

.
For example, the family F of contour curves of the arithmetic mean h(x, y) =

x+y
2 is F = {x+y = k} that are the solutions of the differential equation y� = −1.
Reciprocally, a differential equation y� = f(x, y) satisfying certain conditions

will have as solution the family of contour curves of an aggregation operator h.
We will say in this case that y� = f(x, y) is the differential equation associated
to h.

This Section will study which conditions a differential equation must satisfy
for having as solution a family of contour curves of an aggregation operator h
and how the properties of h are transfered to the differential equation.
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Proposition 3.1. Let y� = f(x, y) be a differential equation. If f(x, y) ≤
0 ∀x, y ∈ R then it is associated to an aggregation operator.

Proof. If y� ≤ 0, the curves solution of the equation will not satisfy the hypothesis
of Proposition 2.3. �

Proposition 3.2. The differential equation y� = f(x, y) represents a symmetric

aggregation operator iff f(x, y) · f(y, x) = 1.

Proof. This implies that the curves are symmetric with respect to the line y = x.
�

Example 3.3. Table 1 shows the most popular symmetric aggregation operators

with their respective families of one-parametrized curves F and the corresponding

differential equation.

Table 1

h F y�

arithmetic
mean

x+y
2 x + y = k y� = −1

geometric
mean

√
xy xy = k y� = − y

x

harmonic
mean

xy
x+y 2xy = k(x + y) y� = − y2

x2

generalized
means (xα+yα

2 ) 1
α xα + yα = k y� = −xα−1

yα−1

quasi− arithmetic
means f−1( f(x)+f(y)

2 ) f(x) + f(y) = k y� = − f �(x)
f �(y)

OWA operators pMax(x, y)
+qMin(x, y)

pMax(x, y)
+qMin(x, y) = k

y� =
� −p

q if x < y
− q

p if x > y

Example 3.4. Table 2 displays the most popular non-symmetric aggregation

operators with their respective families of one-parametrized curves F and the

corresponding differential equation.

If F = {y = f(x, k)} is a one-parametric family of curves such that for all
k ∂f

∂x is between −1 and 1, then rotating F −45o with respect to the origin
(0, 0), we obtain a family of contour curves of an aggregation operator.
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Table 2

h F y�

weighted
arithmeticmean px + qy px + qy = k y� = −p

q

weighted
geometric mean xpyq xpyq = k y� = −py

qx

weighted
harmonic mean

xy
qx+py xy = k(qx + py) y� = − qx2

py2

weighted
generalized means (pxα + qyα) 1

α pxα + qyα = k y� = −pxα−1

qyα−1

weighted
quasi

arithmetic means
f−1(pf(x) + qf(y)) pf(x) + qf(y) = k y� = −pf �(x)

qf �(y)

A nice easy way to generate aggregation operators is therefore to start with
a map y = f(x) with −1 ≤ f �(x) ≤ 1 ∀x and rotate −45o the family F = {y =
f(x) + k} with respect to the origin (0, 0).

Definition 3.5. Let y = f(x) be a map with −1 ≤ f �(x) ≤ 1 ∀x. mf will be

the aggregation operator whose contour curves are the family obtained form the

curves y = f(x) + k rotated −45o
with respect to the origin (0, 0).

The differential equation fulfilled by this family is

y� =
f �(x−y√

2
)− 1

f �(x−y√
2

) + 1

The aggregation mf is

mf (x, y) =
x + y −

√
2f(x−y√

2
) +

√
2f(0)

2
Example 3.6. (1) From y = αcos(x) with 0 ≤ α ≤ 1 we get the family

solution of

y� =
αsin(x−y√

2
) + 1

αsin(x−y√
2

)− 1
and with aggregation operator

m(x, y) =
x + y −

√
2αcos(x−y√

2
) +

√
2α

2
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(See Figure 4).

Figure 4

(2) From y = αe−x2
with 0 ≤ α ≤

�
e
2 we get the family solution of

y� =
−a
√

2(x− y)e−
(x−y)2

2 ) − 1

−a
√

2(x− y)e−
(x−y)2

2 ) + 1
and with aggregation operator

m(x, y) =
x + y −

√
2αe−

(x−y)2
2 +

√
2α

2
(See Figure 5).

The following result is straightforward.

Proposition 3.7. mf is symmetric if and only if f is an even function (i.e.:

f(x)=f(-x)).

4. Concluding Remarks

This paper has provided a first attempt to relate aggregation operators with
differential equations. This have been achieved assigning to every (idempotent)
aggregation operator in two variables the differential equation which has its con-
tour curves as general solution.

Some properties of the aggregation operator have been translated to properties
of the associated differential equation and vice versa.
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Figure 5

The author will try to extend the results of this paper to more than two
variables in forthcoming works.
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EQUALITY OF SPECIAL MIXTURE OPERATORS AND
QUASI-ARITHMETIC MEANS

JANA ŠPIRKOVÁ

Abstract. In our paper we introduce the problem of equality of special
mixture operators and quasi-arithmetic means. From equality of mixture
operators and quasi-arithmetic means we get as solutions the arithmetic,
harmonic, geometric means and more special types of aggregation operators
belonging simultaneously to both discussed classes.

1. Introduction

Let I ⊂ R be any interval. Let ϕ : I → R be a continuous strictly increasing
function. For any weighting function f : I →]0,∞[, ϕ and f induces a quasi-
mixture operator Mf

ϕ : ∪
n∈N

In → I ,

Mϕ
f (x1, x2, . . . , xn) = ϕ−1





n�
i=1

ϕ (xi) · f (xi)

n�
i=1

f (xi)



 .

For details see [4], [5].
In special case, if transformation function is ϕ(x) = x, the quasi-mixture

operator induces the mixture operator

Mf (x1, x2, . . . , xn) =

n�
i=1

f (xi) · xi

n�
i=1

f (xi)
.

More informations about mixture operators can be found in [3], [6], [8].
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If weighting function f(x) = const, quasi-mixture operator goes to the quasi-
arithmetic mean

Mϕ(x1, x2 . . . , xn) = ϕ−1

�
1
n

n�

i=1

ϕ(xi)

�
.

See e.g. [1], Section 5.3 in [3].
In our paper we recall the problem of the equality of two quasi-mixture opera-

tors, which was solved in [2], [4], [5]. We modify these solutions to solve a related
problem of the equality of a mixture operator Mg and a quasi-arithmetic mean
Mη.
The paper is organized as follows. In the next section we summarize the solu-
tions of the equality of two quasi-mixture operators from [2], [4], [5] described in
a transformed way as an equality of a quasi-mixture operator and the arithmetic
mean. In the third section we solve the equality problem
Mg = Mη based separately on all introduced solutions from Section 2.
Finally, some conclusions are given.

2. Equality of mixture and quasi-mixture
operators

In paper [2] Bajraktarević solved the functional equation

(1) Φ−1





n�
i=1

Φ(xi)F (xi)

n�
i=1

F (xi)



 = Ψ−1





n�
i=1

Ψ(xi)G(xi)

n�
i=1

G(xi)



 , (x1, . . . , xn ∈ I)

where Φ,Ψ : I → R are the strictly monotonic and continuous functions and
F,G : I →]0,∞[ are weighting functions. He supposed for a fixed n ≥ 3 and that
the functions Φ, Ψ, F and G are twice differentiable and proved that there are
constants a, b, c, d ∈ R such that

(c2 + d2) · (ad− bc) �= 0

and

Ψ(x) =
aΦ(x) + b

cΦ(x) + d
G(x) = F (x) · (cΦ(x) + d),

what attends to the arithmetic mean.

In paper [5] Losonczi solved the two - variable equality problem of the quasi-
mixture operators

(2) Φ−1

�
Φ(X)F (X) + Φ(Y )F (Y )

F (X) + F (Y )

�
= Ψ−1

�
Ψ(X)G(X) + Ψ(Y )G(Y )

G(X) + G(Y )

�
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that holds all X,Y ∈ I. He supposed six times differentiability of the functions
involved and got 32 new families of solutions.

Daróczy et al. in [4] solved the equality of two quasi-mixture operators MΦ
F =

MΨ
G without differentiability conditions. Authors used the substitutions x =

Ψ(X), y = Ψ(Y ) and with the definitions J = Ψ(I), g = G ◦Ψ−1, f = F ◦Ψ−1,
ϕ = Φ ◦Ψ−1 the equation (2) was rewritten into

ϕ(x)f(x) + ϕ(y)f(y)
f(x) + f(y)

= ϕ

�
g(x)x + g(y)y
g(x) + g(y)

�
,

where x, y ∈ J . They supposed that G is a constant, thus g is a constant too,
and they got

(3) ϕ−1

�
ϕ(x)f(x) + ϕ(y)f(y)

f(x) + f(y)

�
=

x + y

2
, (x, y ∈ J).

The solution of the equality (3) is writen in a regularity theorem in [4], where
the pair (ϕ, f) is a solution on J if and only if it has one of the following forms

ϕ(x) f(x)
(1) Ax + D E

(2)
A

x + C
+ D E(x + C)

(3) Atanh(Bx + C) + D Ecosh(Bx + C)
(4) Acoth(Bx + C) + D Esinh(Bx + C)
(5) Atan(Bx + C) + D Ecos(Bx + C)
(6) Aexp(−2Bx) + D Eexp(Bx)

for all x ∈ J and for some constants A, B,C, D ∈ R such that ABE �= 0 and
f(x) > 0.

Daróczy et al. in [4] for arbitrary g and for recalled couples (ϕ, f) got the
solution of equality of quasi-mixture and mixture operators

(4) ϕ−1





n�
i=1

ϕ(xi) · f(xi)

n�
i=1

f(xi)



 =

n�
i=1

g(xi) · xi

n�
i=1

g(xi)
.

In the next we remark and analyze separately the equality of quasi-mixture and
mixture operators for the couples 1.-6. (ϕ, f) and arbitrary g.
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(1) Function ϕ(x) = Ax + D from the first couple (f, ϕ) acts the same as
id ≡ x. For g(x) = const left side and right side of equation (4) give us
the arithmetic mean.

(2) The function ϕ(x) = A
x+C +D has the inverse function ϕ−1(x) = A

x−D−C
and weighting function is f(x) = E(x + C). The equality (4) can be
rewrite as

A
nP

i=1
ϕ(xi)·f(xi)

nP
i=1

f(xi)
−D

− C =

n�
i=1

g(xi) · xi

n�
i=1

g(xi)
.

For A = 1 and D = 0 we get
n�

i=1
f(xi)

n�
i=1

ϕ(xi) · f(xi)
=

n�
i=1

g(xi) · (xi + C)

n�
i=1

g(xi)
.

From the last equality we see for arbitrary f weighting function g is given
by

g(x) = f(x) · ϕ(x).

For arbitrary g we get strictly monotonic function

f(x) = g(x) · (x + C) =
g(x)
ϕ(x)

.

For ϕ(x) = 1
x+C is satisfied the identity Mϕ

f = Mf ·ϕ.

• Specially for C = 0, f = const(= 1) we get ϕ(x) =
1
x

, g(x) =
1
x

.
We get quasi-mixture and mixture operator as a harmonic mean:

ϕ−1





n�
i=1

ϕ(xi) · f(xi)

n�
i=1

f(xi)



 =

n�
i=1

f(xi)

n�
i=1

f(xi) · ϕ(xi)
=

n
n�

i=1

1
xi

and
n�

i=1
g(xi) · xi

n�
i=1

g(xi)
=

n
n�

i=1

1
xi

.
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• For ϕ(x) =
1

x + C
we have

Mϕ = ϕ−1

�
1
n

n�

i=1

ϕ(xi)

�
=

n
n�

i=1
ϕ(xi)

− C.

When n = 2 and C = 0 we get harmonic mean Mϕ =
2

1
x

+
1
y

.

Similarly mixture operator for n = 2 is the same harmonic mean

Mϕ =
2

1
x

+
1
y

, so Mϕ = Mϕ. So quasi-mixture operator and mixture

operator are the same for ϕ(x) =
1

x + C
.

(3) For ϕ(x) = Atanh(Bx + C) the inverse function is given by ϕ−1(x) =
arctanh x

A − C

B
and weighting function f(x) = Ecosh(Bx+C). If A = 1,

E �= 0, B = 1, C = 0 we get quasi-mixture operator as arithmetic mean
Mϕ

f =
x + y

2
. For g(x) = const, n = 2 we get mixture operator as

arithmetic mean too Mϕ
f =

x + y

2
.

(4) In fourth case the function ϕ(x) = Acotanh(Bx + C) has the inverse

function ϕ−1(x) =
arccotanh x

A − C

B
and f(x) = Esinh(Bx + C). If

A = 1, E �= 0, B = 1, C = 0 we get quasi-mixture operator as arithmetic
mean Mϕ

f =
x + y

2
and for g(x) = const, n = 2 we get mixture operator

again as arithmetic mean Mg =
x + y

2
.

(5) For the couple ϕ(x) = Atan(Bx + C),f(x) = Ecos(Bx + C) we have

ϕ−1(x) =
arctan x

A − C

B
. The equality (4) for this pair and for A = 1,

E �= 0 is given by

arctan




nP

i=1
ϕ(xi)·f(xi)

nP
i=1

f(xi)



− C

B
=

n�
i=1

g(xi) · xi

n�
i=1

g(xi)
.
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After some processing we get

arctan





n�
i=1

ϕ(xi) · f(xi)

n�
i=1

f(xi)



 =

n�
i=1

g(xi) · (Bxi + C)

n�
i=1

g(xi)
.

For n = 2, B = 1, C = 0 we get arithmetic mean Mϕ
f =

x + y

2
and once

more for g(x) = const again we get Mg =
x + y

2
.

(6) For the last couple ϕ(x) = Aexp(−2Bx), f(x) = Eexp(Bx),

ϕ−1(x) = − 1
2B

ln
x

A
the equation (4) for A = 1, E �= 0 we rewrite as

− 1
2B

ln





n�
i=1

ϕ(xi)f(xi)

n�
i=1

f(xi)



 =

n�
i=1

g(xi) · xi

n�
i=1

g(xi)
.

For n = 2 we get the equation

1
2B

ln
exp(Bx) + exp(By)
exp(Bx) + exp(By)
exp(Bx) · exp(By)

=

2�
i=1

g(xi) · xi

2�
i=1

g(xi)
.

For B = const we get quasi-mixture operator as the arithmetic mean
Mϕ

f =
x + y

2
. And once more if g(x) = const, we get mixture operator

as the arithmetic mean Mg =
x + y

2
.

Remark 2.1. For the first two couples (ϕ, f) the equation (3) is satisfied also if
we reformulate it for n ≥ 2, while for the other couples (ϕ, f) the equation (3) is
satisfied only for n = 2.

Remark 2.2. Note that for all A, D from R, A �= 0, E > 0, and for all ϕ, f
it holds Mϕ

f = MAϕ
Ef + D. Therefore, when solving the problem of equality of

different types of quasi-mixture operators, it is enough to assume A = E = 1 and
D = 0 when ever this is convenient.
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3. Equality of special mixture operators and
quasi-arithmetic means

Each quasi-mixture operator Mϕ
f on an interval I can be identified with the

couple (ϕ, f). The equality of two quasi-mixture operators Mϕ
f = Mη

g alows to
introduce an equivalence (ϕ, f) ≈ (η, g) for the corresponding pairs of generating
and weighting functions.

Proposition 3.1. Let I ⊂ R. Let ϕ, η: I → R be continuous strictly monotone

functions and f , g: I →]0,∞[ be weighting functions.

Let τ : J → I be an increasing bijection and I = τ(J). Then the equivalence

(ϕ, f) ≈ (η, g) (on interval I), holds if and only if the equivalence

(ϕ ◦ τ, f ◦ τ) ≈ (η ◦ τ, g ◦ τ) (on interval J) is true.

Proof. Suppose that (ϕ, f) ≈ (η, g), i. e., for all (x1, . . . , xn) ∈ In it holds

(5) ϕ−1





n�
i=1

ϕ(xi) · f(xi)

n�
i=1

f(xi)



 = η−1





n�
i=1

η(xi) · g(xi)

n�
i=1

g(xi)



 .

We have to show the equality

(6)

(ϕ ◦ τ)−1





n�
i=1

ϕ ◦ τ(ui) · f ◦ τ(ui)

n�
i=1

f ◦ τ(ui)



 =

= (η ◦ τ)−1





n�
i=1

η ◦ τ(ui) · g ◦ τ(ui)

n�
i=1

g ◦ τ(ui)





for all (u1, . . . , un) ∈ Jn.
Recall that (ϕ◦τ)−1 = τ−1 ◦ϕ−1, and thus the equality (6) can be rewritten into

ϕ−1





n�
i=1

ϕ ◦ τ(ui) · f ◦ τ(ui)

n�
i=1

f ◦ τ(ui)



 = η−1





n�
i=1

η ◦ τ(ui) · g ◦ τ(ui)

n�
i=1

g ◦ τ(ui)



 .

Now, it is enough to put τ(ui) = xi and apply the equality (6).
The opposite implication is immediate. �

Our aim is to find the solutions of the equivalence problem (id, g) ≈ (η, const).
Recall that in the Section 2 we have summarized the results from [2], [4], [5]
solving the equivalence problem (ϕ, f) ≈ (id, const). Based on Proposition 3.1.
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and putting τ = ϕ−1, we see that we can transform the solutions of (ϕ, f) ≈
(η, const) into

(7) (id, f ◦ ϕ−1) ≈ (ϕ−1, const).

Now, it is enough to put g = f ◦ϕ−1 and η = ϕ−1 to get the desired solutions of
the equality of the mixture operators and the quasi-arithmetic means. Now we
will analyze all cases 1 - 6 summarized in Section 2.

(1) In this case we have only the trivial solution

(id, const) ≈ (Aid + D, const)

yielding the arithmetic mean M , independently of the interval I ⊂ R and
for the arbitrary n ∈ N .

(2) Due to the Remark 2.2., we can assume A = E = 1. Then for ϕ given

by ϕ(x) =
1

x + C
+ D (necessarily defined on a subinterval of ] −∞, C[

or ]C,∞[) we have ϕ−1(x) =
1

x−D
− C. Applying the equivalence (6),

we can define g by g(x) =
1

x−D
, and to ensure the positiveness of g,

necessarily it should be defined on a subinterval J of ]D,∞[. Moreover,
taking into account Remark 2.2., we can put η = g. Hence the opera-
tor HD : ]D,∞[n→]D,∞[ given for any n ∈ N and any (x1, . . . , xn) ∈
]D,∞[n by

HD(x1, . . . , xn) =
n

n�
i=1

1
xi −D

+ D =

n�
i=1

xi

xi −D
n�

i=1

1
xi −D

is both a mixture operator and a quasi-arithmetic mean. Observe that
for D = 0 we recover the standard harmonic mean H and that

HD(x1, . . . , xn) = H0(x1 −D, . . . , xn −D) + D.

(3) For the third couple (ϕ, f), similarly as in the previous case, we can
assume A = E = 1. The function ϕ is given by ϕ(x) = tanh(Bx+C)+D

is defined on R and its inverse function ϕ−1(x) =
arctanh(x−D)− C

B
is

defined on the interval ]− 1 + D, 1 + D[ . Recall that the corresponding
weighting function f is given by f(x) = cosh(Bx + C). Applying our
couple on the equivalence (7) we get the weighting function g : ] − 1 +
D, 1 + D[ → ]0,∞[ given by g(x) = cosh(arctanh(x −D)). Denote by
M (3)

D the mixture operator Mg which is also a quasi-arithmetic mean Mη,
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η = ϕ−1.This equality is true only for n = 2 and M (3)
D is given by

M (3)
D (x, y) =

x · cosh(arctanh(x−D) + y · cosh(arctanh(y −D))
cosh(arctanh(x−D) + cosh(arctanh(y −D))

=

= tanh

�
1
2

(arctanh(x−D) + arctanh(y −D))
�

+ D

is mixture operator and quasi- arithmetic mean. After some proccesing
for D = 0 we can rewrite our mixture operator and quasi-arithmetic
mean by

M (3)
0 (x, y) =

x + y

1 + xy +
�

(1− x2) · (1− y2)
.

Recall that also in this case M (3)
D (x, y) = M (3)

0 (x−D, y −D) + D.
(4) The function ϕ(x) = cotanh(Bx+C)+D is defined on the subinterval ]−

∞,−C
B [ or ]−C

B ,∞[ and its inverse function ϕ−1(x) =
arccotanhx−D − C

B
,

necessarily it should be defined on a subinterval J of ] − ∞, B[ ∩ ] −
∞,−1 + D[ or ]B,∞[ ∩ ]1 + D,∞[. The corresponding weighting func-
tion f is given by f(x) = sinh(Bx+C). To ensure positivness of f ◦ϕ−1

in equivalence (6) we get the weighting function g : ]1 + D,∞[→]0,∞[
given by g(x) = sinh(arccotanh(x−D)).

Denote by M (4)
D the mixture operator Mg which is also a quasi-arithmetic

mean Mη, η = ϕ−1. This equality is true only for n = 2 and M (4)
D is

given by

M (4)
D (x, y) =

x · sinh(arccotanh(x−D) + y · sinh(arccotanh(y −D))
sinh(arccotanh(x−D) + sinh(arccotanh(y −D))

=

= cotanh

�
1
2

(arccotanh(x−D) + arccotanh(y −D))
�

+ D,

which is mixture operator and quasi- arithmetic mean. After some proc-
cesing for D = 0 we can rewrite our mixture operator and quasi-arithmetic
mean by

M (4)
0 (x, y) =

x + y

1 + xy −
�

(x2 − 1) · (y2 − 1)
.

Recall that also in this case M (4)
D (x, y) = M (4)

0 (x−D, y −D) + D.
(5) The function ϕ(x) = tan(Bx + C) + D is defined on a subinterval of

]
−π
2 − C

B
,

π
2 − C

B
[ and its inverse function ϕ−1(x) =

arctan(x−D)− C

B
necessarily it should be defined on a subinterval J of ]−∞, B[ or ]B,∞[.
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Note, that weighting function g from this couple is given by g(x) =

cos (arctan(x−D)) =
1�

1 + (x−D)2
and is positive for x ∈ R. Denote

by M (5)
D the mixture operator Mg which is also a quasi-arithmetic mean

Mη, η = ϕ−1. This equality is true only for n = 2 and M (5)
D is given by

M (5)
D (x, y) =

x · cos(arctan(x−D) + y · cos(arctan(y −D))
cos(arctan(x−D) + cos(arctan(y −D))

=

= tan

�
1
2

(arctan(x−D) + arctan(y −D))
�

+ D

is both a mixture operator and a quasi-arithmetic mean. For D = 0 and
using some proccesing we get

M (5)
0 (x, y) =

x + y

1− xy +
�

(1 + x2) · (1 + y2)
.

Recall that also in this case M (5)
D (x, y) = M (5)

0 (x−D, y −D) + D.
(6) For the sixth couple (ϕ, f) we have ϕ(x) = exp(−2Bx) + D defined

on the interval R. Due inverse function ϕ−1(x) = − 1
2B

ln(x − D) is
defined on a subinterval J of ] −∞, B[ ∩ ]D,∞[ or ]B,∞[ ∩ ]D,∞[.
Weighting function f ◦ ϕ−1 from the equivalence (6) should be positive,
so necessarily is defined on the subinterval J of ]D,∞[ and we get the
weighting function g : ]D,∞[→]0,∞[ given by g(x) = 1

x−D . Denote by
GD the mixture operator Mg which is also a quasi-arithmetic mean Mη,
η = ϕ−1. This equality is true only for n = 2 and GD is given by

GD(x, y) =

x

x−D
+

y

y −D
1

x−D
+

1
y −D

=
�

(x−D)(y −D) + D.

For D = 0 we recover the standard geometric mean G and that

GD(x, y) = G0(x−D, y −D) + D.

4. Concluding remarks

We have discussed special equality of quasi-mixture, mixture operators and
quasi-arithmetic means with special stress on their identity. By solving our equa-
tion (6) for different pairs (ϕ, f) we can conclude, that the intersection of special
mixture operators and quasi-arithmetic means includes the arithmetic mean, the
harmonic mean, the geometric mean and special type of mixture operators.
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[8] Špirková, J.: Weighting Functions For Aggregation Operators: 3rd International Summer

School On Aggregation Operators, Universita Della Svizzera Italiana, Lugano, Switzerland,
July 10 - 15, 2005.
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