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T-FILTERS AND T-IDEALS

ZUZANA HAVRANOVA AND MARTIN KALINA

ABSTRACT. This paper is devoted to generalizing of fuzzy filters and fuzzy
ideals and to studying the relationship between maximal T-filters (i.e. max-
imal elements of the lattice of all T-filters) and T-ultrafilters (which are
so-called T-and S-evaluators).

1. INTRODUCTION AND BASIC DEFINITIONS

Filters are broadly used in topology and in set-theoretical constructions (ultra-
products). Since a couple of years the notion of filters has been fuzzified (as
stated below) to generalized filters and to Lukasiewicz filters. The main impor-
tance of Lukasiewicz filters lies in preserving of T -transitivity when constructing
a fuzzy relation by aggregating some partial T -transitive fuzzy relations. More
the reader can find in [9)].

For the purposes of this paper we will use the following definition of a (proper)
filter on a non-empty set X:

Definition 1. Let X # 0. A function F : 2X — {0, 1} is said to be a filter on
X iff the following is satisfied:

e F(X)=1, F(0)=0

e for A, BC X if AC B, then F(A) < F(B)

o for A, BC X we have F(ANB) > F(A) - F(B).

As a complementary notion to filters we have a (proper) ideal on the set X # ()
(more precisely, on the Boolean lattice of subsets of X, equipped with union and
intersection):

Definition 2. Let X # (. A function I : 2% — {0, 1} is said to be an ideal on
X iff the following is satisfied:

e [(X)=0, I(0) =

o for A, BC X if AC B, then I(A) > I(B)

o for A, B C X we have I(AU B) > I(A) - I(B).
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The relationship between a filter on X and an ideal on X gives the following
lemma:

Lemma 1. Let X # 0. F : 2% — {0, 1} is a filter on X if and only if I :
2% — {0, 1}, defined by I(A) = F(A°) for each A € 2%, is an ideal on X, where
A°= X\ A.

An important notion is that of an ultrafilter on X:

Definition 3. Let X # 0. A function U : 2% — {0, 1} is said to be an ultrafilter
on X iff U is a filter on X and moreover if for each A C X either U(A) =1 or
U(A%) =1

The following assertions may be used as alternative definitions of ultrafilters
on X:

Proposition 1. Let us denote U(X) the system of all filters on X. Then
(U(X),A,V) is a lattice with

1, ifA=X
(1) Fo(A) = { 0, otherwise

as its bottom element. Ultrafilters on X are its mazximal elements.

Proposition 2. Let X # ) and F : 2% — {0, 1} be a filter on X. Then F is an
ultrafilter on X if and only if I =1 — F is an ideal on X.

As Proposition 2 states, we have two possibilities how to define ideals via an
ultrafilter U on X: I (A) = U(A°), Io(A) =1 —U(A). An easy consideration
gives I1 = Is.

To avoid confusion, filters, ultrafilters and ideals on X will be called crisp
filters on X, crisp ultrafilters on X and crisp ideals on X, respectively.

Filters were already fuzzified to so-called generalized filters in [2, 3, 5, 6] in
the following way:

Definition 4. Let X # 0. A function G : 2X — [0, 1] is said to be a generalized
filter on X iff the following is satisfied:
e G(X)=1, GM®)=0
o for A, BC X if AC B, then G(A) < G(B)
o for A, B C X we have G(AN B) > min{G(A4), G(B)}.
Before proceeding, we give the definition of a t-norm, which will be a very
important notion for us (for details on t-norms an their duals, t-conorms, see

[12]):
Definition 5. T : [0,1] x [0,1] — [0,1] 4s said to be a t-norm iff the following is
satisfied:

o for eachy € [0,1] T(1,y) =y
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o for all x,y1,y2 € [0,1] if y1 < yo then T(z,y1) < T(x,y2)
o Jor all o,y € 0,1] T(z,y) = T(y, )
o or all zy,= € 0,1] T(z, T(y, 2)) = T(T(x,y). 2)

There are the following four basic t-norms:
(1) minimum t-norm, Tys(x,y) = min{z, y}
(2) product t-norm, Tp(x,y) =z -y
(3) Lukasiewicz t-norm, T (z,y) = max{0,z +y — 1}
(4) drastic product,

0, if max{z,y} <1
min{z, y}, if max{z,y} =1

Tp(x,y) :{

To each t-norm T : [0,1] x [0,1] — [0,1] we may define its dual t-conorm S :
[0,1] x [0,1] — [0,1] by
S('Tay) = I_T(l _‘T>1_y)

i.e. to each of the basic four t-norms we have a t-conorm respectively:

(1) maximum t-conorm, Sy (z,y) = max{z, y}

(2) probabilistic sum, Sp(z,y) = +y — zy

(3) Lukasiewicz t-conorm, Sy (z,y) = min{l,z + y}

(4) drastic sum,

1, if min{z,y} >0
max{z,y}, if min{z,y} =0

Sp(z,y) = {

If we replace in Definition 4 min by the Lukasiewicz t-norm T, we get the
Lukasiewicz filter, which was proposed in [10]. In papers [7, 8, 11] the properties
of Lukasiewicz filters were studied.

Definition 6. Let X # (. A function F : 2% — [0, 1] is said to be a Lukasiewicz
filter on X iff the following is satisfied:

o F(X) =1, F(0) =0

e for A, BC X if AC B, then F(A) < F(B)

o for A, B C X we have
(2) F(ANB) > TL{F(A), F(B)}.

Some useful properties of Lukasiewicz filters, when constructing fuzzy prefer-
ence relations, were shown in [9]. Lukasiewicz ideals were introduced in [8] and
their connections to Lukasiewicz ultrafilters and fuzzy preference relations were
studied in [9)].

Definition 7. Let X # (). A function T : 2% — [0, 1] is said to be a Lukasiewicz
ideal on X iff the following is satisfied:

e I(X)=0, Z(0) =1
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o for A, BC X if AC B, then Z(A) > I(B)
o for A, B C X we have

3) I(AUB) = TL{Z(A), Z(B)}.

Similarly to crisp filters, each Lukasiewicz filter F defines a Lukasiewicz ideal
T by Z(A) = F(A°).

2. LUKASIEWICZ ULTRAFILTERS

In the whole paper by X will be denoted a fixed non-empty set.
As it was already stated above, there are at least three possible characteriza-
tions of crisp ultrafilters U on X:

o ultrafilters are maximal elements of the lattice (U(X), A, V)

o ultrafilters are such filters that for each A C X U(A) +U(A%) =1

e a filter U is an ultrafilter on X if 1 — U is an ideal on X.
In [4] evaluators were characterized. In [1] so-called Ty, and Sy, evaluators were
proposed:

Definition 8. Let (L,A,V, L, T) be a lattice with its bottom and top elements L
and T, respectively. Then ¢ : L — [0,1] is a normalized evaluator if

* o(L)=0,9(T)=1
o fora,be L a<bimplies p(a) < ¢(b).
A normalized evaluator ¢ is said to be a Ty, evaluator if
o fora,be L p(and) >TrL(p(a),p(d)).
A normalized evaluator ¢ is said to be an S evaluator if
o fora,be L p(aVd) <Sp(e(a),pd)).
Theorem 1 ([1]). Let us have the lattice (2%,N,U,0, X). Then ¢ : 2% — [0, 1]

is a Ty, evaluator iff it is a Lukasiewicz filter. 1 : 2% — [0, 1] is an St evaluator
iff 1 — ¢ is a Lukasiewicz ideal.

As a direct corollary to the definitions of Lukasiewicz t-norm 77, and t-conorm
St and to Theorem 1 we get the following

Lemma 2 ([1]). ¢ :2% — [0, 1] is a T, and Sy, evaluator iff for each A C X
P(A) +¢(A9) =1

Denote ®(X,T},) the system of all Lukasiewicz filters on X. Theorem 1 and
Lemma 2 imply

Theorem 2. Let F € ®(X,T.). Then the following are equivalent:
(1) for each AC X F(A)+ F(A°) =1
(2) 1—F is a Lukasiewicz ideal
(3) F is a mazimal element of the lattice (D(X,TL), A, V).
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Since property 2 plays an important role in construction of fuzzy preference
relations (particularly, in decision wether there is some incomparability or not,
see [9]) we define Lukasiewicz ultrafilters by the following;:

Definition 9. U € ®(X,T},) is a Lukasiewicz ultrafilter iff 1 —U is a Lukasiewicz
ideal.

As Theorem 2 states, from the algebraic point of view Lukasiewicz ultrafilters
behave exactly as crisp ultrafilters.

3. T-FILTERS AND T-IDEALS

If we replace in formulae (2) and (3) the Lukasiewicz t-norm by some other t-
norm 7', we get the definition of a T-filter and T-ideal, respectively. Let us denote
®(X,T) the system of all T-filters on X.

Definition 10. U € ®(X,T) is a T-ultrafilter iff 1 — U is a T-ideal.

Obviously, if T7 > Ty are some t-norms, then ®(X,T}) < &(X,T»), and since
each T-filter defines some T-ideal, the same inequality holds also for systems of
T-ideals. As a result we get

Lemma 3. Let Ty > Ty be arbitrary t-norms. Then, if Uy is a Ty-ultrafilter,
then it is also a Ty-ultrafilter.

The definition of T-ultrafilters implies that each T-ultrafilter i/ defines two
T-ideals on X:

(4) Ti(A) =U(A%), I(A)=1-U(A)

As we will see later on, unlike crisp ultrafilters and Lukasiewicz ultrafilters, for a
general t-norm T we may get 77 # Zs.

By definitions of a T-ultrafilter and 7T-ideal we get the following for each T-
ultrafilter &4 on X and each A C X:

UANAS) > TU(A), UAY))
1—UAUA®) > T(1—UA), 1 —UA%)) =1 — SU(A), U(A%))

hence we get the following system of equations:

- T(U(A), U(A9)) =0
(5) SWU(A), U(A?) =1

Now, we will distinguish a couple of types of t-norms 7. For each of the type we
will study the structure of the system of T-ultrafilters:
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3.1. T-norms with no 0-divisors. A t-norm 7" has no 0-divisors iff

T(z,y) =0 < min{z,y} =0

The above condition gives the following for each F € &(X,T):

(VAC X)F(A) >0 = F(A%) =0

Hence we get that only crisp ultrafilters are T-ultrafilters and moreover crisp
ultrafilters are the only maximal elements of (®(X,T), A, V).

3.2. Left-continuous T-norms 7 > T}, with 0-divisors. We split this para-
graph into two parts:

(1)

Let us consider t-norms 7" such that
T(z,y) =0&0<2z<1 = z4+y<l

As an example of such a t-norm is the Yager t-norm

Ty (z,y) = maX{O, 1—/(1-2)2+(01 —y)Q}.

Let T > Ty, be an arbitrary t-norm with 0 divisors. Then for the dual
t-conorm S we get

S(r,y) =1&0<2x<1l = z4+y>1

Hence we get that only crisp ultrafilters are T-ultrafilters. Since T is
left-continuous, there exists

z = max{z; T(z,x) = 0}.

If we put
1, ifA=X
F(A)y=4 0, ifA=0
z, otherwise,

then F is a maximal element of the lattice (®(X,T), A, V). Le., in this
case the system of T-ultrafilters does not coincide with the system of
maximal elements of (®(X,T), A, V).

Let Ty be the nilpotent minimum, which means the following t-norm:

(o, ifr+y<l
In(w,y) = { min{z, y}, otherwise.
Then the dual t-conorm Sy is the following:
i >
SN(x,y):{l foty2l

max{z, y}, otherwise.
The system of equations (5) has the following solution for each Ty-
ultrafilter U:
VACX UA)+UA) =1
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We get the following result:

Theorem 3. Let F € ®(X,Ty). Then the following are equivalent:
(a) for each AC X F(A)+ F(A°) =1

(b) 1 —F is a Tn-ideal

(¢) F is a mazimal element of the lattice (®(X,Tn), A, V).

The following is an example of a T-ultrafilter and of a Lukasiewicz
ultrafilter, which is not a Ty-ultrafilter:

Example 1. Let X = {a, b, ¢}. The following table defines a Tn-
ultrafilter on X:

A X
UA) || 1

Ol

{a} | {0} [ {c} | {a, b} | {a, c} | {b, ¢}
01]02]08] 02 | 08 [ 09

The next example is that of a Lukasiewicz ultrafilter on X, which is not
a Ty-ultrafilter (nor a Ty-filter):

A X
UA) || 1

o=

{a} | {0} | {c} | {a, b} [ {a, ¢} | {b, ¢}
01]01]08] 02 | 09 [ 09

3.3. Left-continuous t-norms 7' < T},. Left-continuous t-norms 7' < T}, have
the following property:

O<zr<l&z=max{z,y}=0 = z+z>1.
y

As an example for such t-norms we can take again a Yager t-norm
Ty (z,y) = max{O, r+y—1-2v/(1-2)1 —y)}

Evidently, Lukasiewicz ultrafilters are not maximal elements of (®(X,T), A, V),
where T < Ty, is an arbitrary left-continuous t-norm, however they are T-
ultrafilters, since the system of T-ultrafilters is antitone with respect to t-norms
(as it was already stated above).

If we take the, just defined Yager t-norm Ty, we get the following example:

Example 2. Let X # (). We have the following Ty-ultrafilter I/ on X:

1, ifA=X
UA) =< 0, ifA=10
%, otherwise



The ultrafilter I/ defines two different Ty -ideals:

0, ifA=X 0, ifA=X
I(A) =< 1, ifA=10 I(A) =< 1, ifA=10
% , otherwise i , otherwise

where 77 (A) = U(A°), To(A) =1 —-U(A).
We can formulate the following characterization of T-ultrafilters and T-ideals:

Theorem 4. Let T < Ty be an arbitrry left-continuous t-norm. Each maximal
element of (P(X,T),A,V) is a T-ultrafilter on X. There are ultrafilters on X
which are not maximal elements of (®(X,T), A, V). LetU be a T-ultrafilter on X .
Then T-ideals T (A) = U(A®) and T2(A) = 1 — U(A) may be different. Ty = Iy
if and only if U is a Lukasiewicz ultrafilter.

3.4. Drastic product t-norm Tp. This t-norm is not left-continuous. This
implies that the only maximal elements of (®(X,Tp), A, V) are crisp ultrafilters
on X. However, by definition of Tp and Sp we get that a Tp-ultrafilter is each
crisp ultrafilter and each monotonic function F : 2% — [0,1] such that

F@) = o,
F(A) € 10,1] for A¢ {X, 0}.
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