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T-FILTERS AND T-IDEALS

ZUZANA HAVRANOVÁ AND MARTIN KALINA

Abstract. This paper is devoted to generalizing of fuzzy filters and fuzzy
ideals and to studying the relationship between maximal T -filters (i.e. max-

imal elements of the lattice of all T -filters) and T -ultrafilters (which are

so-called T -and S-evaluators).

1. Introduction and basic definitions

Filters are broadly used in topology and in set-theoretical constructions (ultra-
products). Since a couple of years the notion of filters has been fuzzified (as
stated below) to generalized filters and to  Lukasiewicz filters. The main impor-
tance of  Lukasiewicz filters lies in preserving of TL-transitivity when constructing
a fuzzy relation by aggregating some partial TL-transitive fuzzy relations. More
the reader can find in [9].

For the purposes of this paper we will use the following definition of a (proper)
filter on a non-empty set X:

Definition 1. Let X 6= ∅. A function F : 2X → {0, 1} is said to be a filter on
X iff the following is satisfied:

• F (X) = 1, F (∅) = 0
• for A, B ⊆ X if A ⊂ B, then F (A) ≤ F (B)
• for A, B ⊆ X we have F (A ∩B) ≥ F (A) · F (B).

As a complementary notion to filters we have a (proper) ideal on the set X 6= ∅
(more precisely, on the Boolean lattice of subsets of X, equipped with union and
intersection):

Definition 2. Let X 6= ∅. A function I : 2X → {0, 1} is said to be an ideal on
X iff the following is satisfied:

• I(X) = 0, I(∅) = 1
• for A, B ⊆ X if A ⊂ B, then I(A) ≥ I(B)
• for A, B ⊆ X we have I(A ∪B) ≥ I(A) · I(B).

2000 Mathematics Subject Classification. 08A72.

Key words and phrases. T -filter, T -ideal, T -evaluator, S-evaluator.



The relationship between a filter on X and an ideal on X gives the following
lemma:

Lemma 1. Let X 6= ∅. F : 2X → {0, 1} is a filter on X if and only if I :
2X → {0, 1}, defined by I(A) = F (Ac) for each A ∈ 2X , is an ideal on X, where
Ac = X \A.

An important notion is that of an ultrafilter on X:

Definition 3. Let X 6= ∅. A function U : 2X → {0, 1} is said to be an ultrafilter
on X iff U is a filter on X and moreover if for each A ⊆ X either U(A) = 1 or
U(Ac) = 1.

The following assertions may be used as alternative definitions of ultrafilters
on X:

Proposition 1. Let us denote Ψ(X) the system of all filters on X. Then
(Ψ(X),∧,∨) is a lattice with

(1) F0(A) =
{

1, if A = X
0, otherwise

as its bottom element. Ultrafilters on X are its maximal elements.

Proposition 2. Let X 6= ∅ and F : 2X → {0, 1} be a filter on X. Then F is an
ultrafilter on X if and only if I = 1− F is an ideal on X.

As Proposition 2 states, we have two possibilities how to define ideals via an
ultrafilter U on X: I1(A) = U(Ac), I2(A) = 1 − U(A). An easy consideration
gives I1 = I2.

To avoid confusion, filters, ultrafilters and ideals on X will be called crisp
filters on X, crisp ultrafilters on X and crisp ideals on X, respectively.

Filters were already fuzzified to so-called generalized filters in [2, 3, 5, 6] in
the following way:

Definition 4. Let X 6= ∅. A function G : 2X → [0, 1] is said to be a generalized
filter on X iff the following is satisfied:

• G(X) = 1, G(∅) = 0
• for A, B ⊆ X if A ⊂ B, then G(A) ≤ G(B)
• for A, B ⊆ X we have G(A ∩B) ≥ min{G(A), G(B)}.

Before proceeding, we give the definition of a t-norm, which will be a very
important notion for us (for details on t-norms an their duals, t-conorms, see
[12]):

Definition 5. T : [0, 1]× [0, 1]→ [0, 1] is said to be a t-norm iff the following is
satisfied:

• for each y ∈ [0, 1] T (1, y) = y
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• for all x, y1, y2 ∈ [0, 1] if y1 ≤ y2 then T (x, y1) ≤ T (x, y2)
• for all x, y ∈ [0, 1] T (x, y) = T (y, x)
• for all x, y, z ∈ [0, 1] T (x, T (y, z)) = T (T (x, y), z).

There are the following four basic t-norms:
(1) minimum t-norm, TM (x, y) = min{x, y}
(2) product t-norm, TP (x, y) = x · y
(3)  Lukasiewicz t-norm, TL(x, y) = max{0, x+ y − 1}
(4) drastic product,

TD(x, y) =
{

0, if max{x, y} < 1
min{x, y}, if max{x, y} = 1

To each t-norm T : [0, 1] × [0, 1] → [0, 1] we may define its dual t-conorm S :
[0, 1]× [0, 1]→ [0, 1] by

S(x, y) = 1− T (1− x, 1− y)

i.e. to each of the basic four t-norms we have a t-conorm respectively:
(1) maximum t-conorm, SM (x, y) = max{x, y}
(2) probabilistic sum, SP (x, y) = x+ y − xy
(3)  Lukasiewicz t-conorm, SL(x, y) = min{1, x+ y}
(4) drastic sum,

SD(x, y) =
{

1, if min{x, y} > 0
max{x, y}, if min{x, y} = 0

If we replace in Definition 4 min by the  Lukasiewicz t-norm TL, we get the
 Lukasiewicz filter, which was proposed in [10]. In papers [7, 8, 11] the properties
of  Lukasiewicz filters were studied.

Definition 6. Let X 6= ∅. A function F : 2X → [0, 1] is said to be a  Lukasiewicz
filter on X iff the following is satisfied:

• F(X) = 1, F(∅) = 0
• for A, B ⊆ X if A ⊂ B, then F(A) ≤ F(B)
• for A, B ⊆ X we have

(2) F(A ∩B) ≥ TL{F(A), F(B)}.

Some useful properties of  Lukasiewicz filters, when constructing fuzzy prefer-
ence relations, were shown in [9].  Lukasiewicz ideals were introduced in [8] and
their connections to  Lukasiewicz ultrafilters and fuzzy preference relations were
studied in [9].

Definition 7. Let X 6= ∅. A function I : 2X → [0, 1] is said to be a  Lukasiewicz
ideal on X iff the following is satisfied:

• I(X) = 0, I(∅) = 1
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• for A, B ⊆ X if A ⊂ B, then I(A) ≥ I(B)
• for A, B ⊆ X we have

(3) I(A ∪B) ≥ TL{I(A), I(B)}.

Similarly to crisp filters, each  Lukasiewicz filter F defines a  Lukasiewicz ideal
I by I(A) = F(Ac).

2.  Lukasiewicz ultrafilters

In the whole paper by X will be denoted a fixed non-empty set.
As it was already stated above, there are at least three possible characteriza-

tions of crisp ultrafilters U on X:
• ultrafilters are maximal elements of the lattice (Ψ(X),∧,∨)
• ultrafilters are such filters that for each A ⊆ X U(A) + U(Ac) = 1
• a filter U is an ultrafilter on X if 1− U is an ideal on X.

In [4] evaluators were characterized. In [1] so-called TL and SL evaluators were
proposed:

Definition 8. Let (L,∧,∨,⊥,>) be a lattice with its bottom and top elements ⊥
and >, respectively. Then ϕ : L→ [0, 1] is a normalized evaluator if

• ϕ(⊥) = 0, ϕ(>) = 1
• for a, b ∈ L a ≤ b implies ϕ(a) ≤ ϕ(b).

A normalized evaluator ϕ is said to be a TL evaluator if
• for a, b ∈ L ϕ(a ∧ b) ≥ TL(ϕ(a), ϕ(b)).

A normalized evaluator ϕ is said to be an SL evaluator if
• for a, b ∈ L ϕ(a ∨ b) ≤ SL(ϕ(a), ϕ(b)).

Theorem 1 ([1]). Let us have the lattice (2X ,∩,∪, ∅, X). Then ϕ : 2X → [0, 1]
is a TL evaluator iff it is a  Lukasiewicz filter. ψ : 2X → [0, 1] is an SL evaluator
iff 1− ψ is a  Lukasiewicz ideal.

As a direct corollary to the definitions of  Lukasiewicz t-norm TL and t-conorm
SL and to Theorem 1 we get the following

Lemma 2 ([1]). ϕ : 2X → [0, 1] is a TL and SL evaluator iff for each A ⊆ X
ϕ(A) + ϕ(Ac) = 1

Denote Φ(X,TL) the system of all  Lukasiewicz filters on X. Theorem 1 and
Lemma 2 imply

Theorem 2. Let F ∈ Φ(X,TL). Then the following are equivalent:
(1) for each A ⊆ X F(A) + F(Ac) = 1
(2) 1−F is a  Lukasiewicz ideal
(3) F is a maximal element of the lattice (Φ(X,TL),∧,∨).
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Since property 2 plays an important role in construction of fuzzy preference
relations (particularly, in decision wether there is some incomparability or not,
see [9]) we define  Lukasiewicz ultrafilters by the following:

Definition 9. U ∈ Φ(X,TL) is a  Lukasiewicz ultrafilter iff 1−U is a  Lukasiewicz
ideal.

As Theorem 2 states, from the algebraic point of view  Lukasiewicz ultrafilters
behave exactly as crisp ultrafilters.

3. T -filters and T -ideals

If we replace in formulae (2) and (3) the  Lukasiewicz t-norm by some other t-
norm T , we get the definition of a T -filter and T -ideal, respectively. Let us denote
Φ(X,T ) the system of all T -filters on X.

Definition 10. U ∈ Φ(X,T ) is a T -ultrafilter iff 1− U is a T -ideal.

Obviously, if T1 ≥ T2 are some t-norms, then Φ(X,T1) ≤ Φ(X,T2), and since
each T -filter defines some T -ideal, the same inequality holds also for systems of
T -ideals. As a result we get

Lemma 3. Let T1 ≥ T2 be arbitrary t-norms. Then, if U1 is a T1-ultrafilter,
then it is also a T2-ultrafilter.

The definition of T -ultrafilters implies that each T -ultrafilter U defines two
T -ideals on X:

(4) I1(A) = U(Ac), I2(A) = 1− U(A)

As we will see later on, unlike crisp ultrafilters and  Lukasiewicz ultrafilters, for a
general t-norm T we may get I1 6= I2.

By definitions of a T -ultrafilter and T -ideal we get the following for each T -
ultrafilter U on X and each A ⊆ X:

U(A ∩Ac) ≥ T (U(A), U(Ac))
1− U(A ∪Ac) ≥ T (1− U(A), 1− U(Ac)) = 1− S(U(A), U(Ac))

hence we get the following system of equations:

(5)
T (U(A), U(Ac)) = 0
S(U(A), U(Ac)) = 1

Now, we will distinguish a couple of types of t-norms T . For each of the type we
will study the structure of the system of T -ultrafilters:
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3.1. T-norms with no 0-divisors. A t-norm T has no 0-divisors iff

T (x, y) = 0 ⇔ min{x, y} = 0

The above condition gives the following for each F ∈ Φ(X,T ):

(∀A ⊆ X)F(A) > 0 ⇒ F(Ac) = 0

Hence we get that only crisp ultrafilters are T -ultrafilters and moreover crisp
ultrafilters are the only maximal elements of (Φ(X,T ),∧,∨).

3.2. Left-continuous T-norms T > TL with 0-divisors. We split this para-
graph into two parts:

(1) Let us consider t-norms T such that

T (x, y) = 0 & 0 < x < 1 ⇒ x+ y < 1

As an example of such a t-norm is the Yager t-norm

TY (x, y) = max
{

0, 1−
√

(1− x)2 + (1− y)2
}
.

Let T > TL be an arbitrary t-norm with 0 divisors. Then for the dual
t-conorm S we get

S(x, y) = 1 & 0 < x < 1 ⇒ x+ y > 1

Hence we get that only crisp ultrafilters are T -ultrafilters. Since T is
left-continuous, there exists

z = max{x;T (x, x) = 0}.
If we put

F(A) =

 1, if A = X
0, if A = ∅
z, otherwise,

then F is a maximal element of the lattice (Φ(X,T ),∧,∨). I.e., in this
case the system of T -ultrafilters does not coincide with the system of
maximal elements of (Φ(X,T ),∧,∨).

(2) Let TN be the nilpotent minimum, which means the following t-norm:

TN (x, y) =
{

0, if x+ y ≤ 1
min{x, y}, otherwise.

Then the dual t-conorm SN is the following:

SN (x, y) =
{

1, if x+ y ≥ 1
max{x, y}, otherwise.

The system of equations (5) has the following solution for each TN -
ultrafilter U :

∀A ⊆ X U(A) + U(Ac) = 1
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We get the following result:

Theorem 3. Let F ∈ Φ(X,TN ). Then the following are equivalent:
(a) for each A ⊆ X F(A) + F(Ac) = 1
(b) 1−F is a TN -ideal
(c) F is a maximal element of the lattice (Φ(X,TN ),∧,∨).

The following is an example of a TN -ultrafilter and of a  Lukasiewicz
ultrafilter, which is not a TN -ultrafilter:

Example 1. Let X = {a, b, c}. The following table defines a TN -
ultrafilter on X:

A X ∅ {a} {b} {c} {a, b} {a, c} {b, c}
U(A) 1 0 0.1 0.2 0.8 0.2 0.8 0.9

The next example is that of a  Lukasiewicz ultrafilter on X, which is not
a TN -ultrafilter (nor a TN -filter):

A X ∅ {a} {b} {c} {a, b} {a, c} {b, c}
U(A) 1 0 0.1 0.1 0.8 0.2 0.9 0.9

3.3. Left-continuous t-norms T < TL. Left-continuous t-norms T < TL have
the following property:

0 < x < 1 & z = max
y
{x, y} = 0 ⇒ x+ z > 1.

As an example for such t-norms we can take again a Yager t-norm

TY (x, y) = max
{

0, x+ y − 1− 2
√

(1− x)(1− y)
}
.

Evidently,  Lukasiewicz ultrafilters are not maximal elements of (Φ(X,T ),∧,∨),
where T < TL is an arbitrary left-continuous t-norm, however they are T -
ultrafilters, since the system of T -ultrafilters is antitone with respect to t-norms
(as it was already stated above).

If we take the, just defined Yager t-norm TY , we get the following example:

Example 2. Let X 6= ∅. We have the following TY -ultrafilter U on X:

U(A) =

 1, if A = X
0, if A = ∅
3
4 , otherwise
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The ultrafilter U defines two different TY -ideals:

I1(A) =

 0, if A = X
1, if A = ∅
3
4 , otherwise

I2(A) =

 0, if A = X
1, if A = ∅
1
4 , otherwise

where I1(A) = U(Ac), I2(A) = 1− U(A).

We can formulate the following characterization of T -ultrafilters and T -ideals:

Theorem 4. Let T < TL be an arbitrry left-continuous t-norm. Each maximal
element of (Φ(X,T ),∧,∨) is a T -ultrafilter on X. There are ultrafilters on X
which are not maximal elements of (Φ(X,T ),∧,∨). Let U be a T -ultrafilter on X.
Then T -ideals I1(A) = U(Ac) and I2(A) = 1 − U(A) may be different. I1 = I2
if and only if U is a  Lukasiewicz ultrafilter.

3.4. Drastic product t-norm TD. This t-norm is not left-continuous. This
implies that the only maximal elements of (Φ(X,TD),∧,∨) are crisp ultrafilters
on X. However, by definition of TD and SD we get that a TD-ultrafilter is each
crisp ultrafilter and each monotonic function F : 2X → [0, 1] such that

F(∅) = 0,
F(X) = 1,
F(A) ∈ ]0, 1[ for A /∈ {X, ∅}.
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