Acta Universitatis Matthiae Belii ser. Mathematics, 14(2007), 19-27.

T-FILTERS AND T-IDEALS

ZUZANA HAVRANOVÁ AND MARTIN KALINA

ABSTRACT. This paper is devoted to generalizing of fuzzy filters and fuzzy ideals and to studying the relationship between maximal T-filters (i.e. maximal elements of the lattice of all T-filters) and T-ultrafilters (which are so-called T-and S-evaluators).

1. INTRODUCTION AND BASIC DEFINITIONS

Filters are broadly used in topology and in set-theoretical constructions (ultraproducts). Since a couple of years the notion of filters has been fuzzified (as stated below) to generalized filters and to Lukasiewicz filters. The main importance of Lukasiewicz filters lies in preserving of T_L -transitivity when constructing a fuzzy relation by aggregating some partial T_L -transitive fuzzy relations. More the reader can find in [9].

For the purposes of this paper we will use the following definition of a (proper) filter on a non-empty set X:

Definition 1. Let $X \neq \emptyset$. A function $F : 2^X \to \{0, 1\}$ is said to be a filter on X iff the following is satisfied:

- $F(X) = 1, F(\emptyset) = 0$
- for $A, B \subseteq X$ if $A \subset B$, then $F(A) \leq F(B)$
- for $A, B \subseteq X$ we have $F(A \cap B) \ge F(A) \cdot F(B)$.

As a complementary notion to filters we have a (proper) ideal on the set $X \neq \emptyset$ (more precisely, on the Boolean lattice of subsets of X, equipped with union and intersection):

Definition 2. Let $X \neq \emptyset$. A function $I : 2^X \to \{0, 1\}$ is said to be an ideal on X iff the following is satisfied:

- $I(X) = 0, I(\emptyset) = 1$
- for $A, B \subseteq X$ if $A \subset B$, then $I(A) \ge I(B)$
- for $A, B \subseteq X$ we have $I(A \cup B) \ge I(A) \cdot I(B)$.

²⁰⁰⁰ Mathematics Subject Classification. 08A72.

Key words and phrases. T-filter, T-ideal, T-evaluator, S-evaluator.

The relationship between a filter on X and an ideal on X gives the following lemma:

Lemma 1. Let $X \neq \emptyset$. $F : 2^X \to \{0, 1\}$ is a filter on X if and only if $I : 2^X \to \{0, 1\}$, defined by $I(A) = F(A^c)$ for each $A \in 2^X$, is an ideal on X, where $A^c = X \setminus A$.

An important notion is that of an ultrafilter on X:

Definition 3. Let $X \neq \emptyset$. A function $U : 2^X \to \{0, 1\}$ is said to be an ultrafilter on X iff U is a filter on X and moreover if for each $A \subseteq X$ either U(A) = 1 or $U(A^c) = 1$.

The following assertions may be used as alternative definitions of ultrafilters on X:

Proposition 1. Let us denote $\Psi(X)$ the system of all filters on X. Then $(\Psi(X), \wedge, \vee)$ is a lattice with

(1)
$$F_0(A) = \begin{cases} 1, & \text{if } A = X \\ 0, & \text{otherwise} \end{cases}$$

as its bottom element. Ultrafilters on X are its maximal elements.

Proposition 2. Let $X \neq \emptyset$ and $F : 2^X \rightarrow \{0, 1\}$ be a filter on X. Then F is an ultrafilter on X if and only if I = 1 - F is an ideal on X.

As Proposition 2 states, we have two possibilities how to define ideals via an ultrafilter U on X: $I_1(A) = U(A^c)$, $I_2(A) = 1 - U(A)$. An easy consideration gives $I_1 = I_2$.

To avoid confusion, filters, ultrafilters and ideals on X will be called crisp filters on X, crisp ultrafilters on X and crisp ideals on X, respectively.

Filters were already fuzzified to so-called generalized filters in [2, 3, 5, 6] in the following way:

Definition 4. Let $X \neq \emptyset$. A function $G : 2^X \to [0, 1]$ is said to be a generalized filter on X iff the following is satisfied:

- $G(X) = 1, \ G(\emptyset) = 0$
- for $A, B \subseteq X$ if $A \subset B$, then $G(A) \leq G(B)$
- for $A, B \subseteq X$ we have $G(A \cap B) \ge \min\{G(A), G(B)\}$.

Before proceeding, we give the definition of a t-norm, which will be a very important notion for us (for details on t-norms an their duals, t-conorms, see [12]):

Definition 5. $T : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a t-norm iff the following is satisfied:

• for each $y \in [0, 1]$ T(1, y) = y

- for all $x, y_1, y_2 \in [0, 1]$ if $y_1 \le y_2$ then $T(x, y_1) \le T(x, y_2)$
- for all $x, y \in [0, 1]$ T(x, y) = T(y, x)
- for all $x, y, z \in [0, 1]$ T(x, T(y, z)) = T(T(x, y), z).

There are the following four basic t-norms:

- (1) minimum t-norm, $T_M(x, y) = \min\{x, y\}$
- (2) product t-norm, $T_P(x, y) = x \cdot y$
- (3) Lukasiewicz t-norm, $T_L(x, y) = \max\{0, x + y 1\}$
- (4) drastic product,

$$T_D(x,y) = \begin{cases} 0, & \text{if } \max\{x,y\} < 1\\ \min\{x,y\}, & \text{if } \max\{x,y\} = 1 \end{cases}$$

To each t-norm $T:[0,1]\times[0,1]\to[0,1]$ we may define its dual t-conorm $S:[0,1]\times[0,1]\to[0,1]$ by

$$S(x, y) = 1 - T(1 - x, 1 - y)$$

i.e. to each of the basic four t-norms we have a t-conorm respectively:

- (1) maximum t-conorm, $S_M(x, y) = \max\{x, y\}$
- (2) probabilistic sum, $S_P(x, y) = x + y xy$
- (3) Łukasiewicz t-conorm, $S_L(x, y) = \min\{1, x + y\}$
- (4) drastic sum,

$$S_D(x,y) = \begin{cases} 1, & \text{if } \min\{x,y\} > 0\\ \max\{x,y\}, & \text{if } \min\{x,y\} = 0 \end{cases}$$

If we replace in Definition 4 min by the Lukasiewicz t-norm T_L , we get the Lukasiewicz filter, which was proposed in [10]. In papers [7, 8, 11] the properties of Lukasiewicz filters were studied.

Definition 6. Let $X \neq \emptyset$. A function $\mathcal{F} : 2^X \to [0, 1]$ is said to be a Lukasiewicz filter on X iff the following is satisfied:

- $\mathcal{F}(X) = 1, \ \mathcal{F}(\emptyset) = 0$
- for $A, B \subseteq X$ if $A \subset B$, then $\mathcal{F}(A) \leq \mathcal{F}(B)$
- for $A, B \subseteq X$ we have

(2)
$$\mathcal{F}(A \cap B) \ge T_L \{ \mathcal{F}(A), \, \mathcal{F}(B) \}.$$

Some useful properties of Lukasiewicz filters, when constructing fuzzy preference relations, were shown in [9]. Lukasiewicz ideals were introduced in [8] and their connections to Lukasiewicz ultrafilters and fuzzy preference relations were studied in [9].

Definition 7. Let $X \neq \emptyset$. A function $\mathcal{I} : 2^X \rightarrow [0, 1]$ is said to be a Lukasiewicz ideal on X iff the following is satisfied:

•
$$\mathcal{I}(X) = 0, \ \mathcal{I}(\emptyset) = 1$$

- for $A, B \subseteq X$ if $A \subset B$, then $\mathcal{I}(A) \ge \mathcal{I}(B)$
- for $A, B \subseteq X$ we have

(3)
$$\mathcal{I}(A \cup B) \ge T_L\{\mathcal{I}(A), \mathcal{I}(B)\}.$$

Similarly to crisp filters, each Łukasiewicz filter \mathcal{F} defines a Łukasiewicz ideal \mathcal{I} by $\mathcal{I}(A) = \mathcal{F}(A^c)$.

2. Lukasiewicz ultrafilters

In the whole paper by X will be denoted a fixed non-empty set.

As it was already stated above, there are at least three possible characterizations of crisp ultrafilters U on X:

- ultrafilters are maximal elements of the lattice $(\Psi(X), \wedge, \vee)$
- ultrafilters are such filters that for each $A \subseteq X U(A) + U(A^c) = 1$
- a filter U is an ultrafilter on X if 1 U is an ideal on X.

In [4] evaluators were characterized. In [1] so-called T_L and S_L evaluators were proposed:

Definition 8. Let $(L, \land, \lor, \bot, \top)$ be a lattice with its bottom and top elements \bot and \top , respectively. Then $\varphi : L \to [0, 1]$ is a normalized evaluator if

- $\varphi(\perp) = 0, \ \varphi(\top) = 1$
- for $a, b \in L$ $a \leq b$ implies $\varphi(a) \leq \varphi(b)$.

A normalized evaluator φ is said to be a T_L evaluator if

• for $a, b \in L \varphi(a \wedge b) \ge T_L(\varphi(a), \varphi(b))$.

A normalized evaluator φ is said to be an S_L evaluator if

• for $a, b \in L \varphi(a \lor b) \leq S_L(\varphi(a), \varphi(b)).$

Theorem 1 ([1]). Let us have the lattice $(2^X, \cap, \cup, \emptyset, X)$. Then $\varphi : 2^X \to [0, 1]$ is a T_L evaluator iff it is a Lukasiewicz filter. $\psi : 2^X \to [0, 1]$ is an S_L evaluator iff $1 - \psi$ is a Lukasiewicz ideal.

As a direct corollary to the definitions of Łukasiewicz t-norm T_L and t-conorm S_L and to Theorem 1 we get the following

Lemma 2 ([1]).
$$\varphi : 2^X \to [0, 1]$$
 is a T_L and S_L evaluator iff for each $A \subseteq X$
 $\varphi(A) + \varphi(A^c) = 1$

Denote $\Phi(X, T_L)$ the system of all Łukasiewicz filters on X. Theorem 1 and Lemma 2 imply

Theorem 2. Let $\mathcal{F} \in \Phi(X, T_L)$. Then the following are equivalent:

- (1) for each $A \subseteq X \mathcal{F}(A) + \mathcal{F}(A^c) = 1$
- (2) $1 \mathcal{F}$ is a Lukasiewicz ideal
- (3) \mathcal{F} is a maximal element of the lattice $(\Phi(X, T_L), \wedge, \vee)$.

Since property 2 plays an important role in construction of fuzzy preference relations (particularly, in decision wether there is some incomparability or not, see [9]) we define Lukasiewicz ultrafilters by the following:

Definition 9. $\mathcal{U} \in \Phi(X, T_L)$ is a Lukasiewicz ultrafilter iff $1-\mathcal{U}$ is a Lukasiewicz ideal.

As Theorem 2 states, from the algebraic point of view Łukasiewicz ultrafilters behave exactly as crisp ultrafilters.

3. T-filters and T-ideals

If we replace in formulae (2) and (3) the Lukasiewicz t-norm by some other tnorm T, we get the definition of a T-filter and T-ideal, respectively. Let us denote $\Phi(X,T)$ the system of all T-filters on X.

Definition 10. $\mathcal{U} \in \Phi(X, T)$ is a *T*-ultrafilter iff $1 - \mathcal{U}$ is a *T*-ideal.

Obviously, if $T_1 \ge T_2$ are some t-norms, then $\Phi(X, T_1) \le \Phi(X, T_2)$, and since each *T*-filter defines some *T*-ideal, the same inequality holds also for systems of *T*-ideals. As a result we get

Lemma 3. Let $T_1 \ge T_2$ be arbitrary t-norms. Then, if \mathcal{U}_1 is a T_1 -ultrafilter, then it is also a T_2 -ultrafilter.

The definition of T-ultrafilters implies that each T-ultrafilter \mathcal{U} defines two T-ideals on X:

(4)
$$\mathcal{I}_1(A) = \mathcal{U}(A^c), \quad \mathcal{I}_2(A) = 1 - \mathcal{U}(A)$$

As we will see later on, unlike crisp ultrafilters and Łukasiewicz ultrafilters, for a general t-norm T we may get $\mathcal{I}_1 \neq \mathcal{I}_2$.

By definitions of a *T*-ultrafilter and *T*-ideal we get the following for each *T*-ultrafilter \mathcal{U} on *X* and each $A \subseteq X$:

$$\begin{aligned} \mathcal{U}(A \cap A^c) &\geq T(\mathcal{U}(A), \mathcal{U}(A^c)) \\ 1 - \mathcal{U}(A \cup A^c) &\geq T(1 - \mathcal{U}(A), 1 - \mathcal{U}(A^c)) = 1 - S(\mathcal{U}(A), \mathcal{U}(A^c)) \end{aligned}$$

hence we get the following system of equations:

(5)
$$T(\mathcal{U}(A), \mathcal{U}(A^c)) = 0$$
$$S(\mathcal{U}(A), \mathcal{U}(A^c)) = 1$$

Now, we will distinguish a couple of types of t-norms T. For each of the type we will study the structure of the system of T-ultrafilters:

3.1. **T-norms with no** 0-divisors. A t-norm T has no 0-divisors iff

$$T(x,y) = 0 \quad \Leftrightarrow \quad \min\{x,y\} = 0$$

The above condition gives the following for each $\mathcal{F} \in \Phi(X, T)$:

$$(\forall A \subseteq X) \mathcal{F}(A) > 0 \implies \mathcal{F}(A^c) = 0$$

Hence we get that only crisp ultrafilters are T-ultrafilters and moreover crisp ultrafilters are the only maximal elements of $(\Phi(X,T), \wedge, \vee)$.

3.2. Left-continuous T-norms $T > T_L$ with 0-divisors. We split this paragraph into two parts:

(1) Let us consider t-norms T such that

$$T(x,y) = 0 \& 0 < x < 1 \quad \Rightarrow \quad x + y < 1$$

As an example of such a t-norm is the Yager t-norm

$$T_Y(x,y) = \max\left\{0, \ 1 - \sqrt{(1-x)^2 + (1-y)^2}\right\}.$$

Let $T > T_L$ be an arbitrary t-norm with 0 divisors. Then for the dual t-conorm S we get

$$S(x, y) = 1 \& 0 < x < 1 \quad \Rightarrow \quad x + y > 1$$

Hence we get that only crisp ultrafilters are T-ultrafilters. Since T is left-continuous, there exists

$$z = \max\{x; T(x, x) = 0\}.$$

If we put

$$\mathcal{F}(A) = \begin{cases} 1, & \text{if } A = X \\ 0, & \text{if } A = \emptyset \\ z, & \text{otherwise.} \end{cases}$$

then \mathcal{F} is a maximal element of the lattice $(\Phi(X,T), \wedge, \vee)$. I.e., in this case the system of *T*-ultrafilters does not coincide with the system of maximal elements of $(\Phi(X,T), \wedge, \vee)$.

(2) Let T_N be the nilpotent minimum, which means the following t-norm:

$$T_N(x,y) = \begin{cases} 0, & \text{if } x+y \le 1\\ \min\{x, y\}, & \text{otherwise.} \end{cases}$$

Then the dual t-conorm S_N is the following:

$$S_N(x,y) = \begin{cases} 1, & \text{if } x+y \ge 1\\ \max\{x, y\}, & \text{otherwise.} \end{cases}$$

The system of equations (5) has the following solution for each T_N ultrafilter \mathcal{U} :

$$\forall A \subseteq X \quad \mathcal{U}(A) + \mathcal{U}(A^c) = 1$$

We get the following result:

Theorem 3. Let $\mathcal{F} \in \Phi(X, T_N)$. Then the following are equivalent:

- (a) for each $A \subseteq X \mathcal{F}(A) + \mathcal{F}(A^c) = 1$
- (b) $1 \mathcal{F}$ is a T_N -ideal
- (c) \mathcal{F} is a maximal element of the lattice $(\Phi(X, T_N), \wedge, \vee)$.

The following is an example of a T_N -ultrafilter and of a Łukasiewicz ultrafilter, which is not a T_N -ultrafilter:

Example 1. Let $X = \{a, b, c\}$. The following table defines a T_N -ultrafilter on X:

A	X	Ø	$\{a\}$	$\{b\}$	$\{c\}$	$\{a, b\}$	$\{a, c\}$	$\{b, c\}$
$\mathcal{U}(A)$	1	0	0.1	0.2	0.8	0.2	0.8	0.9

The next example is that of a Lukasiewicz ultrafilter on X, which is not a T_N -ultrafilter (nor a T_N -filter):

A	X	Ø	$\{a\}$	$\{b\}$	$\{c\}$	$\{a, b\}$	$\{a, c\}$	$\{b, c\}$
$\mathcal{U}(A)$	1	0	0.1	0.1	0.8	0.2	0.9	0.9

3.3. Left-continuous t-norms $T < T_L$. Left-continuous t-norms $T < T_L$ have the following property:

$$0 < x < 1 \& z = \max_{y} \{x, y\} = 0 \quad \Rightarrow \quad x + z > 1.$$

As an example for such t-norms we can take again a Yager t-norm

$$T_Y(x,y) = \max\left\{0, x+y-1-2\sqrt{(1-x)(1-y)}\right\}.$$

Evidently, Lukasiewicz ultrafilters are not maximal elements of $(\Phi(X,T), \wedge, \vee)$, where $T < T_L$ is an arbitrary left-continuous t-norm, however they are Tultrafilters, since the system of T-ultrafilters is antitone with respect to t-norms (as it was already stated above).

If we take the, just defined Yager t-norm T_Y , we get the following example:

Example 2. Let $X \neq \emptyset$. We have the following T_Y -ultrafilter \mathcal{U} on X:

$$\mathcal{U}(A) = \begin{cases} 1, & \text{if } A = X\\ 0, & \text{if } A = \emptyset\\ \frac{3}{4}, & \text{otherwise} \end{cases}$$

The ultrafilter \mathcal{U} defines two different T_Y -ideals:

$$\mathcal{I}_1(A) = \begin{cases} 0, & \text{if } A = X \\ 1, & \text{if } A = \emptyset \\ \frac{3}{4}, & \text{otherwise} \end{cases} \qquad \mathcal{I}_2(A) = \begin{cases} 0, & \text{if } A = X \\ 1, & \text{if } A = \emptyset \\ \frac{1}{4}, & \text{otherwise} \end{cases}$$

where $\mathcal{I}_1(A) = \mathcal{U}(A^c), \ \mathcal{I}_2(A) = 1 - \mathcal{U}(A).$

We can formulate the following characterization of T-ultrafilters and T-ideals:

Theorem 4. Let $T < T_L$ be an arbitrry left-continuous t-norm. Each maximal element of $(\Phi(X,T), \wedge, \vee)$ is a T-ultrafilter on X. There are ultrafilters on X which are not maximal elements of $(\Phi(X,T), \wedge, \vee)$. Let \mathcal{U} be a T-ultrafilter on X. Then T-ideals $\mathcal{I}_1(A) = \mathcal{U}(A^c)$ and $\mathcal{I}_2(A) = 1 - \mathcal{U}(A)$ may be different. $\mathcal{I}_1 = \mathcal{I}_2$ if and only if \mathcal{U} is a Lukasiewicz ultrafilter.

3.4. Drastic product t-norm T_D . This t-norm is not left-continuous. This implies that the only maximal elements of $(\Phi(X, T_D), \wedge, \vee)$ are crisp ultrafilters on X. However, by definition of T_D and S_D we get that a T_D -ultrafilter is each crisp ultrafilter and each monotonic function $\mathcal{F} : 2^X \to [0, 1]$ such that

$$\begin{aligned} \mathcal{F}(\emptyset) &= 0, \\ \mathcal{F}(X) &= 1, \\ \mathcal{F}(A) &\in]0,1[\text{ for } A \notin \{X, \emptyset\}. \end{aligned}$$

Acknowledgment. This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-003204, and by the VEGA grant agency, grant number 1/3014/06.

References

- [1] S. Bodjanova. T_L and S_L evaluators. In: Proceedings of AGOP 2007, submitted.
- [2] Burton, M.H., Muraleetharan, M., Gutiérrez García, J. (1999), Generalised filters 1, Fuzzy Sets and Systems, vol. 106, pages 275-284.
- Burton, M.H., Muraleetharan, M., Gutiérrez García, J. (1999), Generalised filters 2, Fuzzy Sets and Systems, vol. 106, pages 393-400.
- [4] D. Dubois, W. Ostasiewicz, H. Prade. Fuzzy sets: History and basic notations. In: Fundamentals of Fuzzy Sets, Kluwer, Dordrecht, 2000.
- [5] Gutiérrez García, J., Mardones Pérez, I., Burton, M.H.(1999), The relationship between various filter notions on a GL-monoid. J. Math. Anal. Appl., vol. 230, 291–302.
- [6] Gutiérrez García, J., De Prada Vicente, M.A., Šostak, A.P. (2003), A unified approach to the concept of fuzzy L-uniform space, Rodabaugh, S.E. et al. (eds.) Topological and algebraic structures in fuzzy sets. *Trends in Logic, Studia Logica Library*, volume 20, Kluwer Acad. Publisher, Dordrecht, pages 81-114.
- [7] Z. Havranová, M. Kalina. Weakly S-additive measures. In: Proc. IPMU 2006, Paris

- [8] Z. Havranová, M. Kalina. Lukasiewicz filters as convex combinations. In: Proc. of EUSFLAT 2007, Ostrava, submitted.
- [9] Z. Havranová, M. Kalina. Fuzzy preference relations and Lukasiewicz filters. In: Proc. of EUSFLAT 2007, Ostrava, submitted.
- [10] M. Kalina. Lukasiewicz fiters and similarities. In: Proceedings of AGOP 2005, Lugano, 2005 pp. 57-60.
- [11] M. Kalina. Lukasiewicz filters and their Cartesian products. In: Proceedings of EUSFLAT 2005, Barcelona, Spain, 2005, pp. 1301-1306.
- [12] E.P. Klement, R. Mesiar, E. Pap. Triangular norms. Kluwer, Dordrecht, 2000.

(Z. Havranová, M. Kalina) Dept. of Mathematics, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia

E-mail address, Z. Havranová: zuzana@math.sk E-mail address, M. Kalina: kalina@math.sk