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DISTANCE BETWEEN FUZZY SETS
AS A FUZZY QUANTITY

VLADIMÍR JANIŠ AND SUSANA MONTES

Abstract. The traditional methods of comparing images, like using the

Hamming distance, may sometimes fail, especially if we do not insist on

careful checking all the details of the images, but compare them just broadly.
An n-dimensional image with various grades of grey colours can be repre-

sented by a fuzzy set. We introduce a method of estimating the difference

between such images by a fuzzy set, which corresponds to various levels
of identifying close parts of the given images, or, in other words, to the

grade of accuracy, with which the images are observed. Examples and some
properties of such a distance are shown.

1. Introduction

A fuzzy subset of a space X can be interpreted as a model for the image
on X containing various shapes of gray colour. The membership degrees then
correspond to grades of darkness, when 0 can be assigned to white and 1 to
black colour (or vice versa). Conversely, a gray image can be represented by a
corresponding fuzzy set.

A natural question is to estimate the grade of similarity of two such images,
which is analogical to estimating the distance between two fuzzy sets. There are
several attitudes to this problem, which can be divided into two groups. The
first one works with differences between membership values at particular points
of X. Another one is based on differences between cuts at particular levels (see
e.g. Cabrelli et al. in [2], [3] and [4]).

However, both mentioned concepts can lead to unsatisfactory results from the
applications point of view. The examples of such cases can be found in [8], where
Lowen and Peeters also show the way how to avoid such problems. They suggest
a way to estimate the distance between two fuzzy sets accounting both differences
between membership values and between cuts. However, the result is a single real
number, which may in some applications mean the loss of information. Our aim
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is to develop the results of Lowen and Peeters so that we obtain a fuzzy quantity
which reflects the difference between two given fuzzy sets.

Another problem, which may appear for example in pattern recognition is,
that not all the points in the space X may have the same importance. The noise
at the edge of a screen can be sometimes considered not so important as the noise
in its centre. Although this is just a technical problem, we also incorporate it in
our consideration.

2. Concepts of measuring differences between
fuzzy sets

There are many different attitudes to comparing fuzzy sets that can be found
in the literature. Generally they are based on one of the two principles, which
we shortly describe below.

In many occasions the comparison of two fuzzy sets is done by quantifying the
degree of similarity or equality between them (see, for instance [5], [11] or [12]),
but there hardly are references related to the degree of inequality or difference
between them.

In [1] the authors proposed a measure of similarity between fuzzy sets and also
a measure of dissimilarity. Thus, they defined a µ-measure of dissimilarity on X
as a function S : F (X)× F (X)→ [0; 1] such that

S(m,n) = FS(µ(m ∩ n), µ(n−m), µ(m− n)),

where µ is a measure on X and FS : [0;∞)3 → [0; 1] is a function independent of
the first coordinate, increasing in the other two and such that F (x, 0, 0) = 0 for
all x ∈ [0;∞).

The most frequent definitions of classical distances between fuzzy sets m,n in
a universe X are:

• The Hamming distance:

d(m,n) =
∑
x∈X

|m(x)− n(x)|.

• A generalization of the Hamming distance proposed by Kacprzyk in [6]

d(m,n) =
∑
x∈X

|m(x)− n(x)|2.

• The generalization of the previous ones, using the Minkowski distance
(see e.g. [7])

d(m,n) =

(∑
x∈X

|m(x)− n(x)|r
) 1

r

, r ≥ 1.
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This class of distances includes, as a particular case, the supremum dis-
tance, used to compare fuzzy sets among others by Nowakowska in [10]
and Wenstøp in [13]. Its definition is

d(m,n) = sup
x∈X
|m(x)− n(x)|.

All these distances are particular cases of the dissimilarity measures defined
in [1].

In relation to dissimilarities Montes et al. introduced in [9] the definition of
divergence measure as a map D : F (X)2 → R such that for all m,n, ρ ∈ F (X)
the following conditions are satisfied:

(1) D(m,n) = D(n,m),
(2) D(m,m) = 0,
(3) max{D(m ∪ ρ, n ∪ ρ), D(m ∩ ρ, n ∩ ρ)} ≤ D(m,n).

This definition generalizes, except for the symmetry property (that could be
excluded from the set of axioms in some particular cases) the concept of dissim-
ilarity measures previously proposed. Moreover, local divergencies are distances
between fuzzy sets according to the definition proposed in [14], which will be
recalled in Definition 3.

All these measures were applied in different fields, but they are not too appro-
priate for some very natural circumstances as we will explain in the following.

3. Distance function and distance

Suppose (X, d) is a pseudometric space, let F (X) denote the system of all
its fuzzy subsets. Let m,n ∈ F (X). For each x ∈ X we assign a nonincreasing
function fx such that fx : [0, 1]→ [0;∞]. To be compatible with [8] we may call fx

a tolerance function for x. The shape of this function depends on the importance
of the point x in the image (for better understanding see the examples later in
this paper).

First we define a distance function at a point.

Definition 1. Let S(x, r) be the closed neighborhood of x with diameter r, let
m,n ∈ F (X). If x ∈ X, then the mapping gm,n

x : [0; 1]→ [0; 1] such that

gm,n
x (α) = inf{|m(z)− n(y)|; z, y ∈ S(x, fx(α))}

is called the distance function at a point x.

Here we follow the idea of a tolerance introduced by Lowen and Peeters in [8],
but in our attitude the tolerance is not constant.
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It is easy to see that any distance function is nondecreasing. The purpose
of such a function is to model the grade of accuracy with which the image is
observed. The value α = 0 corresponds to the “least careful” view of the image,
while the value of α = 1 models the “most detailed” look at it. A good example
has been given in [8], namely two chessboards with a very large number of rows
and columns, inverse to each other. At a close look we see that they are totally
different, but from a large distance we do not distinguish small squares, but
observe two identical large (gray) squares.

The distance function at a point enables us to define the main notion of this
work.

Definition 2. Let for each x ∈ X be gm,n
x its distance function. The distance

between the fuzzy sets m and n is then given by the fuzzy set gm,n : [0, 1]→ [0, 1]
defined for α ∈ [0, 1] as follows:

gm,n(α) = sup{gm,n
x (α), x ∈ X}.

Thus we obtain a fuzzy quantity which gives us more information about two
fuzzy sets than a single number, as it can be seen from examples in the following
section.

The distance defined above has properties similar to some of the distance
measure, as it was introduced in [14]. We recall its definition:

Definition 3. Let F (X) be the system of al fuzzy sets on a universe X. A func-
tion δ : F (X)2 → [0,∞[ is called a distance measure if it satisfies the following
properties:

(1) δ(A,B) = δ(B,A) for all A,B ∈ F (X),
(2) δ(A,A) = 0 for all A ∈ F (X),
(3) δ(D,X \D) = maxA,B∈F (X) δ(A,B) for all crisp subsets D of X,
(4) if A ⊆ B ⊆ C, then δ(A,B) ≤ δ(A,C) and δ(B,C) ≤ δ(A,C) for all

A,B,C ∈ F (X).

Clearly the distance as we have defined it, cannot be a distance measure, as its
values are not real numbers, but fuzzy quantities. However, it has some similar
properties, which are formulated in the following propositions.

Proposition 1. If m,n ∈ F (X), then gm,n = gn,m.

Proposition 2. If m ∈ F (X), then gm,m is a zero function.

Both propositions follow directly from the definition of the distance. The
transitivity for our definition is preserved by means of the fact, that for m,n, p ∈
F (X),m ≤ n ≤ p the difference n −m differs less from the zero function, than
the difference p−m.
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Proposition 3. If m,n, p ∈ F (X),m ≤ n ≤ p, then g0,n−m ≤ g0,p−m.

Proof. Clearly it is sufficient to prove the statement for r, s ∈ F (X), r ≤ s,
as n−m ≤ p−m. But if r ≤ s, then

inf{r(y), y ∈ S(x, fx(α))} ≤ inf{s(z), z ∈ S(x, fx(α))}
for all x ∈ X,α ∈ [0, 1]. This means that g0,r

x ≤ g0,s
x for all x ∈ X. Using

suprema to get the distance functions and the fact that the inequality remains
also for them, we conclude g0,r ≤ g0,s. Putting r = n −m, s = p −m we finish
the proof.

The only property of distance measure, which cannot be mechanically trans-
ferred for our distance, is the third one, stating that any crisp set and its com-
plement have the maximal possible distance measure. This is no surprise, as our
attitude is based on the principle that (using the language of pattern recognition)
considers the white patterns with small pieces of black color as a kind of fuzzy
sets. However, for sets, that are “crisp enough” a kind of a similar property holds.

Proposition 4. Let D be a (crisp) subset of X. Then

gD,X\D = max{gm,n;m,n ∈ F (X)}
if and only if there is an x0 ∈ D such that S(x0, fx0(0)) ⊆ D.

Proof. Let D be a (crisp) subset of X. For the convenience we will denote by
the same letter its characteristic function, as well as for its complement. Suppose
there is an x0 ∈ D such that S(x0, fx0(0)) ⊆ D. Then for the distance function
at x0 we have

gD,X\D
x0

(0) = inf{d(D(y), (X \D)(z)); y, z ∈ S(x0, fx0(0))} = 1

due to the assumption which asserts that D(y) = 1 and (X \D)(z) = 0 for any
y, z ∈ S(x0, fx0(0)).

As any distance function is nondecreasing, we have g
D,X\D
x0 (α) = 1 for all

α ∈ [0, 1], hence also gD,X\D(α) = 1 for all α ∈ [0, 1]. Evidently this is the
maximal possible distance for any pair of fuzzy sets in F (X).

To show the reverse implication let us assume that for all x ∈ D there is

S(x, fx(0)) ∩ (X \D) 6= ∅.
Then for any x ∈ D we have

gD,X\D
x (0) = inf{d(D(y), (X \D)(z)); y, z ∈ S(x, fx(0))} = 0

as in each S(x, fx(0)) there is a point belonging to D and also a point in its
complement.
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4. Examples

In the following we present a series of simple examples which demonstrate
some properties of the distance. In all of them the space X will be the interval
[0, 2] with the usual metric. The tolerance function for all the points of X in
Examples 1 – 4 will be fx(α) = 1− α. In each example we present the graphs of
m,n and their difference gm,n. For better understanding it is good to think of the
fuzzy sets used in the examples as of image representations, where 1 represents
black and 0 white color and the values between correspond to degrees of grey
color. In all the graphs m is sketched in a full line, n in a dashed one.

Example 1. m(x) = 1, n(x) = 1 for x ∈ [0, 1], otherwise n(x) = 0.

Here the fuzzy set n is in the sense of Proposition 4 sufficiently crisp to have the
maximal possible distance from m.

Example 2. m(x) = 1, n(x) = 1 for x ∈ [0, 0.5], n(x) = 1.5 − x for
x ∈]0.5, 1.5[ , n(x) = 0 otherwise.

As we see, considering only the membership degrees close to edge values (not
mentioning the shades of gray), both sets are far from each other. If we consider
also degrees of gray color, they are closer than in the previous example.
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Example 3. m(x) = 1 for x ∈ [0, 1], m(x) = 0 otherwise, n is the same as
in the previous example.

In this example we see that the more attention is paid to the grey colors, the
closer are the images.

Example 4. m(x) = 1 for x ∈ [0, 1],m(x) = 0 otherwise, Let n be the crisp
set [0; 1.2]. In the graph of the distance function we see that these sets are closer
to each other than the pair in the previous example. Although the difference
in colours in the middle of the image is sharp, it is just on a set with a small
measure and in the broader view these sets tend to coincide.

The following example shows the possibility to assign various importance to dif-
ferent parts of the underlying space. We see that although the measure of the
space where noise (white color in a black image) is present is the same, the
distance is bigger if the noise appears in the center of the space X.

Example 5. Let for x ∈ [0.5, 1.5] the tolerance function be fx(α) = 1 − α,
for the remaining points in X let fx(α) = 2 − 2α. Let m be the crisp set [0, 2],
let n be the crisp set [0, 0.9] ∪ [1.1, 2], let p be the crisp set [0.1, 1.9].
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Here we see that due to the smaller importance of the points closer to the end-
points, the distance between m and n is larger than the distance between m and
p.

5. Concluding remarks

We have defined a distance of a pair of fuzzy sets expressed by a mapping
which enables us to estimate the similarity of given fuzzy sets depending on the
level, on which we identify points close to each other. As we have shown, the
properties of such a distance have much in common with the properties of the
distance measure from [14]. Moreover, it has the following properties, which are
quite obvious:

If fx is a zero function for all x, then our distance is equivalent to the supremum
distance usually denoted by d∞, (the distance used in [10] or [13]). This means
that in such case gm,n is a constant function with its value d∞(m,n).

If fx are all equal to the same constant τ , then our distance is equivalent to
that introduced in [8].

If fx(1) > 0, then the noise in the singleton {x} is ignored. Moreover, if
fx(1) ≥ c for all x ∈ X, then also the noise on sets with diameter not exceeding
c is ignored.

By putting sm,n = 1 − gm,n we obtain s with properties similar to similarity
measure as was introduced in [14].
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