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Editorial

Fonzo Haviar is seventy this year

Fonzo Haviar, one of the most
emblematic figures of Banská
Bystrica mathematics.

Alfonz Haviar was born on February 24, 1939,
in Poluvsie, a small village in Central Slovakia.
After attending a secondary school in Prievidza
in 1954-57, he entered Faculty of Natural Sci-
ences at Pedagogic School in Bratislava where
he studied teaching combination mathematics-
physics. After graduation in 1961, he started to
work as a teacher of mathematics and physics at
secondary school in Stropkov, a small town in
Eastern Slovakia. Here he nurtured and trained
talented students of which many were successful
in mathematical and physics olympiads.

In 1965 he moved to Banská Bystrica where
he was interviewed and subsequently awarded a
position of an assistant professor at Mathema-
tics Department of Pedagogic Faculty. Fonzo re-
mained faithful to this department for his entire
professional life. The department, originally be-
longing to Pedagogic Faculty, became a part of
newly-established Matej Bel University in 1992.

Since 1970 until 1992 he regularly attended
algebraic seminars in Bratislava headed by the legendary professor Milan Kolibiar.
The seminar was usually held every two weeks during the semester and according
to seminar’s program, each of the participants gave 3–4 talks on new results in
universal algebra, lattice theory or posets. Usually papers from research journals
or submitted manuscripts were read, whose copies were obtained by different
canals from the western world. Sometimes these were parts of monographs which
were often still in preparation. Occasionally, own results of the participants were
presented. Many of the seminar members have nice memories also on traditional
(at the time) algebra winter schools.

In Bratislava Fonzo was awarded a degree RNDr. (Rerum Naturalium Doc-
tor) in 1973 and a PhD degree (Candidate of Sciences in those times) in 1981
under the supervision of prof. Milan Kolibiar. Since 1984 until now he has been
holding a position of an associate professor (called also Reader or Dozent) at
the Department of Mathematics. He was the head of this department for two
periods, 1998-2001 and 2004-2006.

In 1992, after Matej Bel University was established and prof. Ján Findra
became its first rector, he chose Fonzo to the position of the vice-rector responsible



for the further development of the university. Their main goal was that the
university should first of all become a research and cultural center of the Central
Slovakian region. The idea of promoting an international research scarred many
members of the academic community whose ideas of university research were
associated with certain regional explorations.

Fonzo’s main merit is that, in conditions of a regional higher education institu-
tion, he recognized the importance of a research on an international level and its
necessity for further development of this institution. He was one of few who ad-
vocated this idea while for many others the research was either a kind of a hobby
of few “odd fellows” or a synonym of writing papers in obscure regional publica-
tions (just in order their list of papers is long enough so that they be eligible for
becoming full professors). In that period of time Fonzo played a crucial role in
discussions about the future routing of the university. Also thanks to him it was
the goal of establishing a research university which finally won (at least appar-
ently), and not the strategy of a university aimed at producing new ‘professors’
by means of decreasing requirements for the title of “Professor” and doing busi-
ness at the expense of doing research. However, Fonzo’s service in the position
of a vice-rector ended in 1993 with the appointment of prof. Findra as the head
of the Presidential office in Bratislava. Unfortunately, this happened earlier than
the tendency towards a research university could become irreversible. Otherwise,
science at Matej Bel University would almost certainly be in a stronger position
today. Fortunately, Fonzo’s strong influence sustained at least at the Depart-
ment of Mathematics of Faculty of Natural Sciences. No matter whether he was
a head of the department or just a member of it, he always emphasized the ne-
cessity of a research, which also affected the personal policy at the department.
It is therefore also his merit that today Banská Bystrica belongs to important
mathematical centers in Slovakia.

After 1990 Fonzo also had various duties in academic senates; in 1994-95 he was
the principal of the academic senate of the Faculty of Humanities and Natural
Sciences. He was a member of the scientific board of Matej Bel University in
1994-2000 and the statutory ambassador of the Foundation Matthias Belius for
supporting university science and research in 1995-96. In 1993 he established the
journal Acta Univ. M. Belii, ser. Mathematics and until 2000 was its editor-in-
chief. Fonzo served the academic community also as a member of Board ŠVOČ
(students’ research competition), a head-teacher at different levels, a member of
the scientific boards of the faculty and the university. His sharp thinking, strong
will and organizational skills were always beneficial for the academic community
in Banská Bystrica.

Fonzo also served the academic and in particular mathematical communities
at regional and national levels. He was an advisor of the regional pedagogic in-
stitute for modernizing teaching of mathematics at secondary schools in 1972-75,
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a member of the Czechoslovak committee for teaching mathematics and drawing
at primary schools in 1973-84 and a member of the committee for doctoral stud-
ies in didactics of mathematics in 1998-2005. He was also a member of different
committees and boards within the Union of Czech and Slovak Mathematicians
and Physicists (JČSMF), and later within the Union of Slovak Mathematicians
and Physicists (JSMF).

Now, after his 45-year pedagogic work at the Department of Mathematics in
Banská Bystrica, he says he taught all subjects in future teacher training except
probability and statistics. However, in his pedagogic work he focused mainly
on algebra and number theory. Algebra has always been the field in which he
specialized, and was also awarded his PhD and became an associate professor.

Fonzo with his wife Milka and
the elder son Alfonz in 1965
when they moved to Banská
Bystrica (the first author of
this article is in mum’s womb).

In his research he focused, besides algebra,
on graph theory. He published 9 research pa-
pers in journals abroad, of which the most cited
is the paper All trees of diameter five are grace-
ful published in Discrete Mathematics in 2001
jointly with P. Hrnčiar. In this paper they
proved the result in the title regarding the fa-
mous Ringel-Kotzig conjecture on graceful la-
belings of trees from early 1960s and this re-
sult is still the best worldwide in this direction.
He also published results on varieties of graphs
and orgraphs (both in Discuss. Math. Graph
Theory, the former with R. Nedela, the latter
with G. Monoszová) and on varieties of posets
(in Order, with J. Lihová). For Order he also
wrote a paper with P. Hrnčiar on the dimension
of orthomodular posets constructed by pasting
Boolean algebras. In Slovak journals he pub-
lished 13 papers (among them 6 joint papers
with colleagues from the department) and in lo-
cal proceedings Acta Fac. Paed. B. Bystrica
he published 9 papers between 1972 and 1989.
Moreover, he coauthored 8 lecture notes or text-
books, of which Algebra and theoretical arithmetic 2 from 1986 published in Alfa
Bratislava became a national textbook. His full List of publications (which is
attached) comprises moreover 6 articles in teachers’ vocational journals and 7
other articles. He was a member of several grant projects of Slovak grant agen-
cies VEGA, KEGA, APVT and APVV.

Fonzo Haviar received Award for excellent pedagogic work at anniversary con-
ference of Union of Czech and Slovak Mathematicians and Physicists in Prague
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(1987), became an honorary member of the Union (2002) and was awarded a
Great medal and Silver medal of Matej Bel University by its rector (1999 and
2004, respectively). Probably the most important award would be given to him
by his colleagues for his great character and personality, for suppressing his own
ambitions to serve the others.

List of publications of Alfonz Haviar

Research papers in mathematical journals abroad
(1) The dimension of orthomodular posets constructed by pasting Boolean

algebras, Order 10 (1993), 183 – 197 (with P. Hrnčiar).
(2) V-lattices of varieties of algebras of different types, Czechoslovak Math.

J. 46 (1993), 419 – 428.
(3) Some characteristics of the edge distance between graphs, Czechoslovak

Math. J. 46 (1996), 665 – 675 (with P. Hrnčiar and G. Monoszová).
(4) A metric on a system of ordered sets, Math. Bohem. 121 (1996), 123 –

131 (with P. Klenovčan).
(5) On varieties of graphs, Discuss. Math. Graph Theory 18 (1998), 209 –

223 (with R. Nedela).
(6) All trees of diameter five are graceful, Discrete Math. 233 (2001), 133 –

150 (with P. Hrnčiar).
(7) Varieties of orgraphs, Discuss. Math. Graph Theory 21 (2001), 207 –

221 (with G. Monoszová).
(8) Constructions of cell algebras, Math. Bohem. 130 (2005), 89 – 100 (with

G. Monoszová).
(9) Varieties of posets, Order 22 (2005), 343 – 356 (with J. Lihová).

Research papers in Slovak mathematical journals
(10) N -Schrägverbände und Quasiordnungen, Mat. Časopis Sloven. Akad.

Vied 23 (1973), 240 – 248.
(11) On a generalized distributivity in modular lattices, Acta Fac. Rerum

Natur. Univ. Comenian. Math. Publ. 29 (1974), 35 – 42.
(12) On G-lattices, Math. Slovaca 29 (1979), 17 – 24.
(13) Notes on the congruence lattices of algebras, Acta Univ. M. Belii, ser.

Mathematics 1 (1993), 7 – 14.
(14) The lattice of order varieties, Acta Univ. M. Belii, ser. Mathematics 1

(1993), 15 – 20 (with P. Konôpka).
(15) On congruence lattice representations, Acta Univ. M. Belii, ser. Mathe-

matics 2 (1994), 9 – 16.
(16) Metrics on systems of finite algebra, Acta Univ. M. Belii, ser. Mathe-

matics 3 (1995), 9 – 16.
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(17) Valuations and metrics on a poset, Acta Univ. M. Belii, ser. Mathemat-
ics 4 (1996), 25 - 38 (with G. Monoszová).

(18) Minimal eccentric sequences with least eccentricity three, Acta Univ. M.
Belii, ser. Mathematics 5 (1997), 27 – 50 (with P. Hrnčiar and G. Monos-
zová).

(19) The Dimension of orthomodular posets constructed by pasting Boolean
algebras II, Acta Univ. M. Belii, ser. Mathematics 7 (1999), 63 – 70
(with P. Hrnčiar).

(20) The lattice of varieties of graphs, Acta Univ. M. Belii, ser. Mathematics
8 (2000), 11 – 19.

(21) The lattice of varieties of orgraphs, Acta Univ. M. Belii, ser. Mathemat-
ics 9 (2001), 43 – 50 (with G. Monoszová).

(22) Eccentric sequences and cycles in graphs, Acta Univ. M. Belii, ser. Math-
ematics 11 (2004), 7 – 25 (with P. Hrnčiar and G. Monoszová).

Research papers in local proceedings (in Slovak)
(23) ÚplnéN -̌sikmé zväzy, Acta Fac. Paed. B. Bystrica, Matematika I (1972),

97 – 103.
(24) O distribut́ıvnosti a doplnkoch zväzu, Acta Fac. Paed. B. Bystrica,

Matematika I (1972), 59 – 75.
(25) O distribut́ıvnych G-zväzoch, Fac. Paed. B. Bystrica, Matematika II

(1979), 67 – 81.
(26) O N -zväzoch, Acta Fac. Paed. B. Bystrica, Pŕırodné vedy II (1980), 191

– 213.
(27) O kongruenciách a varietách N -zväzov, Acta Fac. Paed. B. Bystrica,

Pŕırodné vedy III (1982), 291 – 314.
(28) VarietyG-zväzov, Acta Fac. Paed. B. Bystrica, Pŕırodné vedy IV (1983),

497 – 513.
(29) Konštrukcia unárnej algebry s dvoma operáciami, Acta Fac. Paed. B.

Bystrica, Pŕırodné vedy IX (1989), 15 – 21.
(30) Dimenzia usporiadaných množ́ın, Acta Fac. Paed. B. Bystrica, Pŕırodné

vedy X (1989), 35-48 (with P. Hrnčiar and P. Konôpka).
(31) Usporiadané množiny s operáciou komplementu, Acta Fac. Paed. B.

Bystrica, Pŕırodné vedy X (1989), 17 – 33 (with P. Klenovčan).

Vocational articles (in Slovak)
(32) Poznatky z prij́ımaćıch pohovorov z matematiky na SVŠ v Stropkove,

Pedagogický obzor, Bardejov, 1965 (with V. Smolko).
(33) Použitie zvyškových tried pri riešeńı lineárnych diofantických rovńıc, Ma-

tematicko-fyz. rozhledy 58 (1980), 342 – 345.
(34) Filozofické aspekty niektorých problémov teórie množ́ın, Zborńık pŕıspev-

kov RŠ-4-03, PF B. Bystrica, 1988, 137 – 143.
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(35) O niektorých filozofických problémoch matematiky, Acta Fac. Paed. B.
Bystrica, Pŕırodné vedy IX (1991), 281 – 290.

(36) Vzdelávanie bez “predmetárov” je nebezpečná ilúzia, Pedagogická revue 2
(2008).

(37) Poznámky k tvorbe učitel’ských kompetencíı a spôsobilost́ı, Pedagogické
rozhl’ady 2 (2008), 16 – 17.

Other articles (in Slovak)
(38) K životnému jubileu L’udmily Berackovej, Pokroky matematiky, fyziky a

astronómie, 1981.
(39) Doc. Ondrej Gábor šest’desiatpät’ročný, Pokroky matematiky, fyziky a

astronómie, 1987.
(40) O činnosti pobočky JSMF Zvolen, Zjazdový zborńık JČSMF, 1987.
(41) K životnému jubileu L’. Berackovej, Obzory matematiky, fyziky a infor-

matiky, 1995.
(42) Osemročné gymnáziá a pedagogická prax študentov, Učitel’ské noviny,

roč. 44, č. 27, 1994 (with J. Klincková).
(43) Nadácia Matthias Belius pri UMB, Spravodaj UMB 2, č. 1, 1996.
(44) Spomienky pri pŕıležitosti dvoch jubiléı, Obzory matematiky, fyziky a

informatiky 31, č. 4, 2002.

Textbooks (in Slovak)
(45) Algebra pre poslucháčov pedagogických fakúlt, Pedagogická fakulta,

B. Bystrica, 1972 (with L’. Beracková and Š. Fekiač).
(46) Operácie a algebrické štruktúry, SPN, Bratislava, 1973 (with L’. Beracková).
(47) Algebrické štruktúry, SPN, Bratislava, 1977 (with A. Legéň).
(48) Algebra a teoretická aritmetika 2, Alfa, Bratislava, 1986 (with T. Šalát,

T. Hecht and T. Katriňák).
(49) Metodický materiál pre činnost’ v matematických záujmových útvaroch

žiakov 5. ročńıka ZŠ, KDPM, B. Bystrica, 1986 (with J. Gombalová).
(50) Zbierka náročneǰśıch úloh z matematiky pre žiakov 5. roč. ZŠ, KPÚ,

B.Bystrica, 1990 (with Ž. Sobôtková).
(51) Algebra I, Pedagogická fakulta, B. Bystrica, 1991 (with P. Hrnčiar and

P. Klenovčan).
(52) Úvod do štúdia matematiky, Pedagogická fakulta UMB, B. Bystrica, 1996

(with P. Klenovčan and M. Haviar).

October 2009 M. Haviar and L’. Snoha
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DIRECT DECOMPOSITIONS OF BASIC ALGEBRAS AND
THEIR IDEMPOTENT MODIFICATIONS

IVAN CHAJDA AND MIROSLAV KOLAŘÍK

Dedicated to the 70th birthday of Alfonz Haviar

Abstract. We get a necessary and sufficient condition under which a given
basic algebraA is isomorphic to a direct product of non-trivial basic algebras
A1,A2 which are in fact interval subalgebras of A. Further, we prove that
the idempotent modification of A is directly indecomposable whenever A
has at least one element which is not boolean.

1. Introduction

It is well-known that a bounded lattice L = (L;∨,∧, 0, 1) is directly decom-
posable into lattices L1,L2 isomorphic to the intervals [a, 1], [b, 1] of L if b is
a complement of a and a, b are standard elements. Since every basic algebra
A = (A;⊕,¬, 0) induces a lattice L(A) = (A;∨,∧) which is bounded by 0 and
1 = ¬0, we can ask if also A is directly decomposable whenever there exists a
complemented and standard element of L(A). In what follows we show that the
condition concerning this element must be enlarged due to the fact that the op-
erations ⊕ and ¬ cannot be derived by means of the lattice operations of L(A).
However, we set up a natural necessary and sufficient condition for the direct
decomposability of A.

By a basic algebra (see e.g. [1, 2]) is meant an algebra A = (A;⊕,¬, 0) of
type (2, 1, 0) satisfying the following four axioms

(BA1) x⊕ 0 = x;
(BA2) ¬¬x = x;
(BA3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x;
(BA4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

2000 Mathematics Subject Classification. 06D15, 06B05, 03G25.
Key words and phrases. basic algebra, interval algebra, direct decomposition, strong ele-

ment, decomposing element, idempotent modification.
This work is supported by the Research and Development Council of the Czech Government

via the project MSM6198959214.



As usual, we will write 1 instead of ¬0. We say that a basic algebra A is
non-trivial if 0 �= 1 (i.e. |A| > 1).

Having a basic algebra A = (A;⊕,¬, 0), one can introduce the induced order
≤ on A as follows

x ≤ y if and only if ¬x⊕ y = 1.

It is an easy exercise to verify that ≤ is really an order on A and 0 ≤ x ≤ 1 for
each x ∈ A. Moreover, (A;≤) is a bounded lattice in which

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

For some details, the reader is referred to [1]. The lattice L(A) = (A;∨,∧) will
be called the induced lattice of A. In particular for each a ∈ A there exists
an antitone involution x �→ x

a on the interval [a, 1] (called a section) where
x

a = ¬x⊕ a.
It is well-known (see e.g. [1, 3]) that also conversely, if (A;∨,∧, (a)a∈A, 0, 1) is

a bounded lattice with section antitone involutions, we are able to construct a
basic algebra using the operations

(1) x⊕ y = (x0 ∨ y)y and ¬x = x
0
.

Lemma 1. Let A = (A;⊕,¬, 0) be a basic algebra, ≤ the induced order and
a ∈ A. Define the polynomial operations ¬a and ⊕a on the interval [a, 1] as
follows

¬ax = ¬x⊕ a and x⊕a y = ¬(¬x⊕ a)⊕ y.

Then ([a, 1];⊕a,¬a, a) is a basic algebra.

Proof. We use the facts that y ≤ x ⊕ y, 0 ⊕ x = x and ¬x ⊕ x = 1 hold in each
basic algebra A = (A;⊕,¬, 0) (for more details see e.g. [1]). If x, y ∈ [a, 1] then
a ≤ y ≤ ¬(¬x ⊕ a) ⊕ y = x ⊕a y thus ⊕a is really a binary operation on [a, 1].
Since a ≤ ¬x⊕a, ¬ax is a unary operation on [a, 1]. Moreover, ¬aa = ¬a⊕a = 1
and ¬a1 = ¬1⊕ a = 0⊕ a = a. We must check the axioms (BA1)–(BA4).
(BA1) and (BA2): For x ∈ [a, 1] we have x ⊕a a = ¬(¬x ⊕ a) ⊕ a = x ∨ a = x

and, analogously, ¬a¬ax = ¬(¬x⊕ a)⊕ a = x ∨ a = x.

(BA3): Assume that x, y ∈ [a, 1]. Since y ≤ ¬x⊕y, then also a ≤ ¬x⊕y. Further,
we have ¬ax⊕a y = ¬x⊕ y. Hence, we compute

¬a(¬ax⊕a y)⊕a y = ¬(¬x⊕ y)⊕ y = x ∨ y

and, by symmetry, also

¬a(¬ay ⊕a x)⊕a x = y ∨ x = x ∨ y.
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(BA4): Let x, y, z ∈ [a, 1]. Since a ≤ x ⊕a y, a ≤ y ≤ ¬(x ⊕a y) ⊕ y and
a ≤ z ≤ ¬(¬(x⊕a y)⊕ y)⊕ z, we obtain

¬a(¬a(¬a(x⊕a y)⊕a y)⊕a z)⊕a (x⊕a z) =
= ¬a(¬(¬(x⊕a y)⊕ y)⊕ z)⊕a (x⊕a z) =
= ¬(¬(¬(x⊕a y)⊕ y)⊕ z)⊕ (x⊕a z) =
= ¬(¬(¬(w ⊕ y)⊕ y)⊕ z)⊕ (w ⊕ z) = 1,

where w = ¬(¬x⊕ a). �

The basic algebra ([a, 1];⊕a,¬a, a) where the operations ⊕a, ¬a are defined
as in Lemma 1 will be called an interval basic algebra. Our motivation for
introducing the operations ⊕a and ¬a in this way is inspired by (1), where we
only replace x

0 by x
a due to the fact that a is the bottom element of the section

[a, 1]. Since x ∈ [a, 1], by (1) we have

¬ax = x
a = (x ∨ a)a = ¬x⊕ a

and then for x, y ∈ [a, 1]

x⊕a y = (¬ax ∨ y)y = ((¬x⊕ a) ∨ y)y = ¬(¬x⊕ a)⊕ y.

Due to the fact that every basic algebra A = (A;⊕,¬, 0) is in a one-to-one
correspondence with the enriched lattice L(A) = (A;∨,∧, (a)a∈A, 0, 1) as men-
tioned above (see also [1]), the interval basic algebra ([a, 1];⊕a,¬a, a) is in the
same correspondence with the interval enriched lattice ([a, 1];∨,∧, (b)b∈[a,1], a, 1)
where ∨,∧,

b are the same as in L(A). Hence, our interval basic algebra is quite
a natural ”cut” of the original one.

Lemma 2. Let A = (A;⊕,¬, 0) be a basic algebra and a, b, c ∈ A. Then

(b ∧ c)⊕ a = (b⊕ a) ∧ (c⊕ a).

Proof. We compute by (1)

(b ∧ c)⊕ a = (¬(b ∧ c) ∨ a)a = ((¬b ∨ ¬c) ∨ a)a = ((¬b ∨ a) ∨ (¬c ∨ a))a =
= (¬b ∨ a)a ∧ (¬c ∨ a)a = (b⊕ a) ∧ (c⊕ a)

since ¬b ∨ a ∈ [a, 1] and ¬c ∨ a ∈ [a, 1]. �

2. Direct decomposibility of basic algebras

Now, we will set up the conditions under which a basic algebra A can be
directly decomposed. First, we define several concepts.

Definition 1. An element a of a basic algebra A = (A;⊕,¬, 0) is called strong
if
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(a) x⊕ a = x ∨ a and x⊕ ¬a = x ∨ ¬a

for every x ∈ A.
A strong element a of A is called a decomposing element if it moreover satisfies

(b) (x⊕ y)⊕ a = x⊕ (y ⊕ a), (x⊕ y)⊕ ¬a = x⊕ (y ⊕ ¬a)
and x⊕ a = a⊕ x, x⊕ ¬a = ¬a⊕ x

for all x, y ∈ A.

Let us note that 0 and 1 are decomposing elements for every basic algebra A.
Recall (see [4]) that the element a of a lattice (L;∨,∧) is called distributive

if for all x, y ∈ L

(x ∧ y) ∨ a = (x ∨ a) ∧ (y ∨ a)
and the element a of a lattice (L;∨,∧) is called standard if for all x, y ∈ L

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y).

Further, recall that if (L;∨,∧) is a lattice and a ∈ L then the following two
conditions are equivalent:

(α) a is standard
(β) a is distributive and, for x, y ∈ L,

a ∧ x = a ∧ y and a ∨ x = a ∨ y imply that x = y

(for more details see [4]).

Lemma 3. Let a be a strong element of a basic algebra A = (A;⊕,¬, 0). Then
(i) a is boolean (i.e. a ∨ ¬a = 1, a ∧ ¬a = 0);
(ii) a and ¬a are distributive elements.

Proof. (i) By Definition 1 we have a⊕a = a∨a = a and ¬a⊕¬a = ¬a∨¬a = ¬a

thus both a and ¬a are ⊕-idempotents. Then ¬a ∨ a = ¬a ⊕ a = 1 and dually
(by De Morgan law) also ¬a ∧ a = 0.

(ii) Follows directly by Lemma 2 and the condition (a) of Definition 1. �

Lemma 4. Let a be a strong element of a basic algebra A = (A;⊕,¬, 0) and ¬a

be a standard element of the induced lattice L(A) = (A;∨,∧). Then the mapping
ϕa(x) = (x ∨ a, x ∨ ¬a) is a lattice isomorphism of L(A) onto the direct product
of lattices ([a, 1];∨,∧)× ([¬a, 1];∨,∧).

Proof. The proof is only a slight modification of the proof of Theorem 1.4. (p.
200) in [4]. Namely, if ϕa(x) = ϕa(y) then x∨ a = y ∨ a and x∨¬a = y ∨¬a, i.e.

¬x ∧ ¬a = ¬y ∧ ¬a(2)

by the first equality and ¬x ∧ a = ¬y ∧ a by the second one, i.e. also

(¬x ∧ a) ∨ ¬a = (¬y ∧ a) ∨ ¬a
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thus, by Lemma 3, also

¬x ∨ ¬a = ¬y ∨ ¬a.(3)

Since ¬a is a standard element of L(A) = (A;∨,∧), (2) and (3) yields ¬x = ¬y,
i.e. x = ¬¬x = ¬¬y = y. Hence, ϕa is injective. If �c, d� ∈ [a, 1] × [¬a, 1] then
a ≤ c, ¬a ≤ d, i.e. d ∨ a ≥ ¬a ∨ a = 1, c ∨ ¬a ≥ a ∨ ¬a = 1 and for c ∧ d ∈ A we
have

ϕa(c ∧ d) = ((c ∧ d) ∨ a, (c ∧ d) ∨ ¬a) =
= ((c ∨ a) ∧ (d ∨ a), (c ∨ ¬a) ∧ (d ∨ ¬a)) =
= ((c ∨ a) ∧ 1, 1 ∧ (d ∨ ¬a)) = (c, d)

hence ϕa is also surjective. Therefore it is a bijection from A to [a, 1] × [¬a, 1].
Further,

ϕa(x ∨ y) = ((x ∨ y) ∨ a, (x ∨ y) ∨ ¬a) =
= (x ∨ a, x ∨ ¬a) ∨ (y ∨ a, y ∨ ¬a) = ϕa(x) ∨ ϕa(y)

and

ϕa(x ∧ y) = ((x ∧ y) ∨ a, (x ∧ y) ∨ ¬a) =
= ((x ∨ a) ∧ (y ∨ a), (x ∨ ¬a) ∧ (y ∨ ¬a)) = ϕa(x) ∧ ϕa(y)

thus ϕa is a lattice isomorphism of L(A) onto ([a, 1];∨,∧)× ([¬a, 1];∨,∧). �

Theorem 1. Let A = (A;⊕,¬, 0) be a basic algebra. Then A is isomorphic to
a direct product of non-trivial basic algebras B1,B2 if and only if there exists a
decomposing element a ∈ A, 0 �= a �= 1 such that ¬a is standard in the induced
lattice L(A) = (A;∨,∧). If it is the case then A is isomorphic to the direct
product of interval basic algebras ([a, 1];⊕a,¬a, a) and ([¬a, 1];⊕¬a,¬¬a,¬a).

Proof. Due to Lemma 4, we must only show that ϕa preserves the operations ⊕
and ¬. Denote by �⊕ and �¬ the corresponding operations on the direct product
of the interval algebras. Then, since a and ¬a are strong elements, we have

ϕa(¬x) = (¬x ∨ a,¬x ∨ ¬a) = (¬x⊕ a,¬x⊕ ¬a) = (¬ax,¬¬ax) = �¬ϕa(x).

Since a is a decomposing element, we derive also

ϕa(x⊕ y) = ((x⊕ y)⊕ a, (x⊕ y)⊕ ¬a)
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and, by Lemma 2, we compute

ϕa(x)�⊕ϕa(y) = (x ∨ a, x ∨ ¬a)�⊕(y ∨ a, y ∨ ¬a) =

= (x⊕ a, x⊕ ¬a)�⊕(y ⊕ a, y ⊕ ¬a) =
= ((x⊕ a)⊕a (y ⊕ a), (x⊕ ¬a)⊕¬a (y ⊕ ¬a)) =
= (¬(¬(x⊕ a)⊕ a)⊕ (y ⊕ a),¬(¬(x⊕ ¬a)⊕ ¬a)⊕ (y ⊕ ¬a)) =
= (¬(¬x ∨ a)⊕ (y ⊕ a),¬(¬x ∨ ¬a)⊕ (y ⊕ ¬a)) =
= ((x ∧ ¬a)⊕ (y ⊕ a), (x ∧ a)⊕ (y ⊕ ¬a)) =
= ((x⊕ (y ⊕ a)) ∧ (¬a⊕ (y ⊕ a)), (x⊕ (y ⊕ ¬a)) ∧ (a⊕ (y ⊕ ¬a))) =
= ((x⊕ (y ⊕ a)) ∧ (¬a ∨ y ∨ a), (x⊕ (y ⊕ ¬a)) ∧ (a ∨ y ∨ ¬a)) =
= ((x⊕ (y ⊕ a)) ∧ 1, (x⊕ (y ⊕ ¬a)) ∧ 1) =
= (x⊕ (y ⊕ a), x⊕ (y ⊕ ¬a)).

Due to (b) of Definition 1, we conclude

ϕa(x⊕ y) = ϕa(x)�⊕ϕa(y)

thus ϕa preserves ⊕ and ¬ and hence it is an isomorphism of A onto the direct
product ([a, 1];⊕a,¬a, a)× ([¬a, 1],⊕¬a,¬¬a,¬a).

Conversely, assume that a basic algebra A is isomorphic to a direct product
B1×B2 of non-trivial basic algebras B1 = (B1;⊕1,¬1, 01) and B2 = (B2;⊕2,¬2, 02).
It is an easy exercise to show that (01, 12) (where 12 = ¬202) is a decomposing
element of B1×B2 and hence h

−1((01, 12)) is a decomposing element of A (where
h is the isomorphism of A onto B1 × B2). �

Example 1. Consider the lattice drawn in Fig. 1.

�
�

�

❅❅�
�

�❅❅

❅❅� �
� �

� �¬b

0

a b

1

¬a

Fig. 1

We can define the operations ⊕1 and ⊕2 as follows
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⊕1 0 a b ¬b ¬a 1
0 0 a b ¬b ¬a 1
a a a ¬a ¬b 1 1
b b ¬b ¬b 1 ¬a 1
¬b ¬b ¬b 1 1 1 1
¬a ¬a 1 ¬b 1 ¬a 1
1 1 1 1 1 1 1

⊕2 0 a b ¬b ¬a 1
0 0 a b ¬b ¬a 1
a a a ¬b ¬b 1 1
b b ¬b ¬a 1 ¬a 1
¬b ¬b ¬b 1 1 1 1
¬a ¬a 1 ¬a 1 ¬a 1
1 1 1 1 1 1 1

Then for A = {0, a, b,¬b,¬a, 1} we have that A1 = (A;⊕1
,¬, 0) and A2 =

(A;⊕2
,¬, 0) are basic algebras (where A2 is even an MV-algebra but A1 is not).

In the both cases a is a strong element, but in A1 a is not a decomposing element,
since for x = b we have

a⊕ b = ¬a �= ¬b = b⊕ a

which contradicts (b) of Definition 1. On the other hand, one can check by a
direct computation that a is a decomposing element of A2. ♦

3. Idempotent modification of basic algebras

The concept of idempotent modification of an algebra was introduced by
J. Ježek [6] as follows.

Definition 2. An idempotent modification of an algebra A = (A;F ) is an
algebra AI = (A;FI) with the same underlying set A, where |F | = |FI | and for
every f ∈ F the corresponding operation fI ∈ FI is defined as follows

(i) if f is at most unary then fI = f ;
(ii) if f is n-ary with n > 1 and a1, . . . , an ∈ A then

fI(a1, . . . , an) =
�

a1 if a1 = a2 = · · · = an

f(a1, . . . , an) otherwise.

The main result of [6] is that for any group G its idempotent modification GI

is subdirectly irreducible.
In what follows we will treat direct decomposability of an idempotent modifi-

cation of a basic algebra.
For this we slightly modify our definition of basic algebra. As mentioned

above, every basic algebra A = (A;⊕,¬, 0) has induced lattice L(A) = (A;∨,∧)
where ∨ and ∧ are term operations of A. Hence, inserting ∨ and ∧ into the type
of A, we obtain an algebra with the same clone of term operations and hence
term equivalent to A. From now on, by a basic algebra we will understand an
algebra A = (A;⊕,¬, 0,∨,∧) where the term operations ∨ and ∧ are defined by
x ∨ y = ¬(¬x⊕ y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y).

The reason of this insertion is that when an idempotent modification of (A;⊕,¬, 0)
is considered, the resulting algebra does not have the lattice structure. However,
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if A = (A;⊕,¬, 0,∨,∧) is treated then the lattice structure for AI is preserved
because both ∨ and ∧ are idempotent operations on A.

Theorem 2. Let A = (A;⊕,¬, 0,∨,∧) be a basic algebra whose at least one
element is not boolean. Then its idempotent modification AI = (A;⊕I ,¬, 0,∨,∧)
is not directly decomposable.

Proof. At first we show that if A = (A;⊕,¬, 0,∨,∧) is a basic algebra and its
idempotent modification AI is directly decomposable into non-trivial algebras
B1 = (B1;⊕1,¬1, 01,∨,∧) and B2 = (B2;⊕2,¬2, 02,∨,∧) then also A is directly
decomposable. Denote by 11 = ¬101 and 12 = ¬202. Let ϕ be an isomorphism of
AI onto B1×B2. For x ∈ A let ϕ(x) = (x1, x2). Define new operations ⊕1

,⊕2 on
B1, B2, respectively as follows. If y1, z1 ∈ B1 and y1 �= z1 then y1⊕1

z1 = y1⊕1z1,
if y2, z2 ∈ B2 and y2 �= z2 then y2 ⊕2

z2 = y2 ⊕2 z2. If x1 ∈ B1, denote by
x1 = ϕ

−1((x1, 12)) and if x2 ∈ B2, denote by x2 = ϕ
−1((11, x2)). Now we define

x1 ⊕1
x1 = pr1(ϕ(x1 ⊕ x1))

and
x2 ⊕2

x2 = pr2(ϕ(x2 ⊕ x2)).
Since ϕ(x) = (x1, x2) = (x1, 12) ∧ (11, x2) = ϕ(x1) ∧ ϕ(x2) and since ϕ and also
ϕ
−1 preserve the lattice operations, we have x = x1∧x2. This yields that ⊕1

,⊕2

are correctly defined (i.e. the result x1 ⊕1
x1 in the first coordinate does not

depend on the second coordinate and vice versa), i.e.

ϕ(x⊕ x) = (x1, x2)⊕(x1, x2) = (x1 ⊕1
x1, x2 ⊕2

x2),

where⊕ is the binary operation provided coordinatewise on the Cartesian product
B1 ×B2.

It is obvious that A1 = (B1;⊕1
,¬1, 01,∨,∧) and A2 = (B2;⊕2

,¬2, 02,∨,∧)
are basic algebras and ϕ is also an isomorphism of A onto A1 × A2. Moreover,
we see that B1 = A1

I and B2 = A2
I . Hence, if AI is directly decomposable then

also A has this property.
Assume now that x ∈ A is not boolean and that AI is directly decomposable.

We can apply the reasoning used by J. Jakub́ık [5]. Let ϕ(x) = (x1, x2). Then
also ϕ(x) is not boolean, i.e. at least one of x1, x2 is not boolean. Without loss of
generality, suppose that x1 is not boolean. Then x1 ⊕1

x1 �= x1. Since |B2| > 1,
there exists y2 ∈ B2 such that x2 �= y2. Let y = ϕ

−1(x1, y2). Then x �= y and
x⊕y = x⊕I y, hence ϕ(x⊕y) = ϕ(x⊕I y). However, ϕ(x⊕y) = (x1⊕1

x1, x2⊕2
y2)

and ϕ(x ⊕I y) = (x1 ⊕1 x1, x2 ⊕2 y2) = (x1, x2 ⊕2
y2), which is a contradiction.

Thus AI is not directly decomposable. �

Call a basic algebra A = (A;⊕,¬, 0) distributive if the induced lattice
L(A) = (A;∨,∧) is distributive. For example, if A is commutative then A is
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distributive (but not vice versa, see Example 1) see e.g. [1]. For distributive
basic algebras, we can modify our result as follows

Corollary. Let A = (A;⊕,¬, 0,∨,∧) be a distributive basic algebra with |A| >

2. Then its idempotent modification is directly indecomposable if and only if A
contains an element which is not boolean.

Proof. If all elements of A are boolean then, due to the fact that L(A) is dis-
tributive, its idempotent modification AI is in fact a Boolean algebra (where ⊕
coincides with ∨). Hence, AI is directly decomposable since |A| > 2.

Conversely, if A contains an element which is not boolean then AI is not
directly decomposable by Theorem 2. �
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SUPERPRIMES AND GENERALIZED DIRICHLET THEOREM

MIROSLAV HAVIAR AND PETER MALIČKÝ

Dedicated to the 70th birthday of Alfonz Haviar

Abstract. A concept of a superprime meaning a prime number whose all
digits are prime numbers is introduced and a question whether there is an
infinite number of superprimes is raised. A positive answer to this and a few
related questions is conjectured and supported by several observations and
computations via Mathematica. Among the conjectures is a generalized
version of Dirichlet’s Theorem on primes which implies certain conjectures
presented here as well as the famous conjectures about the infinite number
of Mersenne and Fermat primes.

1. The main problem

There are several different proofs of the fact that there is an infinite number
of primes [1], the best known being likely the one due to Euclid. In this note
we introduce a more specific notion of a superprime and ask if there is still an
infinite number of superprimes.

Definition 1.1. By a superprime we mean a prime number whose all digits (in
its decimal representation) are prime numbers.

We note that instead of the decimal representation one can consider base m

positional notation for m ≥ 4. (The case m = 3 is not interesting as it gives us
only one prime digit 2.)

Example 1.2. The numbers 2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 277,
337, 353, 373, 523, 557, 577, 727, 733, 757 and 773 are all superprimes among
the natural numbers up to one thousand.

Problem 1. Is there an infinite number of superprimes?
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Key words and phrases. Prime number, Dirichlet’s Theorem, Prime Number Theorem, su-

perprime, Mersenne prime, Fermat prime.
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Example 1.3. A simple way to generate (and print) all superprimes having at
most r digits is to use, within Mathematica, the following command:

p [ 0 ] = 2 ; p [ 1 ] = 3 ; p [ 2 ] = 5 ; p [ 3 ] = 7 ;
Do[number = 0;Do[m = n; q = 0;Do[z = Mod[m, 4];m = Floor[m/4];

q = p[z] ∗ 10i + q, {i, 0, k − 1}]; If[PrimeQ[q], number++;Print[{k, q}]],
{n, 0, 4k − 1}];Print[number], {k, 1, r}]

Here are the four-digit superprimes obtained:
2237, 2273, 2333, 2357, 2377, 2557, 2753, 2777, 3253, 3257, 3323, 3373, 3527,

3533, 3557, 3727, 3733, 5227, 5233, 5237, 5273, 5323, 5333, 5527, 5557, 5573,
5737, 7237, 7253, 7333, 7523, 7537, 7573, 7577, 7723, 7727, 7753, 7757.

In the table below, Pk is the number of k-digit superprimes for 1 ≤ k ≤ 15.
From this table one can conjecture that Pk > 3k for k ≥ 10.

k Pk
k
√

Pk k Pk
k
√

Pk k Pk
k
√

Pk

1 4 4.000000000 6 389 2.701831538 11 214432 3.052549327
2 4 2.000000000 7 1325 2.792742150 12 781471 3.097961899
3 15 2.466212074 8 4643 2.873094002 13 2884201 3.139966685
4 38 2.482823796 9 16623 2.944202734 14 10687480 3.177331457
5 128 2.639015822 10 59241 3.000974037 15 39838489 3.211344203

Based on the computations above we now state the following two conjectures:

Conjecture 1. There is an infinite number of superprimes.

Conjecture 2. For any integer k > 0 there is a k-digit superprime.

Remark 1. We note that it would be interesting to find the limit L := limk→∞
k
√

Pk.
It is likely that L > 3 and one cannot refute that L = 4. For the limit L we have
the asymptotic inequality Pk > (L− ε)k for every ε > 0.

Remark 2. We also note that in the base m positional notation for m ≥ 4 the
situation seems to be analogous: the number P

m
k denoting the number of k-digit

superprimes in the base m positional notation has been calculated for 4 ≤ m ≤ 12
and it turns out that it grows roughly as a

k, where a is slightly smaller than the
number π(m− 1). (Here π(x) is the prime-counting function, so π(m− 1) is the
number of primes used in the base m positional notation.) Hence Conjecture 1
and Conjecture 2 formulated above with respect to the decimal representation
can analogously be formulated in the base m positional notation for arbitrary
m ≥ 4.
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2. Generalized Dirichlet Theorem

The well-known Dirichlet’s Theorem on Primes in Arithmetic Progressions
was first published in 1837. In his article [4], P.G.L. Dirichlet stated it as follows:
“each unlimited arithmetic progression, with the first member and the difference

being coprime, will contain infinitely many primes." We present it formally as a
theorem below.

Dirichlet’s Theorem. Assume that a, b are coprime positive numbers. There
is an infinite number of primes in the arithmetical sequence

a, a + b, a + 2b, a + 3b, . . . .

Our aim here is to conjecture a Generalized Dirichlet Theorem. Let us call
by Dirichlet sequence the sequence in Dirichlet’s Theorem. We shall consider the
sequence (xn)∞n=0 defined by the recursive formula
(1) xn+1 = axn + b

where a, b and x0 are integers such that b is coprime to a · x0. We shall call
it Generalized Dirichlet sequence. We note that one obtains Dirichlet sequence
from it in the special case a = 1.

For our Generalized Dirichlet (GD) sequence we have the explicit formula

xn =

�
a

n
�
x0 + b

a−1

�
− b

a−1 = a
n
x0 + b(an−1)

a−1 for a �= 1,

x0 + n b for a = 1.

We note that the cases a ∈ {−1, 0} are trivial and in case b = −(a− 1)x0 our
sequence is constant. So, we shall assume a /∈ {−1, 0, 1} and b �= −(a − 1)x0.
Throughout this section we shall also need to consider as primes all members
xn for which |xn| is prime - so even the negative integers. (This is not unusual,
we note that also Mathematica treats prime numbers the same way and the
commands PrimeQ[-3] or ProvablePrimeQ[-3] give answers ‘True’). Such a con-
sideration of prime numbers will help us to simplify the statements in this section
and yet it will not negatively influence our main goal here which is to conjecture
a Generalized Dirichlet Theorem.

Remark 3. If a �= −1 a b �= −(a− 1)x0, then the explicit formula above yields
that all members of the GD sequence are different.

Also, the explicit formula above yields immediately the following statement.

Proposition 2.1. Let (xn)∞n=0 be a GD sequence. If a · x0 and b have a divisor

d > 1, then all xn for n ≥ 1 are divisible by d, and consequently, the GD sequence

contains at most three primes.

Example 2.2. Let us take in a GD sequence a = 3, b = −12 and x0 = 5. Then
the GD sequence (5, 3,−3,−21,−75, . . . ) contains only the primes 5, 3 and −3.
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Remark 4. We note that also a partial converse to Proposition 2.1 is true: if two
consecutive members xn and xn+1 of the GD sequence have a common divisor
d > 1, then a · x0 and b have the divisor d, too.

Example 2.3. (i) Let us take in the GD sequence x0 = 3, a = 5 and b = 1.
Hence xn+1 = 5xn+1. Then xn+2 = 25xn+6, which means that all members x2k

are divisible by 3. Since x1 = 16, all members x2k+1 are even and the sequence
(xn)∞n=0 contains only the prime x0 = 3.

(ii) Let us consider x0 = 14, a = 16 and b = 1. We have xn+1 = 16xn + 1.
Then xn+3 = 4096xn + 273. We note that x0 = 14 = 7 · 2, x1 = 225 = 3 · 75,
x2 = 3601 = 13 · 277 and 273 = 3 · 7 · 13.

It can easily be seen from the formulas above that all members x3k are divisible
by 7, all x3k+1 are divisible by 3 and all x3k+2 are divisible by 13. The GD
sequence (xn)∞n=0 does not contain any prime.

The previous examples show that even if b is coprime to a · x0, the GD se-
quence (xn)∞n=0 can be partitioned into k subsequences, of which each has its own
nontrivial divisor, and so the sequence (xn)∞n=0 contains only a finite number of
primes. Our aim is to study conditions forcing the GD sequence to contain only
a finite number of primes.

Let us put

Ak := 1 + a + . . . a
k−1 =

a
k − 1
a− 1

for k ≥ 0

Bk := Akb

y
(k,j)
n := xkn+j for k ≥ 2 and 0 ≤ j ≤ k − 1

Obviously, y
(k,j)
n+1 = Aky

(k,j)
n + Bk and y

(k,j)
0 = xj .

Proposition 2.4. Assume that there exists k ≥ 2 such that the following condi-

tions hold:

(ak) for all j ∈ {0, . . . , k − 1}, Ak has a common divisor dj > 1 with xj .

Equivalently,

(bk)
for all j ∈ {0, . . . , k − 1}, Ak has a common divisor dj > 1 with x0 −Ajb.

Then the GD sequence (xn)∞n=0 contains only a finite number of primes.

Proof. Assume that there exists k ≥ 2 such that, for all 0 ≤ j ≤ k − 1, Ak

has a common divisor dj > 1 with xj = y
(k,j)
0 . Then dj is a common divisor

of Bk = Akb and xj , which means that, for all 0 ≤ j ≤ k − 1, the sequence
(y(k,j)

n )∞n=0 contains a finite number of primes. Consequently, the GD sequence
(xn)∞n=0 contains only a finite number of primes.

24



Now we show that (ak) is equivalent to (bk). If j = 0, then xj = x0 − Ajb,
thus (ak) immediately implies (bk). For 1 ≤ j ≤ k− 1 we continue as follows. If,
by (ak), Ak has a common divisor dj > 1 with xj , it also has the common divisor
dj with xj − Akb = a

j
x0 + (Aj − Ak)b = a

j(x0 − Ak−jb). Since Ak is coprime
to a, it has the common divisor dj with (x0 − Ak−jb). Hence Ak has a common
divisor with x0 −Ajb for all 1 ≤ j ≤ k − 1. Consequently, (bk) holds.

Conversely, to show that (bk) implies (ak), let for all 0 ≤ j ≤ k − 1, Ak has
a common divisor dj > 1 with x0 − Ajb. If j = 0, then Ak has the common
divisor d0 with x0. If 1 ≤ j ≤ k − 1, then Ak has the common divisor dj with
a

k−j(x0 − Ajb) = a
k−j

x0 − Ak−jb + Akb. This means that Ak has the common
divisor dj with a

k−j
x0−Ak−jb = xk−j . Hence Ak has a common divisor with xj

for all j ∈ {0, . . . , k − 1}. The proof is complete. �

Remark 5. We note that in the conditions (ak) and (bk) we could write Bk

instead of Ak. The equality Bk = Akb means that if Bk has a common divisor
dj > 1 with xj , but Ak is coprime to xj , then b has a common divisor with xj .
Then b has a common divisor with axj−1. Now if b has a common divisor with
a, we may apply Proposition 2.1. If b is coprime to a, it has a common divisor
with xj−1 and then, by induction, it has a common divisor with xn for n ≥ 0.
So, these cases are in fact already covered by Proposition 2.1.

We also note that it follows from above that if we want the GD sequence
to contain an infinite number of primes, then we have to guarantee that the
conditions (ak) and (bk) are not satisfied for all k ≥ 2, which is not a simple task.
The most convenient way to guarantee it seems to be to show that Ak is coprime
to x0 or to x1 as we do it later with respect to Mersenne and Fermat primes (see
Remark 8 and Remark 9, respectively). An alternative way is to show that Ak

is coprime to x0 − b = x0 −A1b, which is applied at the very end of Section 3.

Remark 6. (i) For k = 2 the condition (ak) above means that a+1 has common
divisors with x0 and x1, and the equivalent condition (bk) means that a + 1 has
common divisors with x0 and x0 − b.

Our following observations concerning the conditions (ak) and (bk) for k > 2
are based on our computations via Mathematica and C++.

(ii) For k = 3 the conditions (ak) and (bk) are not satisfied for all a, b, x0 with
the integer values in the interval from −15 to 15 provided a · x0 is coprime to b.

(iii) For k = 5 the conditions (ak) and (bk) are not satisfied for all a, b, x0

with the integer values in the interval from −361 to 361 provided a ·x0 is coprime
to b.

If 361 above is replaced with 1000, then there is exactly one example of a, b, x0

with the given integer values where the conditions (ak) and (bk) are satisfied,
namely a = −139, b = 67, x0 = 362.
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(iv) Similarly, for k = 7 the conditions (ak) and (bk) are not satisfied for all
a, b, x0 with the integer values in the interval from −1500 to 1500 provided that
a · x0 is coprime to b.

(v) An interesting situation occurs in case k = 12. The conditions (a12) and
(b12) are satisfied for the values a = −11, b = 7, x = −9 (as well as for a = 7,
b = −23, x0 = 25), but for the same values the conditions (a4) and (a6) (as well
as (b4) and (b6)) are not satisfied. Hence the validity of the conditions is not
transferred from k’s to their divisors.

The following statements are related to properties of (generalized Mersenne)
numbers an−1

a−1 where a /∈ {−1, 0, 1}, which can be primes only when n is a prime.
However, as we shall see, they can be primes for only a finite number of values n.

Proposition 2.5. Let c /∈ {−1, 0, 1} and m > 1 be integers. Then un = cmn−1
cm−1

is not prime for n > m.

Proof. The number c
mn − 1 is divisible by numbers c

m − 1 and c
n − 1, and so is

divisible by their least common multiple which we denote by M . We can consider
M > 0. Obviously, M ≥ |cn − 1|.

First we shall show that |cn − 1| > |cm − 1| for n > m. We have the inequali-
ties |cn − 1| ≥ |c|n − 1 ≥ |c|m+1 − 1 ≥ 2|c|m − 1 = |c|m + |c|m − 1 ≥ |c|m + 3 >

|c|m + 1 ≥ |cm − 1|. Hence M > |cm − 1|. Further, |cmn − 1| ≥ |cmn| − 1 ≥
|c2n| − 1 = (|cn| − 1)(|cn|+ 1) > |cm− 1||cn− 1| ≥ M . So we obtain a non-trivial
factorization cmn−1

cm−1 = cmn−1
M

M
cm−1 . �

Proposition 2.6. Let the GD sequence satisfy the condition

(c) a = c
km

, b = ±c
km − 1
cm − 1

, x0 = ±c
jm − 1
cm − 1

,with c /∈ {−1, 0, 1}, j ≥ 0, k ≥ 1, m ≥ 2

integer numbers and with a choice of the same signs ± .

Then the GD sequence contains only a finite number of primes.

Proof. W.l.o.g., let us choose the sign +. We have that xn is equal to

c
kmn c

jm − 1
cm − 1

+
c
kmn − 1
ckm − 1

c
km − 1
cm − 1

=
c
m(j+kn) − c

kmn

cm − 1
+

c
kmn − 1
cm − 1

=
c
m(j+kn) − 1

cm − 1
.

If j + kn > m, then xn is not a prime by Proposition 2.5. �

Though a = −4c
4 is not a power of an integer, the next proposition shows

that it behaves similarly to a = c
m, which is likely related to the fact that

−4c
4 = (1 + i)4c4.

Proposition 2.7. Let c ≥ 1 and n ≥ 1. Then the integer un = (−4c4)n−1
−4c4−1 is

prime only for c = 1 and n = 2.
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Proof. We note that u0 = 0, u1 = 1 and u2 = 1 − 4c
4 = (1 − 2c

2)(1 + 2c
2). If

2 < n = 2k, then

un =
(−4c

4)2k − 1
−4c4 − 1

=
((−4c

4)k − 1)((−4c
4)k + 1)

−4c4 − 1
=

(−4c
4)k − 1

−4c4 − 1
((−4c

4)k + 1) .

If 1 < n = 2k + 1 then, with x = 2k
c
2k+1, we use the following identity due to

Sophie Germain:

4x
4 + 1 = (2x

2 + 2x + 1)(2x
2 − 2x + 1).

We obtain

un =
�
4c

4
�2k+1 + 1

4c4 + 1
=

4 · (2k
c
2k+1)4 + 1

4c4 + 1

=
(2 · (2k

c
2k+1)2 + 2 · 2k

c
2k+1 + 1)(2 · (2k

c
2k+1)2 − 2 · 2k

c
2k+1 + 1)

4c4 + 1
.

�

Proposition 2.8. Let the GD sequence satisfies the condition

(d) a = (−4c
4)k

, b = ± (−4c
4)k − 1

−4c4 − 1
, x0 = ± (−4c

4)j − 1
−4c4 − 1

with c ≥ 1, j ≥ 0, k ≥ 1 integer

numbers and with a choice of the same signs ± .

Then the GD sequence contains at most one prime.

Proof. W.l.o.g., let us choose the sign +. We have that xn is equal to

(−4c
4)kn (−4c

4)j − 1
−4c4 − 1

+
(−4c

4)kn − 1
(−4c4)k − 1

(−4c
4)k − 1

−4c4 − 1
=

(−4c
4)(j+kn) − 1
−4c4 − 1

.

If j + kn �= 2, then xn is not a prime by Proposition 2.7. �

The next statements are related to the factorizations of a
n − b

n or to the
identity of Sophie Germain that we already used in the proof of Proposition 2.7.

Proposition 2.9. Let c /∈ {−1, 0, 1}, d �= 0, α �= 0 and m > 1 be integers. Then

the number un = α
m

c
mn − d

m
is prime for only a finite number of values n.

Proof. The number αc
n−d is obviously a divisor of un. The equalities αc

n−d =
±1 and αc

n − d = ±un can be satisfied for only a finite number of values n. �

Proposition 2.10. Let the GD sequence satisfies the condition

(e) a = c
m

, b = ±d
m(cm − 1), x0 = ± (αm − d

m)with d �= 0, c /∈ {−1, 0, 1}, α �= 0
integer numbers and a choice of the same signs ± .

Then the GD sequence contains only a finite number of primes.
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Proof. W.l.o.g., let us choose the sign +. We have

xn = c
mn(αm − d

m) +
d

m(cm − 1)(cmn − 1)
cm − 1

= α
m

c
mn − d

m
.

�
Remark 7. If c, d are not coprime, then a, b are not coprime, too, so in the
previous proposition we could add the condition that c, d are not coprime.

Proposition 2.11. Let c ≥ 2, d ≥ 1 and α ≥ 1 be integers. Then the numbers

un = α
4
c
4n + 4d

4
and vn = 4α

4
c
4n + d

4
are prime only for d = 1, α = 1 and

n = 0.

Proof. Again, the identity due to Sophie Germain,
x

4 + 4y
4 = (x2 + 2xy + 2y

2)(x2 − 2xy + 2y
2) =

�
x + y)2 + y

2
� �

x− y)2 + y
2
�
,

leads to the factorizations
un = α

4
c
4n + 4d

4 =
�
αc

n + d)2 + d
2
� �

αc
n − d)2 + d

2
�

vn = 4α
4
c
4n + d

4 =
�
d + αc

n)2 + c
2n

� �
d− αc

n)2 + α
2
c
2n

�
.

All factors are greater than 1 excepting the case d = 1, α = 1 and n = 0. �
Proposition 2.12. Let the GD sequence satisfies one of the the conditions

a = c
4
, b = ±4d

4(1− c
4), x0 = ±

�
α

4 + 4d
4
�
,

(f)

a = c
4
, b = ±d

4(1− c
4), x0 = ±

�
4α

4 + d
4
�
,

(g)

with c ≥ 2, d ≥ 1, α ≥ 1 integer numbers and a choice of the same signs ± .

Then the GD sequence contains at most one prime.

Proof. Assuming that the condition (f) (the condition (g)) is satisfied, one obtains
xn = ±un (xn = ±vn) from Proposition 2.11. �

Propositions 2.6, 2.8 2.10 and 2.12 give us another necessary conditions for the
GD sequence to contain an infinite number of primes, namely that the integers
a, b and x0 cannot have the values given in the conditions (c), (d), (e), (f) and
(g). We are now ready to conjecture Generalized Dirichlet Theorem.

Conjecture 3. (Generalized Dirichlet Theorem) Let a, b and x0 be integers
such that b is coprime to a · x0. Consider the GD sequence (xn)∞n=0 defined by
the recursive formula

xn+1 = axn + b

in which none of the following conditions is satisfied:
(i) the conditions (ak) (equivalently (bk)) from 2.4, for k ≥ 2;
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(ii) the condition (c) from 2.6;
(iii) the condition(d) from 2.8;
(iv) the condition(e) from 2.10;
(v) the conditions (f) and (g) from 2.12.

Then the GD sequence (xn)∞n=0 contains an infinite number of primes.

Remark 8. In the special case x0 = 0, a = 2, b = 1 one obtains in the GD
sequence xn = 2n − 1 which is a prime only if n is a prime meaning xn is a
Mersenne prime. We note that, for all k ≥ 2, the condition (ak) is indeed not
satisfied as Ak = 2k − 1 and x1 = 1 are coprime. None of the other conditions
(c) - (g) is satisfied, too. Thus our Generalized Dirichlet Theorem implies a well-
known conjecture saying that there is an infinite number of Mersenne primes.

Remark 9. In the special case x0 = 2, a = 2, b = −1 we obtain the GD sequence
xn = 2n + 1 which is a prime only if n = 2k meaning xn is a Fermat prime. Now
the numbers Ak = 2k−1 and x0 = 2 are coprime. Hence, similarly, as above, our
Generalized Dirichlet Theorem implies a famous conjecture saying that there is
an infinite number of Fermat primes.

Remark 10. In the case a = 10, b = 1, x0 = 0, we have that Ak is coprime to x1,
and we get the GD sequence with xn = (10n−1)/9 = 1 · · · 1, that is, with members
xn consisting only of the digits 1 for n ≥ 1. Generalized Dirichlet Theorem implies
that there is an infinite number of primes whose decimal representation has only
digits 1. Here Mathematica found the primes for

n = 2, 19, 23, 317 and 1031.

More primes in this sequence have not been found.

Example 2.13. Let a = 18, b = 1 and x0 = 0. Then xn = 18n−1
17 . Using Mathe-

matica, we have found out that xn is not prime for 2 < n ≤ 25000. However, we
do not see any explanation for this fact.

Therefore also a weaker form of the conjecture seems to be interesting.

Conjecture 4. (Weak Generalized Dirichlet Theorem) There are integers
a �= ±1, x0 and b �= (1− a)x0 such that the GD sequence (xn)∞n=1 defined by

xn+1 = axn + b

contains an infinite number of primes.

3. Variations of the problem

There are several variations of the main problem regarding the infinite number
of superprimes. For example, it looks as there is an infinite number of superprimes
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consisting only of arbitrary two fixed prime digits. Even a variation of Conjec-
ture 2 saying that there is such specific k-digit superprime for any k > 0 seems
to be true. We look more closely to superprimes consisting of the digits 2 and 3.

Example 3.1. To generate, via Mathematica, all superprimes having at most
r digits from the set {2, 3}, one can easily modify the command from Exam-
ple 1.3. Here is the output obtained for r = 8: 2, 3, 23, 223, 233, 2333,
3323, 23333, 32233, 32323, 33223, 222323, 232333, 233323, 323233, 323333,
333233, 333323, 2222333, 2223233, 2232323, 2233223, 2332333, 2333323, 3222223,
3223223, 3223333, 3233323, 3233333, 3332233, 3333233, 22222223, 22223323,
22232233, 22232323, 23222233, 23223223, 23223323, 23322223, 32322223, 32323223,
32333333, 33222223, 33323333.

In the table below, Pk denotes the number of k-digit primes of the considered
type. One can ask what is the limit L := limk→∞

k
√

Pk. For L we again have the
asymptotic inequality Pk > (L− ε)k for every ε > 0.

k Pk
k
√

Pk k Pk
k
√

Pk k Pk
k
√

Pk

1 2 2.000000000 8 13 1.377980015 15 1337 1.615878716
2 1 1.000000000 9 39 1.502397860 16 1922 1.604111626
3 2 1.259921050 10 52 1.484568818 17 4549 1.641237856
4 2 1.189207115 11 104 1.525340028 18 7778 1.644975106
5 4 1.319507911 12 197 1.553121812 19 15926 1.664039040
6 7 1.383087554 13 382 1.579866021 20 25210 1.659887454
7 13 1.442562919 14 618 1.582545917 21 57882 1.685729112

Example 3.2. Here is the command and the output in Mathematica for all
numbers 0 < n ≤ 11000 such that there is a superprime with the first digit 2
followed by n digits 3:

Do[p = 2 ∗ 10n + (10n − 1)/3; If[PrimeQ[q],Print[n]], {n, 1, 11000}];

n = 1, 2, 3, 4, 10, 16, 22, 53, 91, 94, 106, 138, 210, 282, 522, 597, 1049, 2227, 6459, 10582.

That is, the first five superprimes of this specific form are

23, 233, 2333, 23333, 23333333333.

Based on the above computation we state a stronger version of Problem 1 and
the following two conjectures:

Problem 2. Is there an infinite number of superprimes consisting of the digits 2
and 3? More generally, is there, for any pair of distinct prime digits, an infinite

number of superprimes with only these two fixed digits?
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Conjecture 5. There is an infinite number of superprimes with the first digit 2
which is followed by n digits 3 (n > 0). This is also true if the pair of prime digits
(2, 3) is replaced with any pair (p, q) of distinct prime digits where q /∈ {2, 5}.

Conjecture 6. For any integer k > 0 there is a k-digit superprime consisting
only of the digits 2 and 3. This is also true if the prime digits 2, 3 are replaced
with any two distinct prime digits.

Remark 11. The sequence of numbers 2, 23, 233, 2333, . . . from Example 3.2 can
be obtained from our Generalized Dirichlet Theorem in the special case a = 10,
b = 3 a x0=2. In this case we have that x0 = 2 is coprime to Ak = 1 · · · 1.

Hence Generalized Dirichlet Theorem implies an affirmative answer to the the
first part of Problem 2 and, of course, implies the first part of the Conjecture 5,
too.

A stronger version of the main problem we consider here asks if there is an
infinite number of superprimes with a stronger property that every subchain of
the superprime’s decimal representation consisting of the two subsequent digits
is again a decimal representation of a prime number. For example, 373 is the
first such superprime with 3 digits as both 37 and 73 are primes.

The following example indicates that there might be an infinite number of the
superprimes having this stronger property. Let us call them strong superprimes.
(We note that also strong superprimes can be considered in arbitrary base m

positional notation for m ≥ 4.)

Example 3.3. To generate, via Mathematica, all strong superprimes having at
most r digits, one can again easily modify the command from Example 1.3. Here
is the list of the first 7 strong superprimes with at least 3 digits:

373, 237373, 537373, 5373737, 53737373, 53737373737, 237373737373.

The output indicates that there are three types of the strong superprimes:
(i) Type A: 23 followed by n copies of 73, the first one is 237373 (n = 2);
(ii) Type B: 53 followed by n copies of 73, the first one is 537373 (n = 2);
(iii) Type C: 5 followed by n copies of 37, the first one is 5373737 (n = 3).

We have generated, via Mathematica, the strong superprimes of the given three
types with at most 2000 digits by a modification of the command from Exam-
ple 3.2:

(i) Type A strong superprimes: n = 2, 5, 20, 441;
(ii) Type B strong superprimes: n = 2, 3, 12, 21, 23, 483;
(iii) Type C strong superprimes: n = 3, 5, 8, 11, 15, 24, 53, 369, 710.

Conjecture 7. There is an infinite number of strong superprimes of each of the
three types A, B, C described above.
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We again note that our Generalized Dirichlet Theorem in section 2 implies
the Conjecture 7. To see this, let us put in Generalized Dirichlet Theorem in all
three cases a = 100. For b = 73 and x0 = 23 one obtains the type A, for b = 73
and x0 = 53 the type B and for b = 53 and x0 = 5 type C. In all three cases we
have A1 = 1 and Ak = 10 . . . 101 for k ≥ 2. Since 23− 73 = −50, 53− 73 = −20
a 5− 37 = −32, the requirement that x0−A1b is coprime to Ak is satisfied in all
three cases. Here one can see that sometimes checking the condition (bk) might
be more convenient then checking (ak). In all three cases the conditions (c)-(g)
are obviously not satisfied.

We finally consider the question whether there is an infinite number of su-
perprimes with even a stronger property that all subchains of the superprime’s
decimal representation consisting of the two and three subsequent digits are again
decimal representations of prime numbers. Here 373 is the first such superprime
as all of 37, 73 and 373 are primes. It is obviously the only such strong super-
prime among the types A, B, C, because the number 737 is not prime. Hence
strengthening further the concept of a strong superprime introduced here does
not seem to be fruitful anymore.

Remark 12. We note that in the base m positional notation for m ≥ 4 the
situation is quite different than in the above case m = 10. We have been searching
(using simple modifications of the given commands in Mathematica) for strong
superprimes in the base m positional notation for 4 ≤ m ≤ 16.

Just to illustrate our findings, we note that for m = 5 there are two 2-digit
superprimes 13 = 235 and 17 = 325, one 3-digit strong superprime 67 = 2325 and
one 5-digit strong superprime 2213 = 323235. We have found a 17-digit strong
superprime 1540415445963 = 323232323232323235. For the base m = 6 there are
two 2-digit superprimes 17 = 256 and 23 = 356; from this it can be easily shown
that for k > 2 there are no k-digit strong superprimes in the base 6 positional
notation. For m = 8 there are eight 2-digit superprimes: 19 = 238, 23 = 278,
29 = 358, 31 = 378, 43 = 538, 47 = 578, 59 = 738 and 61 = 758. Then also the
number of k-digit strong superprimes is of course greater in the base m positional
notation for m = 8 than for m = 10.

4. Observations on sequences related to the problem

Our first observation in this section concerns the increasing sequence (an)∞n=1

of all natural numbers (not necessarily superprimes) consisting only of the prime
digits 2, 3, 5 and 7. This is the sequence

2, 3, 5, 7, 22, · · · , 77, 222, · · · , 777, 2222, · · · , 7777, · · · .

Assume that the n-th member an consists of k digits. Then
2
9

�
10k − 1

�
≤ an ≤

7
9

�
10k − 1

�
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and
4 + 16 + · · · + 4k−1

< n ≤ 4 + 16 + · · · + 4k
,

whence
4k − 4

3
< n ≤ 4(k+1) − 4

3
.

Thus
4k − 1

3
≤ n <

4(k+1) − 1
3

which yields
4k ≤ 3n + 1 < 4k+1

.

Therefore

k ≤ log(3n + 1)
log 4

< k + 1

whence

k =
�
log(3n + 1)

log 4

�
.

Consequently, for k we have
log(3n + 1)

log 4
− 1 < k ≤ log(3n + 1)

log 4
.

Hence we obtain the inequalities
2
9

�
10

log(3n+1)
log 4 −1 − 1

�
< an ≤

7
9

�
10

log(3n+1)
log 4 − 1

�
,

which can be rewritten as
2
90

(3n + 1)log4 10 − 2
9

< an ≤
7
9
(3n + 1)log4 10 − 7

9
.

The last inequalities yield

lim inf
n→∞

an

nlog4 10
≥ 2

90
3log4 10

and
lim sup

n→∞

an

nlog4 10
≥ 7

9
3log4 10

.

We conclude that the sequence (an)∞n=1 behaves as (na)∞n=1, where

a = log4 10 = 1.660964 . . . .

Our second observation concerns the sequence (bn)∞n=1 of all natural numbers,
which are not primes. We first note the well-known Prime Number Theorem says
that the number of primes among the first n natural numbers is asymptotically

n
log n . This yields that the sequence (bn)∞n=1 is growing ‘slowly’.
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More precisely, let π(n) denote the number of primes less than or equal to a
natural number n and let pn be the n-th prime. It is well-known that

lim
n→∞

π(n) lnn

n
= 1 .

This implies that
lim

n→∞

pn

n lnn
= 1 .

Moreover, by [5],

pn > n lnn for all natural numbers n .

We shall show that

n

�
1 +

1
lnn + 2

�
< bn < n

�
1 +

1
lnn− 5

�
for n > e6

, i.e. n ≥ 404 .

We note that the right inequality is an improvement of the asymptotic inequality

bn < (1 + ε)n for every ε > 0.

On the other hand, the left inequality shows that the right inequality cannot be
essentially improved.

For n ≥ 55 we have (we refer to [5])
n

lnn + 2
< π(n) <

n

lnn− 4
.

This is our starting point for the following observation. Let n > e5
> 55, hence

lnn > 5. Let us denote m := bn. Obviously, m > n and

n = m− π(m) > m

�
1− 1

lnm− 4

�
> m

�
1− 1

lnn− 4

�
= m

lnn− 5
lnn− 4

.

Therefore

m < n
lnn− 4
lnn− 5

= n

�
1 +

1
lnn− 5

�
.

From this it follows lnm < lnn + ln
�
1 + 1

ln n−5

�
< lnn + 1

ln n−5 and

n = m−π(m) < m

�
1− 1

lnm + 2

�
< m

�
1− 1

lnn + 2 + 1
ln n−5

�
= m

ln2
n− 4 lnn− 4

ln2
n− 3 lnn− 9

.

Hence

m > n
ln2

n− 3 lnn− 9
ln2

n− 4 lnn− 4
= n

�
1 +

lnn− 5
ln2

n− 4 lnn− 4

�
.

Under the condition that lnn ≥ 6 we have
lnn− 5

ln2
n− 4 lnn− 4

≥ 1
lnn + 2

.
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Thus
m > n

�
1 +

1
lnn + 2

�
.

So we conclude that the growth of the sequence (bn)∞n=1 is comparable with the
growth of the sequence of the natural numbers and yet it does not contain any
prime. The sequence (pn)∞n=1 is growing a bit faster than the sequence of the
natural numbers and yet it contains all (and only) primes. From this it follows
that having a sequence of natural numbers, one cannot conclude anything about
as whether it contains primes or not.

Remark 13. The inequalities above can even be slightly improved. We note
that for 17 ≤ n < e100 as well as for n > e200 we have (we refer again to [5])

n

lnn
< π(n) <

n

lnn− 2
.

From this one can analogously as above derive

n

�
1 +

1
lnn

�
< an < n

�
1 +

1
lnn− 3

�
for n > e200

.
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FACIAL NON-REPETITIVE EDGE COLOURING
OF SEMIREGULAR POLYHEDRA

STANISLAV JENDROĽ AND ERIKA ŠKRABUĽÁKOVÁ

Dedicated to the 70th birthday of Alfonz Haviar

Abstract. A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n,
is called a repetition. A sequence S is called non-repetitive if no subsequence
of consecutive terms of S is a repetition. Let G be a graph whose edges are
coloured. A trail in G is called non-repetitive if the sequence of colours of
its edges is non-repetitive. If G is a plane graph, a facial non-repetitive
edge-colouring of G is an edge-colouring such that any facial trail is non-
repetitive. We denote π�

f (G) the minimum number of colours needed. In
this paper we prove that for graphs of Platonic, Archimedean and prismatic
polyhedra π�

f (G) is either 3 or 4.

1. Introduction

A polyhedron P in the three-dimensional Euclidean space is a finite collection of
planar convex polygons, called the faces, such that every edge of every polygon
is an edge of precisely one other polygon. The edge set of a polyhedron is the set
of intersections of adjacent faces, and the vertex set is the set of intersections of
adjacent edges. A polyhedron P is called semiregular if all of its faces are regular
polygons and there exists a sequence σ = (p1, p2, . . . , pq) called the cyclic sequence

of P , such that every vertex of P is surrounded by a p1-gon, a p2-gon, . . . , a pq-
gon, in this order within rotation and reflexion. A semiregular polyhedron P is
called the (p1, p2, . . . , pq)-polyhedron if it is determined by the cyclic sequence
(p1, p2, . . . , pq) = σ (see [7], [10]). The five polyhedra with equal regular faces
that can be inscribed in a sphere (the tetrahedron, the cube, the octahedron,
the dodecahedron and the icosahedron) are known as Platonic solids. Thirteen
polyhedra, which were discovered by Archimedes and are contained by equilateral
and equiangular but not similar polygons are known as Archimedean solids (see
[3]). The pseudo-Archimedean solid that has congruent solid angles but they
are not all equivalent, satisfy the above conditions too and is known as a Miller

2000 Mathematics Subject Classification. 05C10; 05C15, 52B10.
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solid, a Ashkinuze polyhedron, a pseudo rhomb-cub-octahedron or a (3, 4, 4, 4)-
polyhedron. The family of semiregular polyhedra completes a set of prismatic

polyhedra consists of two infinite families: the prisms i.e. (4, 4, n)-polyhedra for
every n ≥ 3, n �= 4, and the antiprisms i.e. (3, 3, 3, n)-polyhedra for every n ≥ 4
(see [3]).

The study of the semiregular polyhedra began with the abstraction of regula-
rity in Euclide’s Book XIII of Elements. Since those times they continually treat
a lot of attention. Thanks to Steinitz theorem [5] that asserts that the graph is a
graph of a convex polyhedron if and only if it is planar and 3-connected, instead
of a study of combinatorial properties of convex polyhedra it is enough to study
their graphs. Hence we use the same name for a polyhedron and its graph. The
family of graphs of semiregular polyhedra is very inspirating and many questions
that deal with their graphs were asked.

Maehara asked for the the smallest integer n such that the graph of a se-
miregular polyhedra can be represented as the intersection graph of a family
of unit-diameter spheres in Euclidean n-dimensional space. Such n is called the
sphericity of the graph and in [12] is determined for graphs of semiregular polyhe-
dra except for a few prisms. The generalized Archimedean solids were studied by
Karabáš and Nedela (see [8], [9]). They gave a complete census of Archimedean
solids of genera from two to five. But study of properties of semiregular polyhedra
does not occur only in mathematics; man can find it also in chemistry (see [11]);
architecture, art, cartography (see [3]); ... and so on. A lot of posed questions
relate to colouring of semiregular polyhedra and determining some colouring char-
acteristic of it: The rainbowness of semiregular polyhedra, the parameter rb(P ),
had been studied by Jendrol’ and Schrötter in [7]. They found the exact value
of rb(P ) for all graphs of semiregular polyhedra except of three Archimedean
solids for which the parameter is only estimated. A. Kemnitz and P. Wellmann
in [10] determined the circular chromatic number χc(G) for Platonic solid graphs,
Archimedean solid graphs and regular convex prism graphs. In this paper we de-
termine a variant of non-repetitive edge-colouring for plane graphs of semiregular
polyhedra introduced in [6].

A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called a
repetition. A sequence S is called non-repetitive if no subsequence of consecutive
terms of S is a repetition. Thue [13] states that arbitrarily long non-repetitive
sequences can be formed using only three symbols.
An edge k-colouring of G is a mapping ϕ : E(G) → {1, 2, . . . , k}. Alon et al. [1]
introduced a natural generalization of Thue’s sequences for edge-colouring of
graphs. An edge-colouring ϕ of a graph G is non-repetitive if the sequence of
colours on any path in G is non-repetitive. The minimum numbers of colours
π
�(G) needed in any non-repetitive colouring of G is called the Thue chromatic

index of G.
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For a face f , the size (or degree) of f is defined to be the length of the shortest
closed facial walk containing all edges from the boundary of f . The face of degree
r is known as an r-gonal face.

Let G be a plane graph. A facial trail in G is a trail made of consecutive edges
of the boundary walk of some face. A facial non-repetitive edge colouring of G

is an edge colouring of G such that any facial trail is non-repetitive. The facial

Thue chromatic index of G, denoted π
�
f (G), is the minimum number of colours of

a facial non-repetitive edge colouring of G. Note that the facial Thue chromatic
index depends on the embedding of the graph. In the following, all the graphs
we will consider come along with an embedding in the plane.

We show the exact value of Thue chromatic index for graphs of all semiregular
polyhedra, that is the first step towards the Conjecture 18 setted in [6].

The notation and terminology used but not defined in this paper can be found
in [2].

2. Basic preliminaries

Thue’s sequences (see [13]) show that the Thue chromatic index of a path is at
most 3. Actually, π

�(Pn) = 3, for all n ≥ 5, as it is easy to see that every sequence
of length 4 on two symbols contains a repetition. An immediate corollary is that
the Thue chromatic index of a cycle is at most 4. In [4], Currie showed that
π(Cn) = 4 only for n ∈ {5, 7, 9, 10, 14, 17}. For other values of n ≥ 3, π(Cn) = 3.

From the above remarks it is easy to see that for our less constrained parameter
π
�
f (G) the following holds (see [6]):

Theorem 1. Let G be a cycle Cn.

(i) if n = 2, then π
�
f (G) = 2;

(ii) if n /∈ {2, 5, 7, 9, 10, 14, 17}, then π
�
f (G) = 3 and

(iii) if n ∈ {5, 7, 9, 10, 14, 17}, then π
�
f (G) = 4.

Corollary 2. Let G be a plane graph and let a facial trail of one of its faces be

isomorphic to Cn.

(i) If n = 2, then π
�
f (G) ≥ 2;

(ii) if n /∈ {2, 5, 7, 9, 10, 14, 17}, then π
�
f (G) ≥ 3 and

(iii) if n ∈ {5, 7, 9, 10, 14, 17}, then π
�
f (G) ≥ 4.

3. Prismatic polyhedra

An r-sided antiprism Ar is defined as follows: The vertex set V (Ar) = {ur+1 =
u1, u2,. . . , ur, vr+1 = v1, v2,. . . , vr }, r ≥ 3. The edge set E(Ar) = { {uiui+1}∪
{vivi+1} ∪ {uivi} ∪ {ui+1vi}, i = 1,. . . , r }. The face set of Ar consists of
two r-gonal faces f and h where f = [u1, . . . , ur], h = [v1, . . . , vr] and 2r faces
fi = [ui, ui+1, vi] and hi = [vi, vi+1, ui+1], i = 1, . . . , r, indices taken modulo r.

39



Theorem 3. Let Ar be the graph of antiprism. If r ∈ {5, 7, 9, 10, 14, 17} then

π
�
f (Ar) = 4; else π

�
f (Ar) = 3.

Proof. According to Theorem 2 the lower bound is clear.
Upper bound: Colour the edges of the cycle on vertices u1, u2, . . . , ur nonrepe-
titively using 4 colours when r = 5, 7, 9, 10, 14 or 17; else use only 3 colours.
For i = 1, . . . , r, indices modulo r, use the colour of the edge uiui+1 for colouring
the edges ui+1vi+1 and vi+1vi+2.
Note that in such a case the cycle on vertices v1, v2, . . . , vr is coloured non-
repetitively too. Noncoloured edges are diagonals of the 4-gonal faces coloured
with two colours. Thus there is still at least one colour more that can be used to
obtain facial non-repetitive colouring of each 3-gonal face. �

An r-sided prism Dr, r ≥ 3, is defined as follows: The vertex set V = {ur+1 =
u1, u2,. . . , ur, vr+1 = v1, v2,. . . , vr} and the edge set E = {{ui, ui+1} ∪
{vi, vi+1} ∪ {ui, vi}, for i = 1, . . . , r }. The set of faces of Dr consists of two
r-gonal faces: the outer face f = [u1, . . . , ur] and the inner face h = [v1, . . . , vr];
and r quadrangles [ui, ui+1, vi+1, vi] for any i = 1, . . . , r, indices taken modulo r.

Theorem 4. Let Dr be a graph of prism. Then for r ≥ 4 π
�
f (Dr) = 4 and

π
�
f (D3) = 3.

Proof. It is easy to see that πf (Dr) ≥ 3 and that πf (D3) = 3.
Now we show the upper bound for Dr; r > 3: According to the Theorem of Thue
[13] there exists a non-repetitive edge 3-colouring of the path P = v1, v2, . . . , vr,
see Figure 1, that uses the colours 1, 2 and 3. Let us colour the edges of the path
Q = u2, u3, . . . , ur, u1 with the colours 1, 2 and 3 in such a way that an edge
ui+1ui+2 has the same colour as an edge vivi+1 for i = 1, 2, . . . , r− 1. Colour the
edges vrv1 and u1u2 with the colour 4.

Then we have to distinguish four situations to show that our colouring fulfills
the required conditions:

Without loss of generality we can assume, that edge vr−1vr received colour 1
and a vr−2vr−1 colour 2.

Case 1: If colour v1v2 is 1 and v2v3 is 2, then we shall colour the edges urvr,
u1v1 and u2v2 with the colour 3 and the remaining edges with the colour 4.

Case 2: If colour v1v2 is 1 and v2v3 is 3, then we shall colour the edges urvr,
u1v1 with the colour 3; the edge u2v2 with the colour 2 and the remaining edges
with the colour 4.

Case 3: If colour v1v2 is 2, then we shall colour the edges urvr and u1v1 with
the colour 3.
If the colour of the edge v2v3 is 1, then we shall colour the edge u2v2 with the
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Figure 1. The prism

colour 3 too, otherwise we shall colour it 1. For colouring of the remaining edges
we can use colour 4.

Case 4: If colour v1v2 is 3, then we shall colour the edge urvr with the colour
3 and the edge u1v1 with the colour 2.
If the colour of the edge v2v3 is 2, then we shall colour the edge u2v2 with the
colour 1; otherwise we shall colour it with the colour 2. For colouring of the
remaining edges we shall use colour 4.

It is easy to see that in each case the obtained colouring is a facial non-
repetitive 4-edge-colouring.
Now we are going to show that the lower bound of the facial Thue chromatic index
of Dr is 4; r ≥ 4: Suppose, that there exist facial non-repetitive 3-edge-colouring
of Dr, r ≥ 4. In this case on the r-gonal face of Dr there exist a sequence of
edges vivi+1, vi+1vi+2, vi+2vi+3, vi+3vi+4 coloured with colours a, b, a, c. Thus
both of the edges vi+1ui+1 and vi+2ui+2 have to be coloured with the colour c

and the edge vi+3ui+3 has to be coloured with b. Hence the edge ui+2ui+3 have
to be coloured with the colour a. But then the colour a, as well as b and c, could
not be used for colouring the edge ui+1ui+2 – a contradiction. �

4. Platonic polyhedra

The set of Platonic solids consists of five polyhedra:
(i) the tetrahedron or the (3, 3, 3)− polyhedron,
(ii) the cube or the (4, 4, 4)− polyhedron,
(iii) the octahedron or the (3, 3, 3, 3)− polyhedron,
(iv) the dodecahedron or the (5, 5, 5)− polyhedron and
(v) the icosahedron or the (3, 3, 3, 3, 3)− polyhedron.
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Figure 2. The tetrahedron and the octahedron

Figure 3. The isosahedron and the dodecahedron

Theorem 5. If G is the tetrahedron, the octahedron or the icosahedron, then

π
�
f (G) = 3. If G is the dodecahedron or the cube, then π

�
f (G) = 4.

Proof. Theorem 2 implies that π
�
f (G) ≥ 3 for G being the tetrahedron, the octa-

hedron, the cube or the icosahedron and π
�
f (G) ≥ 4 for G being the dodecahedron.

From Figures 2 and 3 we can observe that except of the cube these bounds are
achieved. The cube Q is in a family of prisms hence according to the Theorem 4
we have π

�
f (Q) = 4. �

5. Archimedean polyhedra

The set of Archimedean solids consists of thirteen polyhedra:
(i) the cub-octahedron or the (3, 4, 3, 4)− polyhedron,
(ii) the rhomb-cub-octahedron or the (3, 4, 4, 4)− polyhedron,
(iii) the snub cube or the (3, 3, 3, 3, 4)− polyhedron,
(iv) the truncated dodecahedron or the (3, 10, 10)− polyhedron,
(v) the truncated icosi-dodecahedron or the (4, 6, 10) − polyhedron or the

great rhomb-icosi-dodecahedron,

42



(vi) the truncated icosahedron or the (5, 6, 6)− polyhedron,
(vii) the icosi-dodecahedron or the (3, 5, 3, 5)− polyhedron,
(viii) the rhomb-icosi-dodecahedron or the (3, 4, 5, 4)− polyhedron,
(ix) the snub dodecahedron or the (3, 3, 3, 3, 5)− polyhedron,
(x) the truncated tetrahedron or the (3, 6, 6)− polyhedron,
(xi) the truncated octahedron or the (4, 6, 6)− polyhedron,
(xii) the truncated cube or the (3, 8, 8)− polyhedron and
(xiii) the truncated cub-octahedron or the (4, 6, 8)− polyhedron, or the great

rhomb-cub-octahedron.

Theorem 6. If G is a plane graph of the (3, 4, 3, 4)-polyhedron, the (3, 4, 4, 4)-
polyhedron or the (3, 3, 3, 3, 4)-polyhedron, then π

�
f (G) = 3.

If G is a plane graph of the (3, 10, 10)-polyhedron, the (4, 6, 10)-polyhedron, the

(5, 6, 6)-polyhedron, the (3, 5, 3, 5)-polyhedron, the (3, 4, 5, 4)-polyhedron or the

(3, 3, 3, 3, 5)-polyhedron, then π
�
f (G) = 4.

If G is a plane graph of the (3, 6, 6)-polyhedron, the (4, 6, 6)-polyhedron, the

(3, 8, 8)-polyhedron or the (4, 6, 8)-polyhedron, then π
�
f (G) = 4.

Figure 4. The (3, 4, 3, 4)-polyhedron and the (3, 4, 4, 4)-polyhedron

Proof. Theorem 2 gives the lower bound for the facial Thue chromatic index of
Archimedean solids. From Figures 4 – 9 we can observe that except of the (4, 6, 6)-
polyhedron, the (3, 6, 6)-polyhedron, the (3, 8, 8)-polyhedron and the (4, 6, 8)-
polyhedron these bounds are achieved.
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Figure 5. The (3, 3, 3, 3, 4)-polyhedron and the (3, 10, 10)-polyhedron

Figure 6. The (4, 6, 10)-polyhedron

For these four exceptions Theorem 2 gives π
�
f (G) ≥ 3. In what follows we

show that 3 colours are not enough to colour their edges facially non-repetitively.
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Figure 7. The (5, 6, 6)-polyhedron and the (3, 5, 3, 5)-polyhedron

Figure 8. The (3, 4, 5, 4)-polyhedron

Case 1: The (4, 6, 6)-polyhedron
Consider a graph of the (4, 6, 6)-polyhedron depicted on the Figure 10 (do not
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Figure 9. The (3, 3, 3, 3, 5)-polyhedron

consider the edge labelling there).
By a way of contradiction let us suppose that there exists a facial non-repetitive
edge 3-colouring of the (4, 6, 6)-polyhedron. In such a case there exist a 4-gonal
face that edges v1v2, v2v3, v3v4, v4v1 are coloured w.l.o.g. with colours 1, 2, 1, 3.
Then the edges v2v6 and v3v7 have to have the colour 3 and the edges v4v8 and
v1v5 have to have the colour 2. The edge v5v10 has to have the colour 1, because
in other case there would be either a repetition 2, 2 or a repetition 2, 3, 2, 3.
Hence the edge v5v11 has to have the colour 3. By the similar reasons the edge
v6v13 has to have the colour 1. Thus the edge v6v12 has to have the colour 2.
But in that case the edge v11v12 has to have the colour 1 and there is a repetitive
sequence of colours 2, 3, 1, 2, 3, 1 on edges of one face of (4, 6, 6)-polyhedron – a
contradiction.

For a facial non-repetitive 4-edge-colouring of (4, 6, 6)-polyhedron see Figure 10
where the numbers on edges are colours of these edges.

Case 2: The (3, 6, 6)-polyhedron
Consider a graph of the (3, 6, 6)-polyhedron depicted on the Figure 11 (do not
consider the edge labelling).
By a way of contradiction let us suppose that there exists a facial non-repetitive
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Figure 10. Case 1 - the (4, 6, 6)-polyhedron

edge 3-colouring of the (3, 6, 6)-polyhedron. Then there exist a 3-gonal face with
edges v1v2, v2v3, v3v1 coloured w.l.o.g. 1, 2 and 3. Hence the edge v2v5 have
to have the colour 3 and the edge v3v6 have to have the colour 1. Then one of
the edges v5v10, v5v11 is coloured with the colour 1 and the other one with the
colour 2. Thus the edge v10v11 is coloured with the colour 3. Similarly one of the
edges v6v8, v6v9 is coloured with the colour 2 and the other one with the colour 3.
Hence the edge v8v9 is coloured with the colour 1. But then the edge v9v10 has to
have the colour 2 and the edge v5v10 has to have the colour 1. But then the edge
v6v9 has to have the colour 3 and thus there is a repetitive sequence of colours
1, 2, 3, 1, 2, 3 on edges of one face of the (3, 6, 6)-polyhedron – a contradiction.
For a facial non-repetitive edge 4-colouring of (3, 6, 6)-polyhedron see Figure 11.

Figure 11. Case 2 - the (3, 6, 6)-polyhedron
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Figure 12. Case 3 - the (3, 8, 8)-polyhedron

Case 3: the (3, 8, 8)-polyhedron
Consider a graph of the (3, 8, 8)-polyhedron depicted on the Figure 12 (do not con-
sider the edge labelling). By a way of contradiction let us suppose that there exists
a facial non-repetitive edge 3-colouring of the (3, 8, 8)-polyhedron. Notice that
there exist unique facial non-repetitive edge colouring of the cycle C8 with three
symbols. Thus there exists an 8-gonal face of (3, 8, 8)-polyhedron that edges v1v2,
v2v3, v3v4, v4v5, v6v7, v7v8, v8v1 are coloured either with the sequence of colours
S1 = 1, 2, 1, 3, 2, 1, 2, 3, or with the sequence of colours S2 = 3, 1, 2, 1, 3, 2, 1, 2.

If the 8-gonal face is coloured with the sequence of colours S1, the edges v2v10

and v3v10 have to have the colour 3 – a contradiction.
Now suppose that the 8-gonal face mentioned above is coloured with the se-

quence of colours S2. In such a case the edges v1v9 and v6v12 have to have the
colour 1, the edges v4v11, v7v12 and v8v9 have to have the colour 3 and the edge
v5v11 has to have the colour 2. Hence the edges v9v13 and v12v16 have to have the
colour 2 too and the edge v11v15 has to have the colour 1. Then one of the edges
v15v21, v15v22 is coloured with the colour 2 and the other one with the colour
3 thus the edge v21v22 has to have the colour 1. Similarly one of the two edges
v16v23, v16v24, likewise one of the two edges v13v17, v13v18, has to have the colour
1 and the other one the colour 3. Thus the edges v23v24, v17v18 have to have the
colour 2. Hence the edge v22v23 has to have the colour 3; the edge v15v22 has to
have the colour 2 and the edge v16v23 the colour 1. But then the edge v17v24 has
to have the colour 1 and both of the edges v13v17, v16v24 have to have the colour
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3. Hence there is a repetition 1, 3, 2, 3, 1, 3, 2, 3, of colours on edges of one face
of the (3, 8, 8)-polyhedron – a contradiction.

For a facial non-repetitive 4-edge-colouring of (3, 8, 8)-polyhedron see Fig-
ure 12.

Figure 13. Case 4 - the (4, 6, 8)-polyhedron

Case 4: the (4, 6, 8)-polyhedron
Consider a graph of the (4, 6, 8)-polyhedron depicted on the Figure 13 without
labellings of edges.
By a way of contradiction let us suppose that there exists a facial non-repetitive
3-edge-colouring of the (4, 6, 8)-polyhedron.
The unique non-repetitive colouring of C8 gives two possibilities how the edges
v1v2, v2v3, v3v4, v4v5, v6v7, v7v8 and v8v1 of an 8-gonal face of (4, 6, 8)-polyhedron
are coloured.

First let us suppose that the edges v1v2, v2v3, v3v4, v4v5, v6v7, v7v8 and v8v1

are coloured with the sequence of colours 1, 2, 1, 3, 2, 1, 2, and 3, respectively.
In such a case the edges v2v13 and v3v16 have to have the colour 3 and the edge
v4v17 has to have the colour 2. Thus the edge v16v17 has to have the colour 1.
But then the edge v15v16 has to have the colour 2 and there is a repetition 2, 3,
2, 3 of colours on edges of one face of the (4, 6, 8)-polyhedron – a contradiction.
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Now suppose that the edges v1v2, v2v3, v3v4, v4v5, v6v7, v7v8 and v8v1 of
8-gonal face are coloured consequently with colours 3, 1, 2, 1, 3, 2, 1, 2. Then
the edges v3v16 and v4v17 have to have the colour 3, the edge v1v12 has to have
the colour 1 and the edge v2v13 has to have the colour 2. Hence the edge v16v17

has to have the colour 1 and the edges v15v16, v17v18 have to have the colour 2.
Then the edges v12v13 and v14v15 have to have the colour 3 and the edge v13v14

has to have the colour 1. But in such a case the edge v15v33 has to have the
colour 1 and there is a repetition 1, 2, 1, 2 of colours on edges of one face of the
(4, 6, 8)-polyhedron – a contradiction.

For a facial non-repetitive edge 4-colouring the (4, 6, 8)-polyhedron see Fig-
ure 13. �

6. Pseudo-Archimedean polyhedron

Figure 14. the Miller polyhedron

Theorem 7. Let G be a graph of the Miller polyhedron. Then π
�
f (G) = 3.

Proof. Theorem 2 gives π
�
f (G) ≥ 3 for G being a graph of Miller polyhedron. A

facial non-repetitive edge 3-colouring of G is at Figure 14, thus π
�
f (G) = 3. �
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7. Discussion

In [6] there was conjectured that for every 3-connected plane graph G the facial
Thue chromatic index π

�
f (G) ≤ 6. In the present paper we have found the exact

values of the facial Thue chromatic index for semiregular polyhedra. We showed
that π

�
f (G) is either 3 or 4 for graphs of semiregular polyhedra, which is the first

step towards the conjecture mentioned.
By Theorem 1 for every cycle Cn, where n ∈ {2, 5, 7, 9, 10, 14, 17} holds π

�
f (Cn) =

4. We showed that even if the 3-connected plane graph does not contain any face
of degree n ∈ {2, 5, 7, 9, 10, 14, 17} its facial Thue chromatic index could be 4 (see
Figure 10 – 13) or greater in general case.

The existence of a plane graph G for which π
�
f (G) ≥ 5 is still an open question.
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HOMOMORPHIC EXTENSIONS OF
PSEUDOCOMPLEMENTED SEMILATTICES

TIBOR KATRIŇÁK AND JAROSLAV GURIČAN

Dedicated to the 70th birthday of Alfonz Haviar

Abstract. Our aim is to study and characterize extensions to a homo-
morphism in the class of pseudocomplemented semilattices. We present
here such a description.

1. Introduction

We shall deal with the question in which circumstances a mapping f from a
generating set X of a pseudocomplemented semilattice S into a pseudocomple-
mented semilattice M can be extended to a homomorphism g : S → M . Such an
extension, if it exists, is uniquely determined.

It is a well-known fact (see [5]) that the class of all pseudocomplemented
semilattices is equational with only one non-trivial subvariety, namely, the class of
Boolean algebras. The preceding question found an answer for Boolean algebras
(see [9] and especially Sikorski’s extension criterion). We shall use these results
as a motivation for our task.

2. Preliminaries

A pseudocomplemented semilattice (= PCS) is an algebra (S;∧,
∗
, 0, 1) of type

(2,1,0,0), where (S;∧, 0, 1) is a bounded meet-semilattice and, for every a ∈ S,

the element a
∗ is a pseudocomplement of a, i.e. x ≤ a

∗ if and only if x ∧ a = 0.

A PCS S is said to be non-trivial, whenever | S |≥ 2. An element a ∈ S is called
closed, if a = a

∗∗
. Let B(S) denote the set of all closed elements of S. It is known

that
(B(S); +,∧,

∗
, 0, 1)
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forms a Boolean algebra with

a + b = (a∗ ∧ b
∗)∗

(see [1] and [3]). (Clearly, a PCS S is a Boolean algebra if and only if S satisfies
the identity x = x

∗∗
.)

Here are some rules of computation with ∗ and ∧ (see [1] or [3]):
(1) x ∧ x

∗ = 0.

(2) x ≤ y implies that x
∗ ≥ y

∗
.

(3) x ≤ x
∗∗

.

(4) x
∗ = x

∗∗∗
.

(5) (x ∧ y)∗∗ = x
∗∗ ∧ y

∗∗
.

(6) 0∗ = 1 and 1∗ = 0.

The following result can be easily verified (see [7]).

Lemma 2.1. Let S be a PCS and let X ⊆ S. Then S is generated by X, i.e.

S = [X] if and only if [X∗∗]Bool = B(S) and S = [X ∪ B(S)]sem, that means,

B(S) is generated by X
∗∗ = {x∗∗ : x ∈ X} as a Boolean algebra and S is

generated by X ∪B(S) as a semilattice.

Let S and T be PCSs. A function f : S → T is called a homomorphism (of
PCSs) if f(x ∧ y) = f(x) ∧ f(y), f(x)∗ = f(x∗) for x, y ∈ S. We observe that
f(0) = 0, and f(1) = 1.

The definitions of the concepts discussed in this paper may be found in [1] and
[3].

3. Extensions

Let S and K be PCSs and let K be a subalgebra of S, that means, S is an
extension of K. (Notation: K ≤ S.) In addition, we set K[X] = [K∪X], whenever
X ⊆ S. We say that S is a finite (simple) extension of its subalgebra K, if
S = K[X] for some finite (one-element) set X ⊆ S.

Proposition 3.1. Let K and S be PCSs. Then S is a simple extension of K,

that means, S = K[x] for some x ∈ S, if and only if

(i) B(S) = [B(K) ∪ {x∗∗}]Bool,

(ii) S1 = [B(S) ∪K]sem is a subalgebra of S and

(iii) S = [S1 ∪ {x}]sem.

Proof. Assume first S = K[x]. Then (i) is straightforward (see Lemma 2.1). (ii)
We have only to show that u ∈ S1 implies u

∗ ∈ S1. But this follows from the fact
that u

∗ ∈ B(S) ⊆ S1. Thus S1 is a subalgebra of S. (iii) Set M = [S1 ∪ {x}]sem.

We claim that M is a subalgebra of S. Similarly as above, we have only to show
that u ∈ M implies u

∗ ∈ M. Since B(S) ⊆ S1 ⊆ M and u
∗ ∈ B(S), we see that

u
∗ ∈ M. Finally, since K ∪ {x} ⊆ M, we obtain M = S.
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To prove the converse, assume that the conditions (i)-(iii) are satisfied. It is
easy to see that K ≤ S. Therefore, K[x] = [K ∪ {x}] ⊆ S. On the other hand,
B(S) ⊆ K[x] by (i). Consequently, S ⊆ K[x] by (ii) and (iii), and the proof is
complete. �

Proposition 3.1 generalizes immediately to arbitrary set X (instead of one-
element set {x}).

Theorem 3.2. Let K and S be PCSs. Then S = K[X] for some X ⊆ S if and

only if

(i) B(S) = [B(K) ∪X
∗∗]bool,

(ii) S1 = [B(S) ∪K]sem is a subalgebra of S and

(iii) S = [S1 ∪X]sem.

Corollary 3.3. Let S = K[X] and let u ∈ S. Then there exist s ∈ K and a finite

U ⊆ X such that

u = u
∗∗ ∧ s ∧

�
(x : x ∈ U).

For our next result we need the following concept:

Definition 3.4. Let K and S be bounded meet-semilattices (PCSs) such that

K ≤ S. Then K is said to be relatively complete in S, if for each b ∈ S there

exists a smallest a ∈ K such that b ≤ a. In notation:

a = Pr(b) = PrS
K(b) = min{x ∈ K | b ≤ x}.

Write K ≤rc S if K is relatively complete in S. See also [6] or [9] for relatively
complete lattices or Boolean algebras.

Using the notation from the preceding theorem, we can formulate the following
result:

Corollary 3.5. Let K ≤ S for PCSs. Then K ≤rc S if and only if

K ≤rc S1 ≤rc S,

where S1 = [B(S) ∪K]sem.

Proof. Let K ≤rc S. (Clearly, S = K[X] for some X ⊆ S.) It follows that
B(K) ≤rc B(S) and K ≤rc S1. It remains to prove S1 ≤rc S. Let u ∈ S and
u ≤ v for some v ∈ S1. It is easy to see that v = a ∧ t for some a ∈ B(S) and
t ∈ K. Now, u ≤ v if and only if u ≤ a and u ≤ t in S. But u ≤ a if and only if
u
∗∗ ≤ a. The second relation u ≤ t is equivalent to u ≤ PrS

K(u) ≤ t. Therefore,

u ≤ u
∗∗ ∧ PrS

K(u) ≤ a ∧ t = v.

Since u
∗∗ ∧PrS

K(u) ∈ S1, we have S1 ≤rc S. The converse implication is straight-
forward. �
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4. Extension to a homomorphism

In this section we shall examine the following situation: Let K, M and S = K[X]
be PCSs. Let f0 : K → M be a homomorphism and f : X → M be a mapping.
The question concerning f is whether or not there exists a homomorphism g :
S → M such that g �K∪X= f0 ∪ f (= the restriction of g to K ∪X). It is easy to
see that g, whenever it exists, is uniquely determined. In this case we say that g

is an extension of f0 ∪ f to a homomorphism.
Notice that a specialization of our question for Boolean algebras has been

considered by R. Sikorski. He found a useful characterization of those mappings
f , for which there exists an extension to a Boolean homomorphism (see Sikorski’s
extension criterion in [9]).

The next theorem is concerned with a more general situation and will fre-
quently be useful:

Theorem 4.1. Let K, M and S be PCSs and let S be an extension of K, that

means, S = K[X] for some X ⊆ S. Assume that f0 : K → M is a homomorphism

and let f : X → M be a mapping. Then there exists a homomorphism g : S → M

extending f0 ∪ f if and only if the following conditions are fulfilled:

(i) there is a Boolean homomorphism h : B(S) → B(M), which is an exten-

sion of (f0)B : B(K) → B(M) (i.e. (f0)B is a restriction of f0 to B(K))
such that

h(x∗∗) = f(x)∗∗

for every x ∈ X;
(ii) if S1 = [B(S)∪K]sem, then there exists a meet-semilattice homomorphism

f1 : S1 → M such that f1 is an extension of f0 ∪ h;
(iii) there exists a meet-semilattice homomorphism g : S → M which is an

extension of f1 ∪ f.

In addition, the homomorphism g : S → M, if it exists, is uniquely determined.

If u ∈ S, then

g(u) = h(u∗∗) ∧ f0(s) ∧
�

(f(x) : x ∈ U) = f1(u∗∗ ∧ s) ∧
�

(f(x) : x ∈ U)

for some s ∈ K and a finite U ⊆ X (see Corollary 3.3).

Proof. The necessity of (i)-(iii) is straightforward (see Lemma 2.1 and Theorem
3.2). Conversely, assume conditions (i) - (iii). First we show that f1 : S1 → M is
a PCS-homomorphism. Really, suppose u ∈ S1. By Theorem 3.2, u = a ∧ s for
some a ∈ B(S) and s ∈ K. Therefore,

f1(u) = f1(a ∧ s) = h(a) ∧ f0(s),
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by (ii). Now,

f1(u)∗∗ = (h(a) ∧ f0(s))∗∗ = h(a)∗∗ ∧ f0(s)∗∗ = h(a) ∧ f0(s∗∗)
= h(a) ∧ h(s∗∗) = h(a ∧ s

∗∗) = h(u∗∗) = f1(u∗∗),

by (i) and (ii). Hence,

f1(u)∗ = f1(u)∗∗∗ = h(u∗∗)∗ = h(u∗) = f1(u∗),

as h is a Boolean homomorphism. Clearly, f1 is a PCSs homomorphism and an
extension of f0 ∪ h.

Now, we can show that meet-semilattice homomorphism g : S → M satisfies
g(u)∗ = g(u∗) for any u ∈ S as well. Really, take u ∈ S. By Theorem 3.2, either
u ∈ S1 or u = s ∧ (

�
X1) for some s ∈ S1 and a finite non-empty X1 ⊆ X. The

first case is straightforward: g(u) = f1(u). Let us consider the second event. By
hypothesis,

g(u) = g(s ∧ (
�

X1)) = g(s) ∧
�

(g(y) : y ∈ X1) = f1(s) ∧
�

(g(y) : y ∈ X1).

Since g(y)∗∗ = f(y)∗∗ = h(y∗∗), for y ∈ X1, we get

g(u)∗∗ = f1(s)∗∗ ∧
�

(g(y)∗∗ : y ∈ X1) = h(s∗∗) ∧ h(
�

X
∗∗
1 ) = h(u∗∗).

It follows that

g(u)∗ = g(u)∗∗∗ = (g(u)∗∗)∗ = h(u∗∗)∗ = h(u∗) = f1(u∗) = g(u∗),

by (i) - (iii). Now, it is easy to see that g is the required homomorphism extending
f0∪f. The last statement follows from Theorem 3.2 and Corollary 3.3. The proof
is complete. �

Corollary 4.2. Under the assumptions of Theorem 4.1 and the additional hypo-

thesis that B(K) = B(S), the following statements are equivalent:

(i) There exists a PCS-homomorphism g : S → M, which is an extension of

f0 ∪ f.

(ii) There exists a meet-semilattice homomorphism g : S → M, which is an

extension of f0 ∪ f.

Proof. Clearly, B(K) = B(S) yields that h ⊆ f0. Hence f1 = f0 and the rest
follows from Theorem 4.1. �

Theorem 4.1 shows that an extension of a PCS-homomorphism can be reduced
to three special parts: one extension of a Boolean homomorphism and two ex-
tensions of bounded meet-semilattice homomorphisms. More precisely, let K, M

and S be PCSs and let S = K[X]. Assume that there exist a PCS-homomorphism
f0 : K → M and a mapping f : X → M. Then there exists
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(I) a Boolean homomorphism (f0)B : B(K) → B(M), where (f0)B is the
restriction of f0 to B(K) (Lemma 2.1). In addition, there is a mapping f

+ :
X
∗∗ → B(M) defined by the rule

f
+(x∗∗) = f(x)∗∗.

The first question concerning (f0)B is whether or not there is an extension of
(f0)B ∪ f

+ to a Boolean homomorphism h : B(S) → B(M). (Notice that
[B(K) ∪ X

∗∗]Bool = B(S) by Lemma 2.1.) The answer to this question comes
from the following lemma, due to R. Sikorski (see [9], Theorem 5.5). First we
need a new notation: Let B be a Boolean algebra. For x ∈ B and ε ∈ {+1,−1},
define the element x

ε of B by

x
+1 = x, x

−1 = x
∗
.

Lemma 4.3. A Boolean homomorphism h : B(S) → B(M) is an extension of

(f0)B ∪ f
+

if and only if

a
ε0 ∧ (x∗∗1 )ε1 ∧ · · · ∧ (x∗∗k )εk = 0

in B(S) for a ∈ B(K), x
∗∗
1 , · · · , x

∗∗
k ∈ X

∗∗
and εi ∈ {+1,−1} implies

f0(a)ε0 ∧ f(x∗∗1 )ε1 ∧ · · · ∧ f(x∗∗k )εk = 0

in B(M).

(II) Suppose now that a Boolean homomorphism h : B(S) → B(M) exists and
h is an extension of (f0)B ∪ f

+
. In addition, there exists S1 ≤ S and we can ask

again whether or not there exists a meet-semilattice homomorphism f1 : S1 → M,

which is an extension of f0 ∪ h. The answer can be formulated as follows:

Lemma 4.4. Let h : B(S) → B(M) be a Boolean homomorphism and an

extension of (f0)B ∪ f
+
. Then there exists a meet-semilattice homomorphism

f1 : S1 → M, which is an extension of f0 ∪ h if and only if

a ∧ s = b ∧ t

implies

h(a) ∧ f0(s) = h(b) ∧ f0(t)

for any a, b ∈ B(S) and s, t ∈ K.

The result requires only routine verification, and the proof can be omitted.
(III) It remains to establish the third part. We thus have a semilattice homo-

morphism f1 : S1 → M, which is an extension of f0 ∪ h. Since S = [S1 ∪X]sem

(Theorem 3.2), it is reasonable to ask again whether or not there exists a meet-
semilattice homomorphism g : S → M , which is an extension of f1 ∪ f. The
following lemma yields a solution:
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Lemma 4.5. Let f1 : S1 → M be a semilattice homomorphism extending f0 ∪ h.

Then there exists a semilattice homomorphism g : S → M, which is an extension

of f1 ∪ f if and only if

s ∧
�

(y : y ∈ Y ) = t ∧
�

(z : z ∈ Z)

implies

f1(s) ∧
�

(f(y) : y ∈ Y ) = f1(t) ∧
�

(f(z) : z ∈ Z)
for any s, t ∈ S1 and arbitrary finite Y, Z ⊆ X.

The proof is routine.
We conclude this section by observing that Lemmas 4.3-4.5 complete Theorem

4.1. The interested reader should have no serious difficulty in reconstructing the
corresponding theorem.

5. Simple extensions

In the last section (Theorem 4.1) we saw how a PCS-homomorphism f0 : K → M

can be extended to a PCS-homomorphism g : S → M , where K ≤ S. Unfortu-
nately, our characterization is of general nature, that means, the result is not
useful enough. The purpose of this section is to find sufficient conditions under
which we can easily say that an extension exists or not. For this reason we per-
form some specializations (simple extensions, retractions) and a generalization
(meet-semilattices). (See the discussion in the preceding section.)

Proposition 5.1. Let f : T → M be a homomorphism of non-trivial bounded

meet-semilattices. Assume that the bounded meet-semilattice S = T [x] is a simple

extension of T and u is an element of M. Moreover, assume that the element

PrS
T (x) exists and, that we have a retraction α : T [x] → T, that means, α(a) = a

for any a ∈ T, such that α(x) = PrS
T (x). Then there exists a meet-semilattice

homomorphism

g : S = T [x] → M

extending f and mapping x to u ∈ M if and only if

a ≤ x in S and a ∈ T imply f(a) ≤ u ≤ f(PrS
T (x)) in M.

Proof. Necessity of the condition is obvious. As to sufficiency, it is known that
an arbitrary element v ∈ S can be written in the form

v = a ∧ x
r
,

where r ∈ {0, 1} and a ∈ T. (Note that x
0 = 1 and x

1 = x.) Now, we can define

g : S → M

by
g(v) = f(a) ∧ u

r
.
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First we have to show that g is well-defined, that is,

c ∧ x
r = d ∧ x

s implies f(c) ∧ u
r = f(d) ∧ u

s
,

for c, d ∈ T. We have to verify two cases only:

c ∧ x = d ∧ x and c = d ∧ x.

Writing Pr(x) for PrS
T (x) we get in the first event

α(c ∧ x) = c ∧ Pr(x) = d ∧ Pr(x) = α(d ∧ x),

by the hypothesis on α. Therefore,

f(c) ∧ f(Pr(x)) = f(c ∧ Pr(x)) = f(d ∧ Pr(x)) = f(d) ∧ f(Pr(x)),

as f is a homomorphism. Since u ≤ f(Pr(x)), we obtain

f(c) ∧ u = f(d) ∧ u.

Considering the second case c = d∧ x, we see that c ≤ x. Hence f(c) ≤ u, by the
hypothesis on f. Using the same reasoning as above, we obtain

f(c) = f(d) ∧ u,

and g is well-defined. The element 0 in S can be expressed as 0 = 0∧x. Therefore,

g(0) = f(0) ∧ u = 0

in M. Similarly, g(1) = 1. Now, it can be readily shown that g is a meet-semilattice
homomorphism extending f with the required properties. �
Lemma 5.2. Let S = K[x] be a simple extension of PCSs. Assume that there

exists PrS
K(x). Then there exists PrS

S1
(x) ( for S1 see Section 3 ) and

PrS
S1

(x) = x
∗∗ ∧ PrS

K(x).

Proof. Clearly, x ≤ x
∗∗ ∧ PrS

K(x) ∈ S1. On the other hand, let x ≤ v for some
v ∈ S1. By Theorem 3.2, v = a ∧ t for some a ∈ B(S) and t ∈ K. Now, x ≤ a ∧ t

implies x
∗∗ ≤ a in B(S) and x ≤ t in K. Hence

x
∗∗ ∧ PrS

K(x) ≤ a ∧ t = v.

�
As a consequence of these results we have

Theorem 5.3. Let K, M and S be PCSs, let S = K[x] be a simple extension of

K for some x ∈ S and let u ∈ M. Let f0 : K → M be a PCS-homomorphism.

Assume that the element PrS
K(x) exists and that we have (in the notation of

Section 3 ) a retraction α : S1[x] → S1 such that α(x) = x
∗∗ ∧ PrS

K(x). Then

there exists a PCS-homomorphism

g : S → M
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extending f0 and mapping x to u ∈ M if and only if

(i) there exists a meet-semilattice homomorphism f1 : S1 → M which is an

extension of f0 ∪ h (see Theorem 4.1) and, we have

f1(x∗∗) = h(x∗∗) = u
∗∗

,

(ii) t ≤ x in S and t ∈ S1 imply f1(t) ≤ u ≤ f1(PrS
S1

(x)) in M.

Proof. Suppose that g : S → M is an extension of f0 such that g(x) = u.

Since g is a PCS-homomorphism, condition (ii) follows easily. Condition (i) is a
consequence of Theorem 4.1.

To prove the remaining half, let us suppose (i) and (ii). We shall proceed by
Theorem 4.1. We start by establishing a Boolean homomorphism h : B(S) →
B(M) which is an extension of (f0)B (see Theorem 4.1) such that h(x∗∗) = u

∗∗
.

It is easy to check that [B(K) ∪ {x∗∗}]Bool = B(S). Moreover, from (ii) and the
hypothesis that PrS

K(x) exists, it follows that

a
∗∗ ≤ x

∗∗ ≤ b
∗∗ in S implies f0(a∗∗) ≤ u

∗∗ ≤ f0(PrS
K(x)∗∗) ≤ f0(b∗∗) in M

for any a, b ∈ K. Now we can apply ([9], Corollary 5.8) of Sikorski’s extension cri-
terion for Boolean algebras. It does ensure that there is a Boolean homomorphism
h : B(S) → B(M) extending (f0)B : B(K) → B(M) such that h(x∗∗) = u

∗∗
.

By (i) we see that f1 : S1 → M is a meet-semilattice homomorphism extending
f0 ∪ h. It remains to show that there exists a meet-semilattice homomorphism
g : S → M extending f1 ∪ {(x, u)}. Evidently, S = S1[x] is a simple meet-
semilattice extension. Now, we can apply Proposition 5.1. By Lemma 5.2 and
the hypothesis that f1 ia a meet-semilattice homomorphism, we get

u
∗∗ ∧ f0(PrS

K(x)) = h(x∗∗) ∧ f1(PrS
K(x)) = f1(PrS

S1
(x)).

Now, setting T for S1 in (ii), we get the main condition of Proposition 5.1. It
follows that there exists a meet-semilattice homomorphism g : S → M extending
f1 ∪ {(x, u)}. Ultimately Theorem 4.1 implies that g is a PCS-homomorphism,
and the proof of the theorem is complete. �
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ON FORMATIONS OF LATTICES

JUDITA LIHOVÁ AND JOZEF PÓCS

Dedicated to the 70th birthday of Alfonz Haviar

Abstract. A class of lattices is said to be a formation if it is closed under
homomorphic images and finite subdirect products. Let us denote by F the
collection of all formations of lattices. Then F can be partially ordered by
the class–theoretical inclusion. We study the properties of this partially
ordered class; e.g., there are described all atoms of F.

1. Introduction

A class of algebras is said to be a formation if it is closed under homomorphic
images and finite subdirect products. This concept appeared first in the 1970’s in
the connection with finite groups. Formations of groups were studied by several
authors. Let us mention at least the monograph [3] of Shemetkov, which deals
with formations of finite groups. Nevertheless, Chapter I of [3] contains a detailed
presentation of basic notions of the theory without assuming the finiteness of the
groups under consideration. In fact, the above definition can be used for any class
of similar algebras. Formations of lattice ordered groups and GMV–algebras were
investigated by Jakubík [2].

Let F be the collection of all formations of lattices. For F1,F2 ∈ F we write
F1 ≤ F2 if F1 is a subclass of F2. The collection F is large; namely, there exists
an injective mapping of the class of all infinite cardinals into the collection F.
Nevertheless, with respect to the relation ≤ in F, we will use the usual notions
and the notation of the theory of partially ordered sets. We will prove that for
any indexed system of elements of F, both supremum and infimum exist.

For any class K of lattices, we will describe the least formation form(K) con-
taining K. Each formation of lattices, except the least one, contains subdirectly
irreducible lattices. But, in contrast with varieties of lattices, different formations
of lattices can have the same subclass of subdirectly irreducible lattices.

2000 Mathematics Subject Classification. 03610.
Key words and phrases. Lattice, formation.



In Section 5, we will describe all atoms in F. They form a proper class, just
like antiatoms of F.

Finally, we will show that the class of formations of distributive lattices con-
tains both large chains and large antichains.

2. Preliminaries

We will use the terminology and the notation as in Grätzer [1].
The direct product of an indexed system (Li)i∈I of lattices is defined in the

usual way; we apply the notation
�

i∈I Li or L1×L2×. . .×Ln if I = {1, 2, . . . , n}.
For x = (xi)i∈I in

�
i∈I Li, xi is the component of x in Li; we write also xi =

x(Li). Let K ⊆
�

i∈I Li and i0 ∈ I; we put K(Li0) = {x(Li0) : x ∈ K}. If K

is a sublattice of
�

i∈I Li and K(Li) = Li for each i ∈ I, then K is said to be a
subdirect product of the system (Li)i∈I . In such a case we write K ≤

�
i∈I Li.

If the index set I is finite, K will be referred to as a finite subdirect product.
If L is a lattice, θ a congruence relation on L and a ∈ L, the symbol [a]θ will

be used for the congruence class containing the element a.

3. The class form(K)

Let L be the class of all lattices. For any class K of lattices we denote by
H(K)– the class of all homomorphic images of elements of K;
PFS(K)– the class of all finite subdirect products of elements of K.

A class F of lattices is said to be a formation if is closed with respect to the
operators H and PFS.

It is easy to see that each variety of lattices is also a formation. The converse
does not hold in general; e.g., the class of all finite lattices is a formation which
fails to be a variety.

Let K be any class of lattices. We will describe the least formation containing
K. If K = ∅, then it is evidently the class of all one–element lattices. Suppose
that K �= ∅. It is PFS H(K) ⊆ HPFS(K); this can be shown in the same way as
the well–known inclusion PS H(K) ⊆ HPS(K), where PS stands for the operator
of forming subdirect products. Using also the idempotency of the operators H
and PFS, we obtain:

Theorem 3.1. Let K be any nonempty class of lattices. Then HPFS(K) is a

formation of lattices. Moreover, it is the least one containing K.

For any K ⊆ L, the least formation containing K will be denoted by form(K).
So, if K �= ∅, then form(K) = HPFS(K). Let us remark that HPS(K) is the least
variety of lattices containing K (cf. [1],Corollary 5.1.5).

We will show that if K contains only distributive lattices, then formK =
PFS H(K), i.e., the operators H, PFS can be applied in arbitrary order. We
will use the following assertions.
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Proposition 3.2 ([1], Theorem 2.3.6). Let K be a sublattice of a distributive

lattice L. Any congruence relation θ of K can be extended to L; that is, there

exists a congruence relation φ on L such that x φ y iff x θ y for x, y ∈ K.

Proposition 3.3 ([1], Theorem 1.3.13). Let L and K be lattices, let θ be a

congruence relation of L, and let φ be a congruence relation of K. Define the

relation θ × φ on L×K by

(a, b) θ × φ (c, d) iff a θ c and b φ d.

Then θ × φ is a congruence relation on L × K. Conversely, every congruence

relation of L×K is of this form.

Theorem 3.4. Let K be a class containing only distributive lattices. Then

form(K) = PFS H(K).

Proof. In view of Theorem 3.1, it suffices to prove the inclusion HPFS(K) ⊆
PFS H(K). Let L ∈ HPFS(K). Then there exist lattices A1, . . . , An ∈ K, B ≤
A1×. . .×An and a homomorphism ϕ of B onto L. Let θ = Ker ϕ, φ an extension
of θ to a congruence relation of A1 × . . . × An. Further, let φ = φ1 × . . . × φn

with φi being a congruence relation of Ai for i = 1, . . . , n.
We are going to show that L is isomorphic to a subdirect product of (Ai/φi)i∈{1,...,n}.

Let us define ψ : L → A1/φ1 × . . .×An/φn by

ψ(a) = ([b1]φ1, . . . , [bn]φn),

where b = (b1, . . . , bn) is any element of B with ϕ(b) = a.
It is easy to see that the definition of ψ is correct and that ψ is a one–to–one

homomorphism. Moreover, if ai ∈ Ai and c is any element of B with c(Ai) = ai,
we have

(ψ (ϕ(c))) (Ai/φi) = [ai]φi.

Since Ai/φi ∈ H(K) for all i ∈ {1, . . . , n}, we have proved L ∈ PFS H(K). �

Let L be a nontrivial lattice, ω the least congruence relation of L. If ω is
a completely meet–irreducible (a meet irreducible) element in the complete lat-
tice Con L of all congruence relations on L, then L is said to be a subdirectly
irreducible (a finitely subdirectly irreducible) lattice.

The following theorem is a slight modification of the well–known Jónsson’s
lemma ([1], Theorem 5.1.9).

Theorem 3.5. Let K be any class of lattices. If A is a finitely subdirectly irre-

ducible lattice, A ∈ form(K), then A ∈ H(K).

Proof. Let A be a finitely subdirectly irreducible lattice, A ∈ form(K). By Theo-
rem 3.1, there exist lattices A1, . . . , An ∈ K, B ≤ A1× . . .×An, θ ∈ Con B such
that A ∼= B/θ.
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For i ∈ I = {1, . . . , n}, let πi be the projection of B onto Ai. We are going to
show that there exists i0 ∈ I such that Ker πi0 ⊆ θ. Evidently

�
i∈I Ker πi =

ω ⊆ θ, so that
θ = θ ∨ (

�

i∈I

Ker πi) =
�

i∈I

(θ ∨Ker πi).

As the lattice B/θ is finitely subdirectly irreducible, we have θ = θ ∨Ker πi0 ⊇
Ker πi0 for some i0 ∈ I.

Now using the second isomorphism theorem we obtain that B/θ is a homo-
morphic image of B/ Ker πi0 . But B/ Ker πi0 is isomorphic to Ai0 and thus
B/θ ∈ H({Ai0}) ⊆ H(K). Consequently A ∈ H(K). �

Since evidently each subdirectly irreducible lattice is also finitely subdirectly
irreducible, in the way described in the preceding theorem, all subdirectly irre-
ducible lattices of form(K) are discovered. Each formation, except the least one,
contains subdirectly irreducible lattices. Namely, if L is any lattice, |L| > 1,
then L is a subdirect product of subdirectly irreducible lattices, L ≤

�
i∈I Li, in

any variety containing L, where I need not be finite. Nevertheless, each Li, as a
homomorphic image of L, belongs to each formation containing L.

Let Si(F) denote the class of all subdirectly irreducible lattices belonging to
the formation F . Let us note that F is not uniquely determined by Si(F). For
example, each formation of distributive lattices contains the only subdirectly
irreducible lattice, the two–element chain.

4. The class of formations

Let F be the collection of all formations of lattices. For F1,F2 ∈ F we write
F1 ≤ F2 if F1 is a subclass of F2. The collection F is large; it is easy to see that
for any infinite cardinal κ, the class of all lattices of cardinality not exceeding κ,
is a formation. Nevertheless, with respect to the relation ≤ in F, we can apply
for F the usual notions and notation of the theory of partially ordered sets. Thus,
for {Fi : i ∈ I} ⊆ F, the symbols sup{Fi : i ∈ I} or

�
i∈I Fi denote the least

upper bound of {Fi : i ∈ I} in F; the symbols inf{Fi : i ∈ I},
�

i∈I Fi have a
dual meaning.

It is easy to see that the intersection of any non–empty collection of formations
is a formation. Moreover, F contains a least element, the class of all one–element
lattices and the greatest element, the class L of all lattices. So we have:

Theorem 4.1. The collection F of all formations of lattices is a complete lat-

tice in the sense, that
�

i∈I Fi and
�

i∈I Fi exist for any nonempty collection of

formations {Fi : i ∈ I}. Moreover,

�

i∈I

Fi =
�

i∈I

Fi ,

�

i∈I

Fi = HPFS(
�

i∈I

Fi).
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Theorem 4.2. A formation F of lattices is a compact element in F if and only

if it is generated by a single lattice.

Proof. Let F = form({L}), L ∈ L. Assume that F ≤
�

i∈I Fi, where {Fi : i ∈
I} ⊆ F. Then L ∈ HPFS(

�
i∈I Fi), hence there exist lattices L1, . . . , Ln ∈�

i∈I Fi, B ≤ L1 × . . . × Ln and a homomorphism of B onto L. If L1 ∈
Fi1 , . . . , Ln ∈ Fin , we have L ∈ HPFS(

�n
j=0 Fij ) = Fi1 ∨ . . .∨Fin , which implies

F ≤ Fi1 ∨ . . . ∨ Fin .
Conversely, suppose that F ∈ F is compact. Let F = {Li : i ∈ I}. As

evidently F ≤
�

i∈I form({Li}), we have F ≤ form({L1}) ∨ . . . ∨ form({Ln}) for
some L1, . . . , Ln ∈ F . But then F = form({L1})∨ . . .∨ form({Ln}) = form({L1×
. . .× Ln}). �

Using the trivial fact that any formation F of lattices can be expressed as
sup{form({L}) : L ∈ F}, we obtain:

Corollary 4.3. The collection F of all formations of lattices is an algebraic

lattice.

Let Fd denote the collection of all formations of distributive lattices.

Theorem 4.4. The collection Fd is a complete sublattice of F; moreover, the

relation

F ∧
�

i∈I

Fi =
�

i∈I

(F ∧ Fi)

is valid for any F ,Fi ∈ Fd.

Proof. It suffices to verify the relation

F ∧ (
�

i∈I

Fi) ⊆
�

i∈I

(F ∧ Fi).

Using Theorem 3.4 and the fact that each Fi is closed under homomorphic images,
we obtain F ∧ (

�
i∈I Fi) = F ∩ form(

�
i∈I Fi) = F ∩ PFS H(

�
i∈I Fi) = F ∩

PFS(
�

i∈I H(Fi)) = F ∩PFS(
�

i∈I Fi).
Now if L ∈ F ∩ PFS(

�
i∈I Fi), then L ∈ F and L ≤ L1 × . . . × Lk for some

L1, . . . , Lk ∈
�

i∈I Fi. Each Lj , as a homomorphic image of L, belongs to F , so
each Lj belongs to F∩(

�
i∈I Fi) =

�
i∈I(F∩Fi). Thus L ∈ PFS(

�
i∈I(F∩Fi)) ⊆

form(
�

i∈I(F ∩ Fi)) =
�

i∈I(F ∧ Fi). �
The question, if this infinite distributive law or at least finite distributive law

is valid in F, is open.
Consider the following condition concerning a subclass M of L:

L ∈ H(M), L is subdirectly irreducible ⇒ L ∈M.(∗)
The following assertion is obvious.
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Lemma 4.5. Let F be any formation of lattices. Then Si(F) fulfils the condition

(∗).

To show that the condition (∗) is also sufficient for a class M of subdirectly
irreducible lattices to be Si(F) for a formation F , let us notice that the following
holds:

Lemma 4.6. Let {Fi : i ∈ I} be a nonempty class of formations of lattices.

Then

Si(
�

i∈I

Fi) =
�

i∈I

Si(Fi) , Si(
�

i∈I

Fi) =
�

i∈I

Si(Fi).

Proof. The first equality is evident, just like the inclusion
�

i∈I Si(Fi) ⊆ Si(
�

i∈I Fi).
Now let L ∈ Si(

�
i∈I Fi). Then the lattice L is subdirectly irreducible and

L ∈ form(
�

i∈I Fi). By Theorem 3.5, L ∈ H(
�

i∈I Fi) =
�

i∈I(H(Fi)) =
�

i∈I Fi,
so that L ∈

�
i∈I Si(Fi). �

Lemma 4.7. Let M be any class of subdirectly irreducible lattices satisfying the

condition (∗). Then formations F with Si(F) = M form an interval in F. The

least element of this interval is form(M).

Proof. First of all, let us notice that Si(form(M)) = M. The implication Si(form(M)) ⊆
M follows from Theorem 3.5 and (∗), while the converse one is obvious. So
F0 = form(M) is the least one of all formations F satisfying Si(F) = M.

Further, let F1 be the least upper bound of the collection of all formations F
with Si(F) = M. By 4.6, Si(F1) = M. If F0 ⊆ F ⊆ F1, then also Si(F) = M.
We have proved that {F ∈ F : Si(F) = M} is the interval [F0,F1]. �

Let C2 be a two–element chain. Then M = {C2} evidently satisfies (∗). It
is easy to see that F ∈ F with Si(F) = {C2} are just formations belonging to
the interval [F0,F1], where F0 is the formation containing all finite distributive
lattices and F1 that of all distributive lattices.

Let M be the collection of all classes M of subdirectly irreducible lattices
satisfying the condition (∗). It is easy to see that M is closed under arbitrary
(not only finite) intersections and unions so that (M,⊆) can be considered as a
complete lattice.

The following assertion is evident.

Theorem 4.8. Let ≡ be a binary relation on F defined by

F ≡ F � ⇔ Si(F) = Si(F �).

Then ≡ is a congruence relation and the mapping f : F/ ≡ → M defined by

f([F ] ≡) = Si(F) is an isomorphism.
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5. Atoms and antiatoms

Let L be a lattice with a least element 0. An element a ∈ L is said to be an
atom of L if a covers 0. If b ∈ L � {0} and there is no atom a with a ≤ b, then b

is referred to as an antiatom. We are able to describe all atoms of F.

Consider the following condition concerning a lattice L:

L
� ∈ H({L}), L

� is subdirectly irreducible ⇒ L ∈ H({L�}).(∗∗)

Theorem 5.1. A formation F of lattices is an atom of F if and only if F =
form({L}) for a subdirectly irreducible lattice L satisfying the condition (∗∗).

Proof. Let F be an atom. As we have remarked, F contains a subdirectly irre-
ducible lattice L. Then form({L}) ≤ F , so that F = form({L}), as F is an atom.
We are going to show that L satisfies (∗∗). Let L

� be a subdirectly irreducible lat-
tice with L

� ∈ H({L}). Thus it is also F = form({L�}). But then L ∈ form({L�})
implies L ∈ H({L�}) by Theorem 3.5.

Conversely, let F = form({L}), where L is a subdirectly irreducible lattice
fulfilling (∗∗). Let F � be a formation of lattices different from the least one
satisfying F � ≤ F . Take any subdirectly irreducible lattice L

� ∈ F �. Then
L
� ∈ F = form({L}), so that L

� ∈ H({L}) by Theorem 3.5. Using (∗∗) we obtain
L ∈ H({L�}), which implies F = form({L}) ≤ form({L�}) ≤ F �. Thus F � = F
and F is an atom. �

Evidently each simple lattice is a subdirectly irreducible lattice satisfying (∗∗).
So each simple lattice generates an atom in F, non–isomorphic lattices generate
different atoms. Let κ be any cardinal, κ ≥ 3, I any set of cardinality κ. Set
Mκ = {0, 1} ∪ {ai : i ∈ I} and define ≤ on Mκ by 0 < ai < 1 for all i ∈ I, ai

mutually non–comparable.
Evidently Mκ are simple lattices, mutually non-isomorphic. So we obtain:

Corollary 5.2. Atoms of F form a proper class.

If a formation F contains finite lattices with more than one element, then F
contains also simple finite lattices, so that there exist atoms which lie in F under
F . Thus in the case that we are interested in antiatoms, we must concentrate
upon formations containing, besides the one–element lattices, only infinite ones.
The aim is to prove that antiatoms form a proper class, too.

Let us have an infinite ascending chain of cardinals (κi)i∈N, κ1 < κ2 < . . . ,
κ1 ≥ 3. Let Mκi be as above, with κi instead of κ. Define lattices Li for i ∈ N
by induction as follows:

L1 = Mκ1

Ln+1 = (Ln → Mκn+1) for n ∈ N,
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where (Ln → Mκn+1) means a lattice obtained from Mκn+1 by interchanging one
of its “middle” elements by Ln.

If we take, e.g., the sequence 3 < 4 < 5 < . . . , we obtain a sequence of lattices,
whose first three members are depicted in Fig. 1.

Fig. 1

It is easy to see that (Li)i∈N, with natural embeddings fi : Li → Li+1, form a
direct family of lattices. Let L((κi)i∈N) be the direct limit of this direct family.
We remark, that the direct limit in this case is nothing else than a directed (set–
theoretical) union. (When we consider the natural embeddings as set inclusions.)

The following assertion is easy to verify.

Lemma 5.3. The congruence lattice of Ln is an (n + 1)–element chain, that

of L((κi)i∈N) is isomorphic to the ordinal ω0 + 1. Hence both Ln (n ∈ N) and

L((κi)i∈N) are subdirectly irreducible lattices.

Lemma 5.4. Homomorphic images of the lattice L((κi)i∈N) are just those iso-

morphic to L((κn+i)i∈N) for n ∈ N0, and one–element lattices.

Proof. Let θ0 ⊂ θ1 ⊂ . . . be the sequence of all congruence relations of L =
L((κi)i∈N) different from the greatest one. Then L/θ0 is isomorphic to L; L/θ1

is isomorphic to L((κ1+i)i∈N), and so on. In particular, for all n ∈ N0, L/θn is
isomorphic to L((κn+i)i∈N). �
Theorem 5.5. Let L = L((κi)i∈N), Then the formation form({L}) is an an-

tiatom in F.

Proof. By way of contradiction, let F be an atom in F with F ≤ form({L}). Then
F = form({M}) for a subdirectly irreducible lattice M satisfying the condition
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(∗∗), M ∈ form({L}). By Theorem 3.5, M ∈ H({L}), so that M is isomorphic
to L((κn+i)i∈N) for some n ∈ N0. As L((κn+1+i)i∈N) ∈ H(L((κn+i)i∈N)) =
H({M}), using (∗∗) we obtain M ∈ H({L((κn+1+i)i∈N)}). This contradicts
Lemma 5.4. �

Theorem 5.6. There exists a proper class of mutually non–comparable antiatoms

in F.

Proof. Let (κi)i∈N and (κi)i∈N be infinite ascending sequences of cardinals with
κi < κj for all i, j ∈ N. Denote Fκ, Fκ the formation generated by the lattice
L((κi)i∈N), L((κi)i∈N), respectively.

Suppose that Fκ ≤ Fκ. Then L((κi)i∈N) ∈ form(L((κi)i∈N)) and using The-
orem 3.5 we obtain L((κi)i∈N) ∈ H(L((κi)i∈N)). By Lemma 5.4, L((κi)i∈N) is
isomorphic to L((κn+i)i∈N) for some n ∈ N0, which implies κ1 = κn+1, a con-
tradiction. Similarly, Fκ ≤ Fκ implies κ1 = κm+1, for some m ∈ N0, again a
contradiction.

In order to complete the proof, it is sufficient to find a proper class of such
sequences of cardinals. Obviously, {(ℵα+i)i∈N : α limit ordinal } forms a proper
class and for limit ordinals α, β with α < β and i, j ∈ N, we have ℵα+i <

ℵβ+j . �

6. Formations of distributive lattices

In Section 4, we have introduced the denotation Fd for the collection of all for-
mations of distributive lattices. This collection is a proper class. For any infinite
cardinal κ, let Fd(κ) be the class of all distributive lattices with cardinalities not
exceeding κ. Then Fd(κ), for various infinite cardinals κ, form a large chain. We
are going to show that Fd contains also large antichains.

Lemma 6.1. Let α, β be any limit ordinals. Then β ∈ H({α}) if and only if α

contains a cofinal subset of the type β.

Proof. Let f be a homomorphism of α onto β. For y ∈ β, let x(y) be the least
element of f

−1(y). It is easy to see that {x(y) : y ∈ β} is a cofinal subset of α

isomorphic to β.
Conversely, let X ⊆ α be a cofinal subset of α, g an isomorphism of X onto

β. For any a ∈ α, let xa be the least element of the set {x ∈ X : x ≥ a}. Set
f(a) = g(xa). Then f is a homomorphism of α onto β. �

For any limit ordinal α > 0, let cf(α) denote the cofinality of α. If cf(α) = α,
then α is said to be a regular ordinal. In fact, each regular ordinal is an initial
ordinal, i.e., cardinal. In the sequel we will denote the initial ordinals as usual
by ωα, α ∈ Ord . The Axiom of Choice guarantees the existence of a proper class
of regular ordinals, in particular for each α ∈ Ord , ωα+1 is a regular ordinal.
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If ωα is regular and L ∈ H({ωα}), then L is isomorphic to ωα or to a successor
ordinal less then ωα, by Lemma 6.1.

Theorem 6.2. Let ωα, ωβ be any different regular ordinals. Then formations

generated by ωα and ωβ are non–comparable.

Proof. Let us suppose that ωα < ωβ . Since form({ωα}) contains only lattices L

with |L| ≤ ℵα, ωβ does not belong to form({ωα}).
Further, we will show that ωα /∈ form({ωβ}). By way of contradiction, let

ωα ∈ form({ωβ}) = PFS H({ωβ}), due to Theorem 3.4. Then ωα is a subdirect
product of some Li, (i = 1, . . . , n), Li ∈ H({ωβ}). Each Li is a homomorphic
image of ωα, too. A homomorphic image of ωα must be a well ordered chain,
which (for the cardinality reason) cannot be isomorphic to a cofinal subset of ωβ .
By 6.1, Li cannot be a limit ordinal, which means that Li has a greatest element.
Hence, the same holds for ωα, a contradiction. �
Corollary 6.3. Formations generated by regular ordinals form an antichain

which is a proper class.
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STABILITY OF HOMOMORPHISMS BETWEEN COMPACT
ALGEBRAS
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Dedicated to the 70th birthday of Alfonz Haviar

Abstract. We generalize a result on stability of continuous homomor-
phisms between compact groups to continuous homomorphisms between
compact topological algebras. In general, a continuous function between
such algebras which is almost a homomorphism need not be uniformly close
to a homomorphism. Positive results can be obtained introducing some
control over the continuity of the functions resembling homomorphisms by
means of a “continuity scale.”

The question we are dealing with in this paper can be roughly speaking formu-
lated as follows: if a continuous function g : A → B between two topological
universal algebras A and B of the same similarity type behaves almost like a
homomorphism, is it then necessarily uniformly close to a genuine continuous ho-
momorphism h : A → B? Question of this type, made precise for various types
of algebras and functions, use to be called stability problems.

The problem of ε-stability of additive functions R → R, as well as its general-
ization to mappings between arbitrary metrizable groups, was raised by S. M. Ulam
— cf. [9], [10]. Since then the topic was thoroughly examined and generalized in
various respects — see [2], [4], [5] and [7] for surveys of further development.

There are many known examples showing that “arbitrarily good almost homo-
morphisms” need not be close to homomorphisms. In the paper [8] by J. Špakula
and the present author a stability result for continuous homomorphisms between
compact topological groups was established. This was enabled by controlling the
continuity of the almost homomorphisms by means of a “continuity scale.” We
also remarked there that this result could readily be generalized to homomor-
phisms between any compact universal algebras of a finite type. In this note we
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prove such a generalization for compact universal algebras of an arbitrary simi-
larity type (signature). Finally, we state separately the particular version of this
result for metrizable algebras and quote a family of counterexamples from [8]
showing that one cannot resign on the continuity control.

1. The stability theorem

Our standard references for universal algebra and general topology are the books
[3] by G. Grätzer and [1] by R. Engelking, respectively.

Under the term universal algebra, or just algebra we always mean an algebra of
the same fixed but otherwise arbitrary similarity type, with the set of (finitary)
operation symbols denoted by F . However, unlike in [3], we denote the algebra�
A, f

A
�
f∈F

by the same character as its underlying set A. A topological (univer-

sal) algebra A is usually defined as an algebra endowed with a topology making
all the operations f

A : A
n → A, f ∈ F , continuous. We additionally include the

Hausdorff or T2 separation property into this definition. A topological algebra
A is called compact or completely regular if the topological space A is compact or
completely regular, respectively.

If A is a completely regular topological algebra then the topology of A can
be induced by a uniformity U on A. However, the operations f

A : A
n → A

are neither explicitly required nor need to be (unless A is compact) uniformly
continuous with respect to U .

Definition 1. Let A, B be topological algebras of the same type, such that the
topology of B is induced by a uniformity U on B. Given an entourage U ∈ U ,
a function g : A → B is called a U -homomorphism if for each n-ary operation
symbol f ∈ F and all a1, . . . , an ∈ A we have

�
gf

A(a1, . . . , an), f
B(ga1, . . . , gan)

�
∈ U.

Two functions g, h : A → B are U -close if
�
g(a), h(a)

�
∈ U for each a ∈ A. The

pair (A, B) is said to have stable homomorphisms with respect to U if for each
V ∈ U there exists a U ∈ U such that for every continuous U -homomorphisms
g : A → B one can find a continuous homomorphism h : A → B such that g is
V -close to h.

The answer to the stability problem is negative in general. A counterexample,
comprising an infinite family of pairs of compact metrizable abelian groups (A, B)
none of which has stable homomorphisms, will be presented in the final part of
the next section, devoted to the metrizable case.

Thus in order to get some positive results, some additional assumptions are
unavoidable. One possibility consists in introducing a kind of control over the
continuity of functions A → B.
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Definition 2. Let X and Y be two topological spaces such that the topology
of Y is induced by a uniformity U on Y with a basis U0 ⊆ U . An (X,Y,U)-
continuity scale is any mapping Γ assigning to each pair (x, U) ∈ X × U0 a
neighborhood Γ (x, U) of the point x ∈ X. Then a function g : X → Y is said to
be Γ -continuous if for all U ∈ U0 and x, y ∈ X the condition y ∈ Γ (x, U) implies�
g(x), g(y)

�
∈ U .

Obviously, a Γ -continuous function g : X → Y is continuous. The point is
that any family of Γ -continuous function g : X → Y already is equicontinu-

ous. The other way round, using the axiom choice one can easily show that any
equicontinuous family of functions X → Y is Γ -continuous with respect to some
(X,Y,U)-continuity scale Γ .

Definition 3. Let A, B be topological algebras such that the topology of B

is induced by a uniformity U and Γ be an (A, B,U)-continuity scale. The pair
(A, B) is said to have stable homomorphisms with respect to the continuity scale

Γ if for each V ∈ U there exists a U ∈ U such that for every Γ -continuous U -
homomorphism g : A → B one can find a continuous homomorphism h : A → B

such that g is V -close to h.

Now, everything is ready to state and prove the announced stability theorem.

Theorem 1. Let A, B be compact topological algebras of the same similarity type.

Then the pair (A, B) has stable homomorphisms with respect to every (A, B,U)-
continuity scale Γ , where U is the (unique) uniformity inducing the topology of B.

Proof. Assume the contrary and fix some compact topological algebras A, B,
a uniformity U on B with a basis U0, an (A, B,U)-continuity scale Γ with domain
A× U0 and an entourage V ∈ U witnessing it.

Let D denote the set of all functions g : A → B such that g is not V -close to
any continuous homomorphism h : A → B. For U ∈ U denote by EU the set of
all Γ -continuous U -homomorphisms g : A → B. Obviously, EU ⊆ EU � for any
U ⊆ U

� in U . By the assumption, D ∩ EU �= ∅ for each U ∈ U . Then D ∩ EU is
an equicontinuous family of functions A → B, and — as B is compact — the set

{g(x) | g ∈ D ∩ EU} ⊆ B

is relatively compact in B for each x ∈ A. Hence, by the Arzelà-Ascoli theorem,
the closure

HU = cl(D ∩ EU )
is a compact subset of the space C(A, B) of all continuous functions A → B with
the compact-open topology (which, by the compactness of A, coincides with the
topology of uniform convergence on A). As ∅ �= HU ⊆ HU � for U ⊆ U

� in U , the
intersection

H =
�

U∈U
HU
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is nonempty, as well. Take any h ∈ H; it obviously is a continuous function
A → B. (Moreover, if all the entourages in the basis U0 are closed as subsets of
the topological space B × B, which can be assumed without loss of generality,
then h is even Γ -continuous.)

We show that h is a homomorphisms. Take any n-ary operation symbol f ∈ F ,
a1, . . . , an ∈ A, and a symmetric entourage U ∈ U . By the continuity of f

B one
can find a symmetric U

� ∈ U such that U
� ⊆ U and

�
f

B(ha1, . . . , han), f
B(b1, . . . , bn)

�
∈ U

for all b1, . . . , bn ∈ B satisfying
�
h(ai), bi

�
∈ U

�. As h ∈ HU , there is a g ∈ D∩EU

such that
�
h(x), g(x)

�
∈ U

� for each x ∈ A. Hence, in particular,
�
hf

A(a1, . . . , an), gf
A(a1, . . . , an)

�
∈ U

�
.

Since g is an U -homomorphism,
�
gf

A(a1, . . . , an), f
B(ga1, . . . , gan)

�
∈ U.

Finally, as
�
h(ai), g(ai)

�
∈ U

� for i ≤ n, we have
�
f

B(ga1, . . . , gan), f
B(ha1, . . . , han)

�
∈ U.

Consequently,
�
hf

A(a1, . . . , an), f
B(ha1, . . . , han)

�
∈ U

� ◦ U ◦ U ⊆ U
3
.

As the entourages of the form U
3, with U ∈ U symmetric, form a basis of the

Hausdorff uniformity U , we get the homomorphy condition

f
B(ha1, . . . , han) = hf

A(a1, . . . , an).

Choose a symmetric W ∈ U such that W
4 ⊆ V . We will show that for any

continuous homomorphism ϕ : A → B there is an x ∈ A such that
�
h(x), ϕ(x)

�
/∈

W . Assume this is not the case, i.e., there exists a continuous homomorphism
ϕ : A → B which is W -close to h. Then for any U ∈ U , U ⊆ V , there is a
gU ∈ D ∩ EU such that

�
gU (x), h(x)

�
∈ U for all x ∈ A, and an xU ∈ A such

that
�
gU (xU ), ϕ(xU )

�
/∈ V . As A is compact, there is a basis U1 ⊆ U such that

U ⊆ V for each U ∈ U1 and the net (xU )U∈U1 converges to a point x ∈ A. By
the continuity of the functions h and ϕ there is a neighborhood N ⊆ A of x

such that for any y ∈ N we have
�
h(x), h(y)

�
∈ W , as well as

�
ϕ(x), ϕ(y)

�
∈ W .

Then there is a U1 ∈ U1 such that for each U ∈ U1 the condition U ⊆ U1 implies
xU ∈ N . Choose any U ∈ U1 such that U ⊆ U1 ∩W . Then

�
gU (xU ), h(xU )

�
∈ U,

�
h(xU ), h(x)

�
∈ W,

�
h(x), ϕ(x)

�
∈ W,

�
ϕ(x), ϕ(xU )

�
∈ W,
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hence �
gU (xU ), ϕ(xU )

�
∈ U ◦W ◦W ◦W ⊆ W

4 ⊆ V,

and we have a contradiction.
As h itself is a continuous homomorphisms A → B, it follows that in particular

h is not W -close to h. This contradiction concludes the proof of the theorem. �

2. The metrizable case

Assume that the topologies of A and B stem from metrics ρ and σ, respectively.
Then for any strictly decreasing sequence (ηk)k∈N of positive reals converging to 0,
the relations

�
(u, v) ∈ B×B | σ(u, v) ≤ ηk

�
form a basis of the uniformity Uσ on

B. Due to compactness of A the notions of continuity and uniform continuity co-
incide for functions A → B. Hence a closed and symmetric (A, B,Uσ)-continuity
scale can be represented as a sequence Γ =

�
(γk, ηk)

�
k∈N, where (γk)k∈N is a

decreasing sequence of positive reals. It is more natural to call the sequence
Γ a (ρ, σ)-continuity scale in this case. Then a function g : A → B is called
Γ -continuous if for each k and all x, y ∈ A the condition ρ(x, y) ≤ γk implies
σ(g(x), g(y)) ≤ ηk.

For completeness’ sake we still quote the obvious translations of the intuitive
concepts of closeness and almost homomorphy into the metric terms. Let ε > 0.
Two functions g, h : A → B are said to be ε-close if σ(g(a), h(a)) ≤ ε for each
a ∈ A; a function g : A → B is called an ε-homomorphism if for each n-ary
operation symbol f ∈ F and all a1, . . . , an ∈ A we have

σ
�
gf

A(a1, . . . , an), f
B(ga1, . . . , gan)

�
≤ ε.

For metrizable algebras the stability theorem 1 can be stated in the following
more usual form.

Theorem 2. Let A, B be compact topological algebras of the same similarity

type, ρ and σ be two metrics inducing the topology of A and B, respectively, and

Γ =
�
(γk, ηk)

�
k∈N be a (ρ, σ)-continuity scale. Then for each ε > 0 there is a

δ > 0 such that every Γ -continuous δ-homomorphism g : A → B is ε-close to a

continuous (even Γ -continuous) homomorphism h : A → B.

Let us close with the announced counterexample, showing that one cannot even
prove the stability of continuous homomorphisms between compact metrizable
abelian groups, unless some additional assumptions are fulfilled. In particular,
one cannot get rid of mentioning the continuity scale Γ in theorems 1 and 2. The
construction is taken from [8]; it is based on an example from [6], forming its
initial part.
Example. Let p be an arbitrary prime and Zp denote the compact metric abelian
group of p-adic integers, i.e., the completion of the ring Z with respect to the
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norm
|a|p = p

−op(a)
,

where p
op(a) is the highest power of p dividing the integer a �= 0, and |0|p = 0.

Mapping the remainder x ∈ {0, 1, . . . , p
n − 1} mod p

n onto the corresponding
integer gn(x) = x ∈ Z ⊆ Zp defines a p

−n-homomorphisms of the finite cyclic
group Z/(pn) into Zp for every n ∈ N. Indeed, the difference gn(x) + gn(y) −
gn(x + y) is either 0 or p

n for any x, y ∈ Z/(pn), hence
��gn(x) + gn(y)− gn(x + y)

��
p
≤ |pn|p = p

−n
.

However, as Zp is torsionfree, there is no homomorphism Z/(pn) → Zp except for
the trivial one.

The direct product Ap =
�

n∈N Z/(pn) with the product topology is a com-
pact metrizable abelian group; denote by πn : Ap → Z/(pn) the projection onto
the nth factor and ιn : Z/(pn) → Ap its embedding into the product. Then
gn ◦πn : Ap → Zp is a continuous p

−n-homomorphisms, however, for each homo-
morphism h : Ap → Zp we have

sup
u∈Ap

��(gn ◦ πn)(u)− h(u)
��
p

≥ maxx∈Z/(pn)

��gn(x)− (h ◦ ιn)(x)
��
p

= max0≤x<pn |x|p = 1,

since the homomorphism h◦ιn : Z/(pn) → Zp necessarily is constantly 0. We can
conclude that, for any prime p, the pair (Ap, Zp) of compact metrizable abelian
groups does not have stable homomorphisms.
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