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INTERPRETATION OF THE MMPI-2 TEST BASED ON

FUZZY SET TECHNIQUES

IVETA BEBČÁKOVÁ, JANA TALAŠOVÁ, AND PAVEL ŠKOBRTAL

Abstract. MMPI-2 (Minnesota Multiphasic Personality Inventory) is a
psychological test for detecting pathological features of personality. After
answering all the items of the test each patient is assigned a codetype de-
scribing his/her mental health. The diagnosed profile of a patient is verified
by the comparison of his/her data to the prototypic profile of the given
codetype. This paper introduces a mathematical model for codetype de-
termination and codetype verification. The model has two parts. The first
solves the problem of codetype determination by using a fuzzy expert sys-
tem to formally express the linguistic description of the original method. In
the second part, each prototypic profile is described by an n-tuple of fuzzy
numbers. This allows us to effectively find the degree of agreement between
the profiles and data obtained from the patient. The proposed mathematical
model is realized in the MATLAB Fuzzy Logic toolbox.

1. Introduction

MMPI-2 (Minnesota Multiphasic Personality Inventory) is one of the most fre-
quently used tests for characterization of personality features and psychic disor-
ders. The first version of the test, MMPI, was developed by psychologist S. R.
Hathaway and psychiatrist J. C. McKinley [6] of the Minnesota University. Their
goal was to develop an instrument to describe patient’s personality more effec-
tively than what was allowed by the psychiatric interview with the patient, [1].
At the same time it was desirable to replace a great number of tests, focusing on
single features, by a single test capable of full characterization. The fruit of their
labor was an extensive testing method with applications far beyond the clinical
practice. Today, a revised version of the test, MMPI-2 [3], is used. MMPI-2 is
an important screening method for detecting pathological personality features,
which is used in clinical practice, as well as in entrance interviews for universities,
military, police, or leading positions [7].
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Use of the MMPI-2 is very demanding. The examiner needs to possess knowl-
edge of theory and use of psychological tests; he/she should have a Master degree
in personal psychology and psychopathology, [7]. Furthermore, correct interpre-
tation of the test requires experience with the MMPI-2 and a special training.
For this reason, a software with transparent results providing solid basis for the
clinic deliberation would be an enormous asset.

1.1. Quantitative interpretation of MMPI-2. An important part of the test-
ing process is quantitative interpretation, [5]. Answers to questionnaire questions
are used to saturate a large number of scales. Their rough point values are then
transformed into linear T-scores. Based on values of these, a codetype of the
patient is determined.

The basis for the MMPI-2 interpretation is a determination of codetype, if pos-
sible. Each codetype is defined by T-scores of ten clinical scales (1-Hypochondriasis,
2-Depression, 3-Hysteria, 4-Psychopathic deviate, 5-Masculinity-Feminity, 6-Para-
noia, 7-Psychasthenia, 8-Schizophrenia, 9-Hypomania, 0-Social introversion). Value
of each T-score comes from the interval [0, 120]. Values higher than 65 are con-
sidered significantly elevated. According to number and type of increased clinical
scales we define 55 different codetypes. Codetypes with one significantly elevated
clinical scale are designated “Spike” (ten possible types), while two significantly
elevated scales represent a “Two Point” (45 possible types). For a codetype to
be well defined, there has to be at least five point difference between the T-scores
of the highest scales and remaining T-scores. If this is not satisfied, there is a
possibility of triad, for example, and it is not possible to use codetypes.

After finding the codetype, the agreement between patient’s data and the
respective prototypic profile is checked. In this testing, T-scores of all scales need
to be considered. Each of 55 prototypic profiles is defined by specific values of
all scales. To have a perfect match between the patient and a given prototypic
profile, T-scores of patient’s scales must not differ from T-scores of the profile by
more than ten points.

For finding the T-scores and determining the codetype, the MMPI-2 software
was developed [7]. This software finds the codetype only from the two highest
T-scores and rest of the data is not involved in the process. This leads to loss
of information and it is wasteful of the full MMPI-2 potential. Furthermore,
the software does not strictly adhere to the five-point-difference condition and
therefore may return an erroneous result.

In this paper, we present a mathematical model, which can help to find several
codetypes best fitting the patient. The codetypes are determined in two steps. In
the first step, the model searches for codetypes using the MMPI methodology with
slightly modified conditions. In the second step, the additional suitable codetypes
are found by comparing the patient’s data to the prototypic profiles. Similar
approach has already been employed in [2], where the second part of the model
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employed a base of rules, which caused several problems. For example, prototypic
profiles were not detected with unit overlap and the method was was not universal
and tended to prefer certain profiles. In this paper we introduce a different
treatment of the second part of the model, which addresses the aforementioned
issues.

The Czech version of the MMPI-2 does not work with all of the scales. It uses
and saves values of only 79 of them. The mathematical model will consider this
simplified version of the MMPI-2.

2. Preliminaries

The codetype determination requiring full satisfaction of all 79 conditions of a
prototypic profile is problematic. Classification based on such a crisp mathemat-
ical model may not work, because only rarely a patient satisfies fully a prototypic
profile. It will be shown that in a situation like this, as well as in many areas of
social sciences and psychology, it is effective to use the so called fuzzy approach.

Fuzzy set theory [4, 8] gives us a tool to model the vagueness phenomenon. It
allows us to describe mathematically linguistic values and linguistically defined
rules. This is the reason why in this special case, where we look for a mathemat-
ical model of a linguistically described methodology, description by fuzzy sets is
very helpful.

Let U be a nonempty set. A fuzzy set A on U is defined by the mapping
A : U → [0, 1]. For each x ∈ U the value A(x) is called a membership degree of
the element x in the fuzzy set A, A(·) is a membership function of the fuzzy set
A.

A height of a fuzzy set A on U is a real number hgt(A) = supx∈U{A(x)}. An
intersection of fuzzy sets A,B on U is a fuzzy set A

�
B on U with a membership

function (A
�
B)(x) = min{A(x), B(x)} for any x ∈ U .

A fuzzy number A is a fuzzy set on R which fulfills the following conditions:
the kernel of the fuzzy set A, KerA = {x ∈ R|A(x) = 1}, is a non-empty set, the
α-cuts of the fuzzy set A, Aα = {x ∈ R|A(x) ≥ α}, are closed intervals for all
α ∈ (0, 1], the support of A, SuppA = {x ∈ R|A(x) > 0}, is bounded.

The family of all fuzzy numbers on R is denoted by FN (R). If SuppA ⊆ [a, b]
then A is referred to as a fuzzy number on the interval [a, b]. The family of all
fuzzy numbers on the interval [a, b] is denoted by FN ([a, b]). A linear fuzzy num-
ber on the interval [a, b] that is determined by four points (x1, 0), (x2, 1), (x3, 1), (x4, 0),
a ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ b, is a fuzzy number A with the membership function

7



depending on parameters x1, x2, x3, x4, as follows

∀x ∈ [a, b] : A(x, x1, x2, x3, x4) =






0, for x < x1;
x−x1
x2−x1

, for x1 ≤ x < x2;
1, for x2 ≤ x ≤ x3;
x4−x
x4−x3

, for x3 < x ≤ x4;
0, for x4 < x.

This linear fuzzy number A will be denoted by A ∼ (x1, x2, x3, x4).
A linguistic variable is a quintuple (X,T (X), U,G,M), where X is a name

of the variable, T (X) is a set of its linguistic values (linguistic terms), U is an
universe, which the mathematical meanings of the linguistic terms are modelled
on, G is a syntactical rule for generating the linguistic terms, and M is a semantic
rule, which to every linguistic term A assigns its meaning M(A) as a fuzzy set
on U . If the set of linguistic terms is given explicitly, then the linguistic variable
is denoted by (X,T (X), U,M).

Let (Xj , T (Xj), Uj ,Mj), j = 1, 2, . . . ,m, and (Y, T (Y ), V,N) be linguistic
variables. Let Aij ∈ T (Xj) and M(Aij) ∈ FN (Uj), i = 1, 2, . . . , n, j =
1, 2, . . . ,m. Let Bi ∈ T (Y ) and M(Bi) ∈ FN (V ), i = 1, 2, . . . , n. Then the
following scheme F

If X1 is A11 and . . . and Xm is A1m, then Y is B1

If X1 is A21 and . . . and Xm is A2m, then Y is B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If X1 is An1 and . . . and Xm is Anm, then Y is Bn

is called a linguistically defined function (base of rules).
The process of calculating linguistic values of an output variable for the given

linguistic values of input variables by means of such a rule base is called an
approximate reasoning. There are several methods of approximate reasoning.
The most popular and the most widely used one is the Mamdani algorithm.

Let F be the base of rules defined above and let us assume the observed values
to be

X1 is A�
1 and X2 is A�

2 and . . . and Xm is A�
m,

then by entering the observed values into the base of rules F , according to the
Mamdani algorithm, we obtain the output value Y = B�, where the B� is the
linguistic approximation [4] of a fuzzy set BM . The membership function of the
fuzzy setBM is defined for all y ∈ V as followsBM (y) = max{BM

1 (y), . . . , BM
n (y)},

where B
M
i (y) = min{hi, Bi(y)}, hi = min{hgt(Ai1

�
A

�
1), . . ., hgt(Aim

�
A

�
m)},

for i = 1, . . . , n.

3. Designed mathematical model

The quantitative interpretation of the MMPI-2 is performed in two steps. First,
based on values of clinical scales, a patient’s codetype is determined. This is
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followed by the verification, where the relevant prototypic profile is compared
with the patient’s data.

The proposed mathematical model respects this structure of MMPI-2. In the
first step, the model finds the three clinical scales with the highest T-scores,
and with help of the linguistically described function decides on a codetype. In
the second step, the model works with values of all 79 scales and calculates the
overlap between the linear T-scores of the patient and the prototypic profile of
the codetype found in the previous step. Simultaneously the model searches for
other prototypic profiles, which agree well with patient’s data.

3.1. Codetype determination. Two conditions are important for correct de-
termination of the codetype. First, T-scores of significantly elevated scales must
be higher than 65. Second, values of the highest scales must be at least five
points higher than values of all remaining scales. In practice, it is often difficult
to strictly fulfill this conditions. It has shown to be more effective to use the
fuzzy approach and define these conditions linguistically. Furthermore, use of
the fuzzy set theory was instrumental in finding more variants of the codetype,
which can be presented to the evaluator.

Prior to further processing, the scales need to be ordered from the highest T-
score to the lowest. Based on the above mentioned requirements, we then define
linguistic variables as:

(1) �The First Scale Elevation,
{Insignificant, Significant}, [0, 120],M1�,

(2) �The Second Scale Elevation,
{Insignificant, Significant}, [0, 120],M1�,

(3) �The Third Scale Elevation,
{Insignificant, Significant}, [0, 120],M1�,

(4) �The Difference between the First Two Scales,
{Small, Big Enough}, [0, 120],M2�,

(5) �The Difference between the 2nd and the 3rd Scale,
{Small, Big Enough}, [0, 120],M2�,

(6) �Codetype Shape,
{Spike, Two Point, Potential Triad, Within-Normal-Limits},
{1, 2, 3, 4}, N�,

where
M1(Insignificant) = IE ∼ (0, 0, 63, 65), M1(Significant) = SE ∼ (63, 65, 120, 120),
M2(Small) = SM ∼ (0, 0, 0, 5),M2(Big Enough) = BE ∼ (0, 5, 120, 120), N(Spike) =
S ∼ (1, 1, 1, 1), N(Two Point) = 2P ∼ (2, 2, 2, 2), N(Potential Triad)= PT ∼

(3, 3, 3, 3), N(Within-Normal-Limits) = WNL ∼ (4, 4, 4, 4). Some of defined vari-
ables are illustrated in Fig. 1 and 2.
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0 12063 65
0

1
SM BE SEIE

Figure 1. Input linguistic variables
Left: The Difference between the First Two Scales and its two
linguistic values Small and Big Enough modelled by fuzzy num-
bers SM and BE.
Right: The First Scale Elevation and its two linguistic values
Insignificant and Significant modelled by fuzzy numbers IE and
SE.

1 2 3 4
0

1
S PT WNL2P

Figure 2. Output linguistic variable Codetype Shape and its
four linguistic values Spike, Two Point, Potential Triad and
Within-normal-limits modelled by fuzzy numbers S,2P,PT and
WNL.

With help of these six linguistic variables and four rules we construct a base
of rules F :

rule 1: If The First Scale Elevation is Significant and The Second Scale
Elevation is Insignificant and The Difference between the First Two Scales
is Big Enough, then the Codetype Shape is a Spike.
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rule 2: If The First Scale Elevation is Significant and The Second Scale
Elevation is Significant and The Difference between the 2nd and the 3rd

Scale is Big Enough, then the Codetype Shape is Two Point.
rule 3: If The First Scale Elevation is Significant and The Second Scale Ele-

vation is Significant and The Third Scale Elevation is Significant and The
Difference between the 2nd and the 3rd Scale is Small, then the Codetype
Shape is Potential Triad.

rule 4: If The First Scale Elevation is Insignificant, then the Codetype
Shape is Within-Normal-Limits.

The base of rules F has five input linguistic variables - the three highest T-
scores of clinical scales and the two differences between them - and one output
linguistic variable, which determines the shape of the codetype.

Together with the Mamdani approximate reasoning algorithm, the linguistic
function F forms an expert system for determination of the codetype shape. With
values of clinical scales as an input, the model produces a fuzzy set BM that helps
the evaluator to determine possible codetype shapes. The membership degree
of an element of the set {1, 2, 3, 4} in fuzzy set B

M , representing a particular
codetype shape, equals to the degree of satisfaction of the respective rule. See,
for example, Fig. 3. To determine the complete codetype of the patient, we need
to combine the information about the codetype shape with knowledge of the
initial ordering of clinical scales. For example, if the codetype shape is Spike and
the designation of the highest scale is 8-Schizophrenia, then the codetype is Spike
8.

1 2 3 4
0

0.4
0.5

1

S

PT WNL

2P
BM

Figure 3. The fuzzy set B
M as obtained by entering input

values [67 64 62 3 2] into the designed expert system. The de-
grees of satisfaction express the possibility that the correspond-
ing codetype shape is a Spike (possibility 50%) or a Two Point
(possibility 40%).
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3.2. Codetype verification. Each of all 55 codetypes is described in detail by
a so called prototypic profile. Codetype verification is based on the calculation
of the degree of agreement between the patient’s data and the prototypic profiles
corresponding to the codetypes, which were determined in the first part of the
model. Besides the verification, the model also searches for other prototypic
profiles with a good overlap. Each profile is described by a vector of 79 real
numbers representing values of the 79 scales with the T-scores ranging from 0
to 120. For a patient’s profile to match a prototypic profile, all the patient’s
T-scores must be within 10 point distance from the prototypic values.

In the second part of the mathematical model we replaced all crisp numbers
tij describing the prototypic profiles by linear fuzzy numbers Tij ∼ (tij −20, tij −
10, tij + 10, tij + 20), i = 1, 2, . . . , 55, j = 1, 2, . . . , 79. The example is illustrated
in the Fig. 4. The kernel of the designed fuzzy number corresponds to the require-
ments of the methodic, i.e. if the patient’s T-score is within 10 point distance
from the prescribed value, there is a perfect match and the membership degree
is equal to 1. The support of the fuzzy number was set at twice the length of
the kernel, i.e. if the distance of the patient’s T-score and the prototypic value is
bigger than 20 points, then there is no match at all and the membership degree
is zero.

0  120
0

1

Prescribed value

2x 10

4x10

Figure 4. Fuzzy number replacing the crisp prototypic value
of a scale. The membership degree corresponds to the degree of
agreement between the patient’s T-score and the prescribed
value.

Each i-th, i = 1, 2, . . . , 55, prototypic profile is then described by 79 of these fuzzy
numbers. Entering the patient’s T-scores t

�
1, t

�
2, . . . , t

�
79 into the designed fuzzy

numbers, we obtain 79 membership degrees Ti1(t�1), Ti2(t�2), . . . , Ti,79(t�79). The
degree of agreement between the patient’s data and the i-th prototypic profile is
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calculated as an arithmetic mean of these membership degrees:

(1) hi =
1

79

79�

j=1

Tij(t
�
j), i = 1, 2, . . . , 55.

During the development of the model we tried various aggregation operators.
However, the common aggregation operators used for modelling the operation of
logical conjunction, such as minimum, proved unfeasible, because a patient rarely
satisfies the full range of conditions. On the other hand, the arithmetic mean
proved itself to be the most convenient in this case. The degree of agreement
between the given data and the prototypic profile here represents the average
satisfaction of all 79 prescribed conditions. Compared to minimum, for example,
the arithmetic mean provides better information about the satisfaction of given
conditions. In the future, the aggregation operator can be readjusted to the
requirements of the examiner and the arithmetic mean can be replaced by an
other aggregation operator, for example weighted mean or OWA, [9].

Applying the aforementioned approach we are able to test all the 55 pro-
totypic profiles. The result can be modelled by a fuzzy set H on the set U ,
U = {1, 2, . . . , 55}, where each integer between 1 and 55 corresponds to one pro-
totypic profile and the membership degrees H(i), i = 1, 2, . . . , 55, represent the
overlap of the respective prototypic profiles with the profile of the patient. The
example is illustrated in Fig. 5.
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Figure 5. The fuzzy set H as obtained by comparing 79 given
values with the prescribed prototypic profiles. The degrees of
satisfaction represent the overlap between the prototypic profiles
and the patient’s profile.
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4. The implementation of the mathematical model in MATLAB

Both parts of the proposed mathematical model were realized in MATLAB. At
first, we have used the Fuzzy Logic Toolbox to create the base of rules and
to set the proper approximate reasoning algorithm. Then to each one of the 55
prototypic profiles we have assigned a 79-tuple of fuzzy numbers, as was described
in the previous section.

An example of the output can be seen in Fig. 6. The output of the utility is in
the form of three figures and linguistic description of the situation. The first figure
presents values of clinical scales as obtained from the patient - the patient’s profile.
The second figure presents possible codetypes, together with their respective
degrees of satisfaction. The third figure shows all prototypic profiles and their
overlap with the patient’s profile. The evaluator can therefore decide, whether
the found codetypes are in good agreement with all available patient’s data. The
linguistic output presents possible codetypes and three prototypic profiles with
the best agreement. In addition it comments on a possibility of a triad or scales
within normal limits.

In Fig. 6 we demonstrate performance of the implementation. According to
clinical scales values, codetype 6-9 was determined. The result is in agreement
with the original software. However, during the prototypic profile analysis, the
codetype 6-9 didn’t show sufficient agreement, as the degree of overlap was only
0.48. The three most faithful profiles were those of codetypes 6-8/8-6, 8-9/9-8,
and 7-8/8-7, with 6-8/8-6 showing the best overlap. This suggests that for further
deliberation, codetypes 6-8/8-6 should be considered in addition to 6-9.

5. Conclusion

In the paper we have created a mathematical model which can help an examiner
with quantitative interpretation of the results given by the MMPI-2 test. For
determination of a MMPI codetype we have employed a fuzzy expert system to
formally express the linguistically described method of data analysis. To ver-
ify the overlap between the prototypic profiles of the found codetypes and the
patient’s data, all the prototypic profiles were described by 79-tuples of special
fuzzy numbers. This allowed us to effectively find the degree of agreement be-
tween the respective prototypic profiles and data obtained from the patient. The
model contains several free parameters which allow for further fine tuning needed
before a practical application

The created fuzzy model was implemented in MATLAB. The created utility,
employing the fuzzy approach, can analyze the data while avoiding the short-
comings of the existing software ”MMPI-2”. In this way the utility can serve as
a valuable tool for a human psychiatrist or psychologist in the tuning process.
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Figure 6. Three figures and linguistic description as returned
by the MATLAB implementation of the model.
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[2] Bebčáková, I., Talašová, J., Škobrtal, P., Fuzzy Approach to Quantitative Interpretation of
MMPI-2. Journal of Applied Mathematics, Vol. 2, Number 1, 2009, 65-75, ISSN 1337-6365

[3] Butcher, J. N., Dahlstrom, W. G., Graham, J. R., Tellegen, A., and Kaemmer, B., MMPI-
2: Manual for administration and scoring. University of Minnesota Press, Minneapolis,
1989.

[4] Dubois, D., Prade, H.(Eds.), Fundamentals of fuzzy sets. Kluwer Academic Publishers,
Boston/London/Dordrecht, 2000.

[5] Greene, R. L., The MMPI-2 An interpretive manual, Second edition, Allyn & Bacon, 1999.
[6] Hathaway, S. R. and Mckinley, J. C., A multiphasic personality schedule (Minnesota): I.

Construction of the schedule, Journal of Psychology, 10, 249-254, 1940.
[7] Hathaway, S. R., Mckinley, J. C. and Net́ık, K., Minnesota Multiphasic Personality Inven-

tory - 2, First czech edition, Testcentrum, Praha, 2002.
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Olomouc, Czech Republic

E-mail address: bebcakova.iveta@post.cz
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VALUATION OF THE AMERICAN-STYLE OF ASIAN OPTION

BY A SOLUTION TO AN INTEGRAL EQUATION

TOMÁŠ BOKES

Abstract. We extend the model for valuation of American-style of Asian
options introduced by Hansen, Jørgensen (2000) in [3] by including a
nontrivial dividend rate q. We use the theory of conditioned expectations
to calculate the formula of the American-style Asian floating strike option
with a general average of the underlying asset. We determine an integral
equation formula for the value of this type of an option with continuous
geometric average and approximate formula for the continuous arithmetic
average.

1. Introduction

Evolution of trading systems influences the development of the market of financial
derivatives. First, the simple derivatives (as forwards and vanilla options) were
used to hedge the risk of a portfolio. Progress in valuation of these simple financial
instruments pushed traders into inventing less predictable and more complex
derivatives. Using financial derivatives with more complicated pay-offs brings
into attention also new mathematical problems.

Asian options belong to a group of path-dependent options, i.e. part of exotic
options. Here the pay-off depends on the spot value of the underlying during the
whole or some part(s) of the life span of the option. Asian options depend on the
(arithmetic or geometric) average of the spot price of the underlying.

Asian options can be used as a tool for hedging the high volatility of the price
of assets or goods. The price of an underlying varies during the life span of the
option, the holder of the Asian option can be secured for the case when the price
jumps to the unpleasant region (too high for call holder or too low for put holder)
his loss will be reduced.

Asian options can be divided into two subgroups when considering the type of
their pay-off function. The average strike Asian option and the fixed strike Asian

2000 Mathematics Subject Classification. 35K15, 35K55, 90A09, 91B28.
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option with the pay-off function for the call option

(1) VT (S,A) = (S −A)+

and

(2) VT (S,A) = (A−X)+,

respectively.

2. A probabilistic model for pricing of American-Style of Asian
options

In this section we provide a formula for the valuation of the early exercise bound-
ary of an American-style Asian option paying nontrivial dividends. We follow
the derivation introduced by Hansen, Jørgensen in [3]. Their formula for a
floating strike option was derived using the theory of martingales and conditioned
expected values. We extend the formula to Asian options on underlying paying
non-zero dividend rate.

This model is based on the stochastic behavior of the underlying in time. It is
assumed that it is driven by stochastic process satisfying the following stochastic
differential equation

(3) dSt = (r − q)St dt+ σSt dW
Q
t on the time interval [0, T ],

starting almost surely from the initial price S0 > 0, where the constant parameter
r > 0 denotes the risk-free interest rate, q ≥ 0 is a dividend rate, σ is the
volatility of stock returns and W

Q
t is a standard Brownian motion with respect

to the standard risk-neutral probability measure Q. A solution of equation (3)
corresponds to the geometric Brownian motion

(4) St = S0e
(r−q− 1

2σ
2)t+σWQ

t ,

for 0 ≤ t ≤ T .
The bond (risk-free) market is driven by the differential equation

(5) dBt = rBt dt,

with B0 = 1, i.e. Bt = e
rt.

As we have already mentioned above we shall derive the value of an American-
style Asian option with floating strike. If we define the optimal stopping time as
T

∗, the pay-off of the option is set by

(6) VT∗ =
�
ρ(ST∗ −AT∗)

�+
,

where Vt is the value of the option at time t, At is a continuous average of the
stock value during the interval [0, t] and ρ = 1 for a call option and ρ = −1 for a
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put option. We may consider either the continuous arithmetic average

(7) At =
1

t

� t

0
Su du,

or the continuous geometric average

(8) lnAt =
1

t

� t

0
lnSu du

or the weighted arithmetic average

(9) At =
1

t

� t

0
a(t− u)Su du,

where the kernel function a(.) ≥ 0 with the property
�∞
0 a(ζ) dζ < ∞ is usually

defined as a(s) = e
−λs for λ > 0.

3. Valuation

We recall that derivation of the more simple type option was introduced in [3].
According to Hansen and Jørgensen, American-style contingent claims can be
priced by the conditioned expectations approach. The option prices are evaluated
by considering all possible stopping times in the interval [t, T ]

(10) V (t, S,A) = ess sup
s∈T[t,T ]

EQ
t

�
e
−r(s−t)

�
ρ(Ss −As)

�+���St = S,At = A

�
,

where T[t,T ] denotes the set of all stopping times in the interval [t, T ] and E
Q
t [X] =

E
Q[X|Ft] is the conditioned expectation with information of time t (the informa-

tion is represented by the filtration Ft of the σ-algebra F , where the Brownian
motion is supported).

To simplify the formula we change the probability measure by the martingale

(11) ηt = e
−(r−q)t St

S0
= e

− 1
2σ

2t+σWQ
t

the new probability measure Q is defined by

(12) dQ = ηT dQ.

According to Girsanov’s theorem, the process

(13) W
Q
t = W

Q
t − σt

is a standard Brownian motion with respect to the measure Q. The value of the
stock under this measure is defined by

(14) St = S0e
(r−q+ 1

2σ
2)t+σWQ

t .
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All assets priced under this measure are Q-martingales when discounted by the
stock price. According to this fact, we can reduce the dimension of stochastic
variables. We introduce a variable ξt =

At
St

and so we can derive

V (t, S,A) = ess sup
s∈T[t,T ]

EQ
t

�
e
−r(s−t)

�
ρ(Ss −As)

�+���St = S,At = A

�

= ess sup
s∈T[t,T ]

EQ
t

�
ηt

ηT
e
−r(s−t)

�
ρ(Ss −As)

�+���St = S,At = A

�

= ess sup
s∈T[t,T ]

EQ
t

�
e
r(t−s)

e(r−q)t
St

�
ρ(Ss −As)

�+
EQ
s

�e(r−q)T

ST

����St = S,At = A

�

= ess sup
s∈T[t,T ]

EQ
t

�
e
qt−rs

St

�
ρ(Ss −As)

�+ e
(r−q)s

Ss

���St = S,At = A

�

= ess sup
s∈T[t,T ]

EQ
t

�
e
−q(s−t)

St

�
ρ

�
1−

As

Ss

��+���St = S,At = A

�

= ess sup
s∈T[t,T ]

e
−q(s−t)

S EQ
t

��
ρ(1− ξs)

�+���St = S,At = A

�
.

The last expression can be rewritten in terms of the new variable ξ = A
S as

follows:

(15) �V (t, ξ) = e
−qtV (t, S,A)

S
= e

−qT∗
t EQ

t

��
ρ(1− ξT∗

t
)
�+�

,

where T
∗
t = inf{s ∈ [t, T ]|ξs = ξ

∗
s} and the function t �→ ξ

∗
t describes the early

exercise boundary.

The stopping region S and continuation region C for the call and put options
are defined by

Scall = Cput = {0 ≤ t ≤ T, 0 ≤ ξ < ξ
∗
t },(16)

Ccall = Sput = {0 ≤ t ≤ T, ξ
∗
t < ξ < ∞}.(17)

Now we solve the problem (with one stochastic variable) formulated in (15).
In what follows, we generalize the result by Hansen, Jørgensen (2000) from
[3] for the case of a nontrivial dividend rate q ≥ 0.

Theorem 3.1. The value of the floating strike Asian option on stock underlying
with dividend rate q ≥ 0 is given by

(18) �V (t, ξt) = �v(t, ξt) + �e(t, ξt),
where

(19) �v(t, ξt) ≡ EQ
t

�
e
−qT

�
ρ(1− ξT )

�+�
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and

(20) �e(t, ξt) ≡ EQ
t

� � T

t
ρe

−qu
ξu1S(u, ξu)

�
dAu

Au
− (r − qξ

−1
u )du

��
,

with average given by the function At and stopping region S. Here the function
1S(·) is the indicator function of the set S, ρ sets the call option by the value 1
and the put option by the value −1.

In the proof of Theorem 3.1 we will use the following lemma.

Lemma 3.2. The auxiliary variable ξt = At
St

satisfies the following stochastic
differential equation:

(21) dξt = ξt
dAt

At
− (r − q)ξt dt− σξt dW

Q
t .

Proof of Lemma 3.2. We express the differential dξt = d

�
At
St

�
as

dξt =
1

St
dAt −

At

S
2
t

dSt +
At

S
3
t

(dSt)
2

= ξt
dAt

At
− (r − q)ξt dt− σξt dW

Q
t ,

and the proof of lemma follows. �

Notice that, when comparing to the original expression with a zero dividend
rate, q = 0, the only difference is that the parameter r is replaced by r − q. The

value of dAt
At

depends on the method of averaging of the underlying used in the
valuation. The expression for the arithmetic averaging has form

(22)
dA

a
t

A
a
t

=
1

t

� 1

ξ
a
t

− 1
�
dt.

As far as, the geometric average is concerned, we have

(23)
dA

g
t

A
g
t

= −
1

t
ln ξgt dt

and for the weighted arithmetic averaging

(24)
dA

wa
t

A
wa
t

=
1

t

�a(0) +
� t
0 a

�(t− u)Su
St

du

ξ
wa
t

− 1
�
dt,

where a
� is the derivative of the function a. The last equation is unusable in its

general form. Neverthless, if we set a(s) = e
−λs, it becomes

(25)
dA

wa
t

A
wa
t

=
1

t

� 1

ξ
wa
t

− (1 + λt)
�
dt.
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Proof of Theorem 3.1. We follow the proof of the original theorem including
necessary modifications related to the form of averaging and the fact that q ≥ 0.

First, we suppose that (t, ξ) belongs to the continuation region C. The option
is held and so we use Itô’s lemma to calculate the differential

d�V =
∂ �V
∂ξ

dξ +
1

2

∂
2 �V
∂ξ2

(dξ)2 +
∂ �V
∂t

dt

= ξ
∂ �V
∂ξ

dA

A
+

�
− (r − q)ξ

∂ �V
∂ξ

+
1

2
σ
2
ξ
2 ∂

2 �V
∂ξ2

+
∂ �V
∂t

�
dt− σξ

∂ �V
∂ξ

dW
Q

= −σξ
∂ �V
∂ξ

dW
Q
,

where the last equality holds true, because �V is Q-martingale.
Now we suppose that (t, ξ) belongs to the stopping region S. The value of the

option is defined by
�V (t, ξt) = ρe

−qt(1− ξt).

So the differential d�V has form

d�V = −ρqe
−qt(1− ξ)dt− ρe

−qt
dξ

= −ρe
−qt

ξ
dA

A
+ ρe

−qt(rξ − q)dt+ ρe
−qt

σξdW
Q
.

For both regions we have an equation

(26) d�V (t, ξt) = −ρe
−qt1S(t, ξt)

�
ξt
dAt

At
− (rξt − q)dt

�
+ dM

Q
t ,

where MQ
t is a Q-martingale. Integrating (26) from t to T and taking expectation

we have

EQ
t

�
�V (T, ξT )

�
− �V (t, ξt) = −EQ

t

� � T

t
ρe

−qu
ξu1S(u, ξu)

�
dAu

Au
− (r −

q

ξu
)du

��

+EQ
t

� � T

t
dM

Q
u

�

� �� �
=0

,

�V (t, ξt) = EQ
t

�
e
−qT

�
ρ(1− ξT )

�+�

� �� �
=�v(t,ξt)

+EQ
t

� � T

t
ρe

−qu
ξu1S(ξu)

�
dAu

Au
− (r −

q

ξu
)du

��

� �� �
=�e(t,ξt)

.

this completes the proof of Theorem 3.1. �

22



Conclusions

In this paper we extended the Hansen and Jørgensen’s formula for valuation of
the floating strike American-style Asian option by assuming a non-zero dividend
rate q. The theory of the martingales and conditioned expected values was used
in the calculation of an integral equation for the position of the early exercise
boundary. We also present the formula for the weighted arithmetic average with
time dependent weights. The presented formula can be used in the comparison
of the value of the early exercise boundary to the projected SOR method for
Asian option due Kwok, Dai in [1] as well as integral transformation method
described in [7].

The numerical experiments and asymptotic analysis of the early exercise bound-
ary will be the subject of the forthcoming paper being prepared.
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GENERATED FUZZY IMPLICATIONS AND KNOWN CLASSES

OF IMPLICATIONS

VLADISLAV BIBA AND DANA HLINĚNÁ

Abstract. In MV-logic we use a mapping I : [0, 1]2 → [0, 1], called a fuzzy
implication, which is a monotonous extension of classical implication on
the unit interval. In this paper we deal with one of possible extensions of
classical implication. Our implications are generated. Some properties of
these implications have already been given in [7]. Well-known classes of
implications are (S,N)-implications and R-implications. Some connections
between class of our generated implications on one side, and (S,N) and
R-implications on the other side will be given. The aim of this paper is
to study their properties and to investigate connections between mentioned
classes.

1. Preliminaries

We briefly recall definitions and properties of the most important connectives
in MV-logic.

Definition 1.1. A unary operator n : [0, 1] → [0, 1] is called a fuzzy negation if,
for any x, y ∈ [0, 1],

• x < y ⇒ n(y) ≤ n(x),
• n(0) = 1, n(1) = 0.

The negation n is called a strict negation if and only if the mapping n is
continuous and strictly decreasing. A strict negation is strong if it is an involution.

Example 1.2. The following are some examples of fuzzy negations:

• Ns(x) = 1−x strong negation, standard negation,
• n(x) = 1− x

2 strict, not strong negation,
• n(x) =

√
1− x2 strong negation,

• NG1(1) = 0, NG1(x) = 1 if x < 1 non-continuous, greatest, Gödel negation,
• NG2(0) = 1, NG2(x) = 0 if x > 0 non-continuous, smallest, dual Gödel negation.

Note that the dual negation based on a negation n is given by n
d(x) = 1−n(1−x).

2000 Mathematics Subject Classification. 03B52, 03E72, 39B99.
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Definition 1.3. A non-decreasing mapping C : [0, 1]2 → [0, 1] is called a con-
junctor if, for any x, y ∈ [0, 1], it holds

• C(x, y) = 0 whenever x = 0 or y = 0,
• C(1, 1) = 1.

Commonly used conjunctors in MV-logic are the triangular norms.

Definition 1.4. A triangular norm (t-norm for short) is a binary operation
on the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1] such that for all
x, y, z ∈ [0, 1], the following four axioms are satisfied:
(T1) Commutativity T (x, y) = T (y, x),
(T2) Associativity T (x, T (y, z)) = T (T (x, y), z),
(T3) Monotonicity T (x, y) ≤ T (x, z) whenever y ≤ z,

(T4) Boundary Condition T (x, 1) = x.

Remark 1.5. Note that the dual operator to the conjunctor C, defined by D(x, y) =
1−C(1− x, 1− y) is called the disjunctor. Equivalently, a disjunctor can be de-
fined as a non-decreasing mapping D : [0, 1]2 → [0, 1] such that D(x, y) = 1
whenever x = 1 or y = 1 and D(0, 0) = 0. Commonly used disjunctors in MV-
logic are the triangular conorms. A triangular conorm (also called a t−conorm)
is a binary operation S on the unit interval [0, 1] which, for all x, y, z ∈ [0, 1],
satisfies (T1)− (T3) and (S4) S(x, 0) = x. The original definition of t−conorms
given in [8] is completly equivalent to the previous axiomatic definition, where the
t−conorm is based on a given t−norm T by formula

S(x, y) = 1− T (1− x, 1− y).

For more information, see [4].

In the literature, we can find several different definitions of fuzzy implications.
In this paper we will use the following one, which is equivalent to the definition
introduced by Fodor and Roubens in [3]. The readers can obtain more information
in [2] and [5].

Definition 1.6. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies the following conditons:

(I1) I is decreasing in its first variable,
(I2) I is increasing in its second variable,
(I3) I(1, 0) = 0, I(0, 0) = I(1, 1) = 1.

Now, we recall definitions of some important properties of implications, which
we will investigate.

Definition 1.7. A fuzzy implication I : [0, 1]2 → [0, 1] satisfies:
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(NP) the left neutrality property, or is called left neutral, if

I(1, y) = y; y ∈ [0, 1],

(EP) the exchange principle if

I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1],

(IP) the identity principle if

I(x, x) = 1; x ∈ [0, 1],

(OP) the ordering property if

x ≤ y ⇐⇒ I(x, y) = 1; x, y ∈ [0, 1],

(CP) the contrapositive symmetry with respect to a given negation n if

I(x, y) = I(n(y), n(x)); x, y ∈ [0, 1].

Definition 1.8. Let I : [0, 1]2 → [0, 1] be a fuzzy implication. The function NI

defined by NI(x) = I(x, 0) for all x ∈ [0, 1], is called the natural negation of I.

One of well-known classes of implications is represented by (S,N)-implications,
which are based on given t-conorm and negation N.

Definition 1.9. A function I : [0, 1]2 → [0, 1] is called an (S,N)−implication if
there exist a t-conorm S and fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

If N is a strong negation, then I is called a strong implication.

The following characterization of (S,N)−implications is from [1].

Theorem 1.10. (Baczyňski and Jayaram [1], Theorem 5.1) For a function I :
[0, 1]2 → [0, 1], the following statements are equivalent:

• I is an (S,N)-implication generated from some t-conorm and some con-
tinuous (strict, strong) fuzzy negation N.

• I satisfies (I2), (EP) and NI is a continuous (strict, strong) fuzzy nega-
tion.

Another way of extending the classical binary implication operator to the unit
interval [0, 1] uses the residuation I with respect to a left-continuous triangular
norm T

I(x, y) = max{z ∈ [0, 1];T (x, z) ≤ y}.

The following characterization of R−implications is from [3].

Theorem 1.11. (Fodor and Roubens [3], Theorem 1.14) For a function I :
[0, 1]2 → [0, 1], the following statements are equivalent:

• I is an R-implication based on some left-continuous t-norm T.
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• I satisfies (I2), (OP), (EP), and I(x, .) is a right-continuous for any
x ∈ [0, 1].

Our constructions of implications will make use extensions of the classical
inverse of function. One way of extending is described in next definitions.

Definition 1.12. Let ϕ : [0, 1] → [0,∞] be a non-decreasing function. The
function ϕ

(−1) which is defined by

ϕ
(−1)(x) = sup{z ∈ [0, 1];ϕ(z) < x},

is called the pseudo-inverse of the function ϕ, with the convention sup ∅ = 0.

Definition 1.13. Let f : [0, 1] → [0,∞] be a non-increasing function. The
function f

(−1) which is defined by

f
(−1)(x) = sup{z ∈ [0, 1]; f(z) > x},

is called the pseudo-inverse of the function f, with the convention sup ∅ = 0.

One of main contributions of our paper are, in fact, corollaries of the following
technical result.

Proposition 1.14. Let c be a positive real number. Then the pseudo-inverse of
a positive multiple of any monotone function f : [0, 1] → [0,∞] satisfies

(c · f)(−1) (x) = f
(−1)

�
x

c

�
.

Proof. Let f be a non-decreasing function. Then

f
(−1)(x) = sup{z ∈ [0, 1]; f(z) < x}

and

(c · f)(−1) (x) = sup {z ∈ [0, 1]; c · f(z) < x} =

= sup
�
z ∈ [0, 1]; f(z) <

x

c

�
= f

(−1)
�
x

c

�
.

Now, the proof for the case of non-increasing function is analogous. �

2. New generated implications

It is well-known that it is possible to generate t-norms from one variable func-
tions. It means it is enough to consider one variable function instead of two
variable function. Moreover, we can generate implications in a similar way as
t-norms. One of these possibilities is described in the next theorem and example.
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Theorem 2.1. Let f : [0, 1] → [0,∞] be a strictly decreasing function such that
f(1) = 0. Then the function If (x, y) : [0, 1]2 → [0, 1] which is given by

If (x, y) =

�
1 if x ≤ y,

f
(−1)(f(y+)− f(x)) otherwise,

where f(y+) = lim
y→y+

f(y) and f(1+) = f(1) is a fuzzy implication.

Proof. We proceed by the points of the Definition 1.6.

(I1) – Let x1, x2, y ∈ [0, 1] and x1 ≤ x2 and x1 ≥ y. Function f is de-
creasing and therefore f(x1) ≥ f(x2) and f(y+)− f(x1) ≤ f(y+)−
f(x2). Pseudoinverse f

(−1) of function f is decreasing, too, and
f
(−1) (f(y+)− f(x1)) ≥ f

(−1) (f(y+)− f(x2)). Therefore If (x1, y) ≥
If (x2, y) and it means that the function If is decreasing in its first
variable.

– If x1 ≤ y ≤ x2, then If (x1, y) = 1 and If (x2, y) ≤ 1.
– If x1 ≤ x2 ≤ y, then If (x1, y) = If (x2, y) = 1.

(I2) – Let x, y1, y2 ∈ [0, 1] and y1 ≤ y2 and x ≥ y2. Function f is decreasing
and therefore f(y+1 ) ≥ f(y+2 ) and f(y+1 )−f(x) ≥ f(y+2 )−f(x). Pseu-
doinverse f (−1) of function f is decreasing too and f

(−1)
�
f(y+1 )− f(x)

�
≤

f
(−1)

�
f(y+2 )− f(x)

�
. Therefore If (x, y1) ≤ If (x, y2) and this means

that the function If is increasing in its second variable.
– If y1 ≤ x ≤ y2, then If (x, y2) = 1 and If (x, y1) ≤ 1.
– If x ≤ y1 ≤ y2, then If (x, y1) = If (x, y2) = 1.

(I3) From the formula for function If we get If (0, 0) = If (1, 1) = 1 and for
If (1, 0) we have

If (1, 0) = f
(−1)

�
f(0+)− f(1)

�
= f

(−1)(f(0+)) = sup{z ∈ [0, 1]f(z) > f(0)} = 0.

�
For illustration we introduce some examples of generated implications.

Example 2.2. Let f1, f2, f3 : [0, 1] → [0,∞] be functions defined as follows:

• f1(x) =

�
1− x if x ≤ 0.5,

0.5− 0.5x otherwise,

• f2(x) =
1
x − 1,

• f3(x) = − ln(x).

Note, that all three functions are decreasing. For f
(−1)
1 , f

(−1)
2 , f

(−1)
3 , we get:

• f
(−1)
1 (x) =






1− 2x if x ≤ 0.25,

0.5 if 0.25 < x ≤ 0.5,

1− x otherwise,

29



• f
(−1)
2 (x) = min

�
1

1+x , 1
�
,

• f
(−1)
3 (x) = min{e−x

, 1}.

For our functions f1, f2, f3 we get

• If1(x, y) =






1 if x ≤ y,

1− 2x+ 2y if x ≤ 0.5, y < 0.5, x− y ≤ 0.25, x > y,

0.5 if x ≤ 0.5, y < 0.5, x− y > 0.25,

0.5 if x > 0.5, y < 0.5, x ≤ 2y,

0.5 + y − 0.5x if x > 0.5, y < 0.5, x > 2y,

1− x+ y if x > 0.5, y ≥ 0.5,

• If2(x, y) =

�
1 if x ≤ y,

1
1
y− 1

x+1
otherwise,

• If3(x, y) =

�
1 if x ≤ y,

y
x otherwise.

Remark 2.3. All three implications satisfy IP, NP and OP. Note that If3 is the
well-known Goguen implication.

3. Properties of If implications

In this section we investigate the properties of If implications. We turn our
attention to relations with (S,N) and R implications and our implications. Di-
rectly from Definition 1.7 and the following equivalence for strictly decreasing
function f

f
(−1)(x0) = 1 ⇐⇒ x0 ≤ lim

x→1−
f(x) = f(1−),

we get the condition for NP. The part concerning OP is explained in subsequent
example.

Proposition 3.1. Let f : [0, 1] → [0,∞] be a strictly decreasing function such
that f(1) = 0. Then If satisfies IP and NP. Moreover, f is continuous in x = 1
if and only if If satisfies OP.

The meaning of continuity of the function f in x = 1 is introduced in the next
example.

Example 3.2. Let us have function f : [0, 1] → [0, 1] given by

f(x) =

�
1− x

2 x ∈ [0, 1[,

0 x = 1.
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Pseudoinverse f
(−1) : [0, 1] → [0, 1] will be given by

f
(−1)(x) =

�
1 x ≤ 0.5,

2− 2x x ∈]0.5, 1].

Implication If : [0, 1]2 → [0, 1] will be given by

If (x, y) =

�
y x = 1,

1 otherwise.

For this implication it holds If (0.5, 0.4) = 1. Therefore If doesn’t have OP. It
is due to the fact that f

(−1)(x) = 1 for some x > 0, which is a consequence
of violation of continuity of f at x = 1. From continuity in x = 1 we have
f
(−1)(x) = 1 only for x = 0 and from strictly decreasing function f we have

f(y+) − f(x) = 0 only for x = y, where x, y ∈ [0, 1]. It means that continuity in
x = 1 is equivalent with OP for implication If .

Continuity of strictly decreasing function f implies that f ◦ f
(−1)(x) = x.

Therefore we get for EP and CP the propositions.

Proposition 3.3. Let f : [0, 1] → [0,∞] be a continuous strictly decreasing
function such that f(1) = 0. Then the implication If satisfies EP.

Proof. Since f is continuous function on [0, 1] and by definition f(1+) = f(1),
we have f(z+) = f(z) ∀z ∈ [0, 1]. Also ∀z ∈ [0, 1] : f

(−1) ◦ f(z) = z and
∀z ∈ [0, f(0)] : f ◦ f (−1)(z) = z.

• Let x > z and y > z. Then

f(If (y, z)) = f(f (−1)(f(z)− f(y))) = f(z)− f(y),

and

If (x, If (y, z)) =

�
1 x ≤ If (y, z),

f
(−1)(f(z)− f(y)− f(x)) otherwise.

Analogously

If (y, If (x, z)) =

�
1 y ≤ If (x, z),

f
(−1)(f(z)− f(y)− f(x)) otherwise.

If x ≤ If (y, z), then f(x) ≥ f(f (−1)(f(z) − f(y))) and then f(x) ≥

f(z) − f(y) or equivalently f(y) ≥ f(z) − f(x). The last inequality
implies y ≤ If (x, z) and it means If (x, If (y, z)) = If (y, If (x, z))

• Let x > z and y ≤ z. It is clear that If (x, If (y, z)) = If (x, 1) = 1. Since
f is decreasing function f , we have f(y) ≥ f(z) − f(x) and this implies
y ≤ f

(−1)(f(z)− f(x)). From previous inequality and the formula for If
we get If (y, If (x, z)) = If (y, f (−1)(f(z)− f(x)) = 1.
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• The proof is very similar to the previous point for x ≤ z and y > z.
• Let x ≤ z and y ≤ z. Then obviously If (x, If (y, z)) = If (y, If (x, z)) = 1.

�

Remark 3.4. We study the properties of implications If under which they are
(S,N)− or R− implications. Because there are relations between (S,N)− im-
plications and EP and continuity of NIf , the previous proposition leads us to
dealing with continuous function f . Continuity of function f implies continuity
of natural negation based on If . Moreover for continuous and bounded strictly
decreasing function f such that f(1) = 0 and f(0) = c the natural negation NIf

is strong.

Proposition 3.5. Let f : [0, 1] → [0, c] be a continuous bounded decreasing
function such that f(1) = 0. The If possess CP only with respect to its natural
negation NIf (x) = f

−1(f(0)− f(x)).

Proof. Let f : [0, 1] → [0, c] be a continuous bounded decreasing function, such
that f(1) = 0 and NIf (x) = f

−1(f(0)−f(x)). Since we deal with classical inverse
function, we have

∀x ∈ [0, 1]; f(NIf (x)) = f(0)− f(x),

and therefore

∀x, y ∈ [0, 1]2; f(NIf (x))− f(NIf (y)) = f(y)− f(x).

Since f is continuous, we get f(y+) = f(y). Since NIf is strictly decreasing, the
conditions x < y and NIf (x) > NIf (y) are equivalent and

If (x, y) =

�
f
−1(f(y)− f(x)) x > y,

1 othervise.

Therefore If possess CP. Let If possess CP w.r. to n(x). We have:

If (x, 0) =

�
1 x = 0,

f
−1(f(0)− f(x)) otherwise,

and

If (1, n(x)) =

�
1 n(x) = 1,

f
−1(f(n(x))) otherwise.

Since If (1, n(x)) = If (x, 0), we have that n(x) = f
−1(f(n(x))) = f

−1(f(0) −
f(x)) = NIf (x) for all x > 0 and n(0) = 1. �

Remark 3.6. This proposition is a corollary of Proposition 2.5.28 of [2], since
continuity of function f implies that we have R−implication (Theorem 1.16 from
[3]).
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It is well known that generators of continuous Archimedean t-norms are unique
up to a positive multiplicative constant, and this is also true for the f generators
of If implications. The next theorem is a corollary of Proposition 1.14.

Theorem 3.7. Let c be a positive constant and f : [0, 1] → [0,∞] be a strictly de-
creasing function. Then the implications If and Ic·f which are based on functions
f and c · f are identical.

Proof. • Let x, y ∈ [0, 1], x ≤ y and c be a positive real number. From
Theorem 2.1 we get Ic·f (x, y) = If (x, y) = 1.

• Let x, y ∈ [0, 1], x > y and c be a positive real number. Then from
Theorem 2.1 and Proposition 1.14 we get

Ic·f (x, y) = (c · f)(−1)
�
(c · f)(y+)− (c · f)(x)

�
=

= f
(−1)

�
(c · f)(y+)− (c · f)(x)

c

�
= f

(−1)
�
f(y+)− f(x)

�
= If (x, y).

�
The last theorem of this sections is corollary of previous propositions and

Theorems 1.10 and 1.11.

Theorem 3.8. Let f : [0, 1] → [0,∞] be a continuous strictly decreasing function
such that f(1) = 0. Then If is an R-implication given by some left-continuous
t-norm, and more if f(0) < ∞ then If is an (S,N)-implication, too.

The full characterization of f− generated fuzzy implications is yet unknown,
and is significant enough to merit attention. Our future endeavors will be along
these lines. Note that similar problems relating QL−implications and R− and
(S,N)− implications were recently studied in [6].

Supported by Project 1ET100300517 of the Program “Information Society”
and by Project MSM0021630529 of the Ministry of Education.
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FUZZME: A NEW SOFTWARE FOR MULTIPLE-CRITERIA

FUZZY EVALUATION

PAVEL HOLEČEK AND JANA TALAŠOVÁ

Abstract. This paper is focused on an introduction of a new software
product, which is called FuzzME. This software was developed as a tool for
creating fuzzy models of multiple-criteria evaluation and decision making.
The type of evaluations employed in the fuzzy models fully corresponds with
the paradigm of the fuzzy set theory; the evaluations express the (fuzzy) de-
grees of fulfillment of corresponding goals. The FuzzME software works with
both quantitative and qualitative criteria. The basic structure of evaluation
is described by a goals tree. Within the goals tree, aggregation of partial
fuzzy evaluations is done either by one of fuzzified aggregation operators or
by a fuzzy expert system. The FuzzME software takes advantage of linguis-
tic fuzzy modeling to the maximum extent.
This paper also contains a short summary of other available software prod-
uct for fuzzy multiple-criteria evaluation.
In this paper, the possibilities of FuzzME are demonstrated on a sample
problem - evaluation of a new employee.

1. Introduction

There are many situations which require use of multiple-criteria evaluation mod-
els. Such models can be utilized e.q. for evaluation of universities, rating of
clients of a bank or for evaluation of new employees. In the chapter 4, the last
situation will be used as an example and its solution with FuzzME software will
be described more in detail.

In the evaluation models, some of the input data are set expertly (e.g. eval-
uations of alternatives according to qualitative criteria, partial evaluating func-
tions for quantitative criteria, a choice of a suitable type of aggregation, criteria
weights, or eventually, a rule base describing the relation between criteria values
and the overall evaluation). Because uncertainty is the typical feature of any
expert information, the fuzzy set theory is a suitable mathematical tool for cre-
ating such models. For the practical use of the fuzzy models of multiple-criteria

2000 Mathematics Subject Classification. Primary 90B50, 91B06; Secondary 03E72.
Key words and phrases. Fuzzy expert system, Fuzzy OWA operator, Fuzzy weighted aver-

age, Multiple-criteria fuzzy evaluation, Normalized fuzzy weights, Software.



evaluation, their user-friendly software implementation is necessary. But a good
theoretical basis of the used models is crucial, too. The clear and well-elaborated
theory of multiple-criteria fuzzy evaluation makes it possible to create an under-
standable methodics for the software user. And a good methodics is essential for
correct application of any software to solving real problems.

There is a large number of papers and books dealing with the theory and
methods of multiple-criteria evaluation that make use of the fuzzy approach (e.g.
[1], [2], [3], [4]).

The most commonly used software for multiple criteria evaluation and decision
making based on fuzzy models is FuzzyTECH [5] even if it was not its main
purpose (its main application area is fuzzy control). FuzzyTECH is a general
software product that makes it possible to create and use fuzzy expert systems.
It also includes neural networks algorithms for deriving fuzzy rule bases from
data. Interesting applications of this software to evaluation and decision making
in the area of business and finance were published in [6].

In 2000 a Czech software company, TESCO SW Inc., developed a software
product whose name is NEFRIT. It uses fuzzy methods for multiple criteria
evaluation and decision making. The fuzzy model of evaluation applied there is
described in detail in [7] and in the book [8]. The demo version of this software
is enclosed to the book [8]. NEFRIT can work with expert fuzzy evaluations of
alternatives according to qualitative criteria. The values of quantitative criteria
can be either crisp or fuzzy. Evaluating functions for quantitative criteria repre-
sent membership functions of partial fuzzy goals. For aggregation, the method
of weighted average of partial fuzzy evaluations is used. The weights (crisp, not
fuzzy) express shares of particular partial evaluations in the aggregated evalu-
ation. Fuzzy evaluations on all levels of the goals tree express fuzzy degrees of
fulfillment of the corresponding goals. Publicly available version of NEFRIT does
not make it possible to use a fuzzy expert system for evaluation. This software
was originally developed for the Czech National Bank (decision making about
granting a credit). Further, it was used e.g. by the Czech Tennis Association,
the Czech Basketball Association and in other institutions. Nowadays it is tested
by the Supreme Audit Office of the Czech Republic. The successor of NEFRIT,
in terms of the used theoretical basis, is the FuzzME software.

The FuzzME software (Fuzzy models of Multiple-criteria Evaluation), pre-
sented in this paper, is based on the theoretical concept of evaluation which is
very close to the original Zadeh’s ideas. Similarly to his paper [1], the evalu-
ations of alternatives according to particular criteria represent their degrees of
fulfillment of the corresponding partial goals. Besides evaluations expressed by
real numbers in [0, 1], fuzzy evaluations modeled by fuzzy numbers on the same
interval are employed in the software. They represent, analogously, the fuzzy
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degrees of fulfillment of the partial goals which are connected to the criteria. Re-
sulting fuzzy evaluations, which are obtained by aggregation, have a similar clear
interpretation. This theoretical approach to (fuzzy) evaluation was published in
the book [8] and in the paper [7] and is used also in NEFRIT.

In contrast with NEFRIT, the aggregation is not limited only to simple weighted
average method. The FuzzME software also enables to use the fuzzy OWA oper-
ator for the aggregation or to define evaluating function by a fuzzy rule base.

For the aggregation of the partial evaluations by the method of weighted av-
erage, fuzzy weights can be used (in contrast to NEFRIT which works only with
crisp weights). The theory of normalized fuzzy weights, ways of their setting
(including a method for removing potential inconsistence) and algorithm for cal-
culation of the fuzzy weighted average are taken from [9].

Another fuzzy aggregation operator, available in the FuzzME software, is a
fuzzified OWA operator. Again, it works with normalized fuzzy weights. The
fuzzy OWA operator and the used algorithm for its calculation are described in
[10].

In the FuzzME software, multiple-criteria evaluating functions can also be
defined by means of fuzzy rule bases. Three algorithms are offered for the ap-
proximate reasoning - the standard Mamdani algorithm and two modified Sugeno
algorithms (Sugeno-WA and Sugeno-WOWA). The advantage of this software is
that all of these types of aggregation can be arbitrarily combined in the same
goals tree.

There are also software products for multiple-criteria decision making based on
other mathematical methods but they are usually designed for solving a particular
assignment. Fuzzy toolboxes of general mathematical systems such as Matlab can
be used for multiple-criteria decision making, too. But our investigation by means
of Internet did not result software fully comparable to FuzzME. Its universality
and comprehensiveness make it unique.

2. Preliminaries

A fuzzy set A on a universal set X is characterized by its membership function
A : X → [0, 1]. Ker A denotes a kernel of A, Ker A = {x ∈ X | A(x) = 1}. For
any α ∈ [0, 1], Aα denotes an α-cut of A, Aα = {x ∈ X | A(x) ≥ α}. A support
of A is defined as Supp A = {x ∈ X | A(x) > 0}. The symbol hgt A denotes
a height of the fuzzy set A, hgt A = sup {A(x) | x ∈ X}. An intersection and a
union of the fuzzy sets A and B on X are defined for all x ∈ X by the following
formulas: (A ∩B)(x) = min {A(x), B(x)}, (A ∪B)(x) = max {A(x), B(x)}.

A fuzzy number is a fuzzy set C on the set of all real numbers � which satisfies
the following conditions: a) the kernel of C, Ker C, is not empty, b) the α-cuts
of C, Cα, are closed intervals for all α ∈ (0, 1], c) the support of C, Supp C, is
bounded. A fuzzy number C is called to be defined on [a, b], if Supp C ⊆ [a, b].
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Real numbers c1 ≤ c
2 ≤ c

3 ≤ c
4 are called significant values of the fuzzy number C

if the following holds: [c1, c4] = Cl(Supp C), [c2, c3] = Ker C, where Cl(Supp C)
denotes a closure of Supp C.

Any fuzzy number C can be characterized by a pair of functions c : [0, 1] → �,
c : [0, 1] → � which are defined by the following formulas: Cα = [c(α), c(α)]
for all α ∈ (0, 1], and Cl(Supp C) = [c(0), c(0)]. The fuzzy number C is called
to be linear if both the functions c, c are linear. A linear fuzzy number is fully
determined by its significant values because c(α) = (c2 − c1) · α + c1, c(α) =
(c3 − c4) · α+ c4. For that reason, we can denote it as C = (c1, c2, c3, c4).

An ordering of fuzzy numbers is defined as follows: a fuzzy number C is greater
than or equal to a fuzzy number D, if Cα ≥ Dα for all α ∈ (0, 1].

A fuzzy scale makes it possible to represent a closed interval of real numbers
by a finite set of fuzzy numbers. Let T1, T2, ..., Ts be fuzzy numbers defined on
[a, b], forming a fuzzy partition on the interval, i.e., for all x ∈ [a, b] the following
holds

(1)
s�

i=1

Ti(x) = 1,

then the set of the fuzzy numbers can be linearly ordered (see [8]). If the fuzzy
numbers T1, T2, ..., Ts are defined on [a, b], form a fuzzy partition on the interval
and are numbered according to their linear ordering, then they are said to form
a fuzzy scale on [a, b] .

An uncertain division of the whole into m parts can be modeled by normalized
fuzzy weights. Fuzzy numbers V1, ..., Vm defined on [0, 1] are normalized fuzzy
weights if for any i ∈ {1, ...,m} and any α ∈ (0, 1] it holds that for any vi ∈ Viα

there exist vj ∈ Vjα, j = 1, ...,m, j �= i, such that

(2) vi +
m�

j=1,j �=i

vj = 1.

3. The FuzzME software

The mathematical models of the FuzzME software are based primarily on the
theory and methods of multiple-criteria evaluation that were published in [8] and
[7]. The theory of normalized fuzzy weights, the definition of fuzzy weighted
average, and the algorithm for its computation were taken from [9], [11] and [12].
The fuzzified OWA operator and the algorithm for its calculation published in
[10] are also used in the software.

In the FuzzME software, the basic structure of the fuzzy model of multiple-
criteria evaluation is expressed by a goals tree. The root of the tree represents
the overall goal of evaluation and each branch corresponds to a partial goal. The
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Figure 1. The main window of the software

goals at the ends of branches are connected either with quantitative or qualitative
criteria.

When an alternative is evaluated, evaluations with respect to criteria con-
nected with the terminal branches are calculated first. Independently of the
criterion type, each of the evaluations is described by a fuzzy number defined on
the interval [0, 1]. It expresses the fuzzy degree of fulfillment of the corresponding
partial goal.

These partial fuzzy evaluations are then aggregated according to the defined
type of the tree node. Three types of aggregation are available: a fuzzy weighted
average (fuzzy WA), an ordered fuzzy weighted average (fuzzy OWA) or aggre-
gation by means of a fuzzy expert system. For aggregation by fuzzy weighted
average or ordered fuzzy weighted average, normalized fuzzy weights must be set.
The weights express uncertain shares of the partial evaluations in the aggregated
one. For the fuzzy expert system, the fuzzy rule base must be defined and an
inference algorithm must be chosen (the Mamdani algorithm, the Sugeno-WA or
the Sugeno-WOWA algorithm of approximate reasoning).

The overall evaluation reflects the degree of fulfillment of the main goal. A
verbal description of the overall evaluation can be obtained by means of the
implemented linguistic approximation algorithm.

The overall evaluations can be compared within the frame of a given set of
alternatives. By this comparison the best of the alternatives can be chosen. That
is why the FuzzME software can be also used as a decision support system.

The import and export of data is supported by the software, too. The FuzzME
software is available in the Czech and English versions.
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3.1. Goals tree. Goals trees represent the basic structure of fuzzy models of
multiple-criteria evaluation in the FuzzME software. When a goals tree is de-
signed, the main goal is consecutively divided into goals of progressively lower
levels. The process of division is stopped when such goals are reached whose ful-
fillment can be assessed by means of some known characteristics of alternatives
(i.e. quantitative or qualitative criteria).

The design of a tree structure in the goals-tree editor is the first step in forming
a fuzzy evaluation model in FuzzME. In the next step, the type of each node in
the tree must be specified. For the nodes at the ends of tree branches the user
defines if the node is connected with a quantitative or qualitative criterion. For
the other nodes he/she sets the type of aggregation - fuzzy weighted average,
ordered fuzzy weighted average or fuzzy expert system.

3.2. Criteria of evaluation. In the models of evaluation created by the FuzzME
software, qualitative and quantitative criteria can be combined arbitrarily.

3.2.1. Qualitative criteria. According to qualitative criteria, alternatives are eval-
uated verbally, by means of values of linguistic variables of special kinds - lin-
guistic scales, extended linguistic scales and linguistic scales with intermediate
values.

A linguistic variable is defined as a quintuple (V, T (V), X, G,M), where V is a
name of the variable, T (V) is a set of its linguistic values, X is a universal set on
which the meanings of the linguistic values are defined, G is a syntactic rule for
generating values in T (V), and M is a semantic rule which maps each linguistic
value C ∈ T (V) to its mathematical meaning, C = M(C), which is a fuzzy set on
X.

A linguistic scale on [a, b] is a special case of the linguistic variable (V, T (V), X,G,M),
where X = [a, b], T (V) = {T1, T2, ..., Ts} and the meanings of the linguistic val-
ues T1, T2, . . . , Ts are modeled by fuzzy numbers T1, T2, . . . , Ts which form a fuzzy
scale on [a, b]. As the set of linguistic values of the scale is defined explicitly, it
is not necessary to include the grammar G into the scale notation.

In the FuzzME software, the user defines a linguistic scale for each qualitative
criterion in the fuzzy-scale editor. For example, the linguistic scale communi-
cation skills of an employee can contain linguistic values inadequate, adequate,
satisfying, good and very good. The evaluating linguistic scale is usually defined
on [0, 1]; in other cases, it has to be transformed to this interval.

The extended linguistic scale contains, besides elementary terms of the original
scale, T1, T2, . . . , Ts, also derived terms in the form Ti to Tj , where i < j, i, j ∈

{1, 2, . . . , s}. For example, the user can evaluate communication skills of an
employee by the linguistic term satisfying to very good. The meaning of the
linguistic value Ti to Tj is modeled by Ti∪LTi+1∪L · · ·∪LTj , where ∪L denotes the
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Figure 2. Linguistic scale editor

union of fuzzy sets based on the Lukasiewicz disjunction; e.g. (Ti ∪L Ti+1)(x) =
min {1, Ti(x) + Ti+1(x)} for all x ∈ �.

The linguistic scale with intermediate values is the original linguistic scale
enriched with derived terms between Ti and Ti+1, i ∈ {1, 2, . . . , s− 1}. The
meaning of the derived term between Ti and Ti+1 is modeled by the arithmetic
average of the fuzzy numbers Ti and Ti+1.

In the FuzzME software, the user evaluates a given alternative according to a
qualitative criterion by selecting a proper linguistic evaluation from a drop-down
list box. He/she can choose the value from a standard linguistic scale, extended
scale or scale with intermediate values.

Figure 3. Choosing the value of a qualitative criterion
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The three mentioned structures of linguistic values are also applied when re-
sulting fuzzy evaluations are approximated linguistically.

3.2.2. Quantitative criteria. The evaluation of an alternative with respect to a
quantitative criterion is calculated from the measured value of the criterion by
means of the evaluating function expertly defined for the criterion. The eval-
uating function is the membership function of the corresponding partial goal.
The FuzzME software admits both crisp and fuzzy values of quantitative crite-
ria. The fuzzy values represent inaccurate measurements or expert estimations of
the criteria values. In the case of a fuzzy value, the corresponding partial fuzzy
evaluation is calculated by the extension principle.

Figure 4. A quantitative criterion

In the FuzzME software, the evaluating function of a quantitative criterion is
formally set by means of a fuzzy number. For example, if the evaluating function
is defined by a linear fuzzy number F = (f1, f2, f3, f4), then f1 is the lower limit
of all at least partly acceptable values of the criterion, f2 is the lower limit of its
fully satisfactory values, f3 is the upper limit of the fully satisfactory values, and
f4 is the upper limit of the acceptable values.

For example, when a company wants to hire a new employee, the candidates
are evaluated according to the length of their practice. Evaluating function for
this quantitative criterion can be defined by a linear fuzzy number with significant
values 2, 5, 100, 100. In that case, less than 2 years of practice are not satisfying
at all. For the length of practice from 2 to 5 years the satisfaction of the company
is growing linearly. More than 5 years of practice is fully satisfactory from the
company??s point of view. Values greater than 100 are not supposed to occur.
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This way we can define a monotonous evaluating function, which is the most
common in the evaluating models, by a fuzzy number.

In the FuzzME software, this process is simplified for the user. It is necessary to
chooses just the type of the evaluating function (increasing preference, decreasing
preference or preference of a selected value) and set only some of the significant
values.

3.3. Methods of aggregation of partial evaluations. The calculated partial
fuzzy evaluations are then consecutively aggregated according to the structure
of the goals tree. With respect to the defined type of the tree node, the fuzzy
weighted average method, the ordered fuzzy weighted average method or the
fuzzy expert system method is used for the aggregation. Each of the aggregation
methods is suitable for a different situation:

The fuzzy weighted average is used if the goal corresponding with the node
of interest is fully decomposed into disjunctive goals of the lower level. The
normalized fuzzy weights represent uncertain shares of these lower-level goals in
the goal corresponding with the considered node.

Again, the ordered fuzzy weighted average requires that the goal corresponding
with the given node is decomposed into disjunctive goals of the lower level. In
contrast to the fuzzy weighted average, the usage of this aggregation operator
supposes special user’s requirements concerning the structure of partial fuzzy
evaluations. The normalized fuzzy weights again represent uncertain shares of
the partial evaluations in the aggregated one. But the normalized fuzzy weights
are not linked to the individual partial goals; the correspondence between the
weights and the partial evaluations is given by the ordering of partial evaluations
of the alternative of interest. It means, evaluations with respect to the same
partial goal can have different weights for different alternatives.

If the relationship between the evaluations of the lower level and the evalu-
ation corresponding with the given node is more complex (if neither of the two
previous methods can be used), and if expert knowledge about the relationship
is available, then the aggregation function is described by a fuzzy rule base of a
fuzzy expert system. The approximate reasoning is used to calculate the resulting
evaluation. In particular, evaluating function described by a fuzzy expert system
is used if the fulfillment of a goal at the end of a tree branch depends on several
mutually dependent criteria (i.e., if combinations of criteria values bring synergic
or disynergic effects to the resulting multiple-criteria evaluation).

3.3.1. Aggregation by the fuzzy weighted average method. If the fuzzy weighted
average is used for aggregation of partial fuzzy evaluations, then the uncertain
weights of the corresponding partial goals, which express their shares in the supe-
rior goal, must be set. To define consistent uncertain weights, a special structure
of fuzzy numbers, normalized fuzzy weights, must be used.
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In the FuzzME software, both real and fuzzy normalized weights can be used.
Normalized real weights, i.e., real numbers v1, ..., vm, vj ≥ 0, j = 1, ...,m,
m�
j=1

vj = 1, represent a special case of the normalized fuzzy weights.

The fuzzy weighted average of the partial fuzzy evaluations, i.e., of fuzzy num-
bers U1, ..., Um defined on [0, 1], with the normalized fuzzy weights V1, . . . , Vm, is
a fuzzy number U on [0, 1] whose membership function is defined for any u ∈ [0, 1]
as follows

U(u) = max{min {V1(v1), ..., Vm(vm), U1(u1), ..., Um(um)}

|

m�

i=1

viui = u,

m�

i=1

vi = 1, vi, ui ∈ [0, 1], i = 1, ...,m}.(3)

For an expert who sets the fuzzy weights, it is not so easy to satisfy the
condition of normality. That is why the FuzzME software allows to set only an
approximation to the normalized fuzzy weights - fuzzy numbers W1, ...,Wm on
[0, 1] satisfying the following weaker condition

(4) ∃wi ∈ Ker Wi, i = 1, ..., n :
n�

i=1

wi = 1.

The software removes the potential inconsistence in W1, ..., Wm and derives the
normalized fuzzy weights V1, ..., Vm from them.

The structure of normalized fuzzy weights and the fuzzy weighted average
operation are studied in detail in [9], [11] and [12]. Conditions for verifying nor-
mality of fuzzy weights, an algorithm for normalization of fuzzy weights satisfying
the condition (4), and an algorithm for calculating fuzzy weighted average, which
are all used in the FuzzME software, can be found there. Let us notice, that the
used algorithm of fuzzy weighted average calculation is very effective.

3.3.2. Aggregation by the ordered fuzzy weighted average. The fuzzy OWA oper-
ator is used in case that the evaluator has special requirements concerning the
structure of the partial evaluation. For example, he/she does not want any partial
goal to be satisfied poorly. Then the weight of the minimum partial evaluation of
any alternative equals 1, and the weights of all its other partial evaluations equal
0. The aggregated fuzzy evaluations then represent the guaranteed fuzzy degrees
of fulfillment of all the partial goals (the fuzzy MINIMAX method). Another
example of the fuzzy OWA operator usage could be the evaluation of subjects
who can choose in which of the three areas they will be mostly involved. The
evaluation algorithm should take into account their right of choice. Then, e.g.,
the results in the area where the subject performs best contribute to the overall
evaluation by about one half, results from the second area by one third and results
from the area in which the subject was least involved contribute to the overall
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evaluation only by one sixth. A practical application of such a fuzzy evaluation
model could be the overall evaluation of the academic staff with respect to their
results in the areas of research, education, and management of education and
science.

The ordered fuzzy weighted average represents a fuzzification of the crisp OWA
operator by means of the extension principle. Uncertain weights are modeled by
normalized fuzzy weights as in the case of fuzzy weighted average.

The following notation will be used to define the ordered fuzzy weighted aver-
age: if (x1, ..., xm) is a vector of real numbers, then (x(1)

, ..., x
(m)) is a vector in

which for all j ∈ {1, . . . ,m}, x(j) is the j-th greatest number of x1, ..., xm.
The ordered fuzzy weighted average of the partial fuzzy evaluations, i.e., of

fuzzy numbers U1, ..., Um defined on [0, 1], with the normalized fuzzy weights
V1, . . . , Vm, is a fuzzy number U on [0, 1] whose membership function is defined
for any u ∈ [0, 1] as follows

U(u) = max{min {V1(v1), ..., Vm(vm), U1(u1), ..., Um(um)}

|

m�

i=1

viu
(i) = u,

m�

i=1

vi = 1, vi, ui ∈ [0, 1], i = 1, ...,m}.(5)

The algorithm used to calculate the ordered fuzzy weighted average in the
FuzzME software was taken from [10], where fuzzification of the OWA operator
is described in detail. The used algorithm is an analogy to the one used for the
fuzzy weighted average.

3.3.3. Aggregation by the fuzzy expert system. The fuzzy expert system is used if
the relationship between the criteria (or the partial evaluations) and the overall
evaluation is complicated. Theoretically, it is possible to model, with an arbitrary
precision, any Borel measurable function by means of a fuzzy rule base (properties
of Mamdani and Sugeno fuzzy controllers, see e.g. [13]) In reality, the quality of
the approximation is limited by the expert’s knowledge of the relationship.

If the fuzzy rule base models the relation between values of criteria and the
fulfillment of the corresponding partial goal, then the evaluation function is of
the following form

If C1 is A1,1 and . . . and Cm is A1,m, then E is U1(6)

If C1 is A2,1 and . . . and Cm is A2,m, then E is U2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If C1 is An,1 and . . . and Cm is An,m, then E is Un

where for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (Cj , T (Cj), Vj ,Mj) are linguistic scales
representing the criteria, Ai,j ∈ T (Cj) are their linguistic values, (E , T (E), [0, 1],Me)
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is a linguistic scale representing the evaluation of alternatives and Ui ∈ T (E) are
its linguistic values.

In the FuzzME software, rule bases are defined expertly. The user defines such
a rule base by assigning a linguistic evaluation to each possible combination of
linguistic values of criteria.

Figure 5. Rule base editor

For given values of criteria, a resulting fuzzy evaluation is calculated either
by the Mamdani fuzzy inference algorithm, by the Sugeno-WA or the Sugeno-
WOWA inference.

In the case of the Mamdani fuzzy inference, the degree hi of correspondence
between the given m-tuple of fuzzy values (A

�

1, A
�

2, . . . , A
�

m) of criteria and the
mathematical meaning of the left-hand side of the i -th rule is calculated for any
i = 1, . . . , n in the following way

(7) hi = min {hgt(A
�

1 ∩Ai,1), . . . , hgt(A
�

m ∩Ai,m)}.

Then for each of the rules, the output fuzzy value U
�

i , i = 1, . . . , n, corre-
sponding to the given input fuzzy values, is calculated as follows

(8) ∀y ∈ [0, 1] : U
�

i (y) = min {hi, Ui(y)}.

The final fuzzy evaluation of the alternative is given as the union of all the
fuzzy evaluations that were calculated for the particular rules in the previous
step, i.e.,

(9) U
�
=

n�

i=1

U
�

i .
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Generally, the result obtained by the Mamdani inference algorithm need not be
a fuzzy number. So, for further calculations within the fuzzy model, it must be
approximated by a fuzzy number.

The advantage of the generalized Sugeno inference algorithm (see [8]) is that
the result is always a fuzzy number. Two version of this algorithm were imple-
mented - Sugeno-WA and, more advanced, Sugeno-WOWA.

In its first step, the degrees of correspondence hi, i = 1, . . . , n, are calculated
in the same way as in the Mamdani fuzzy inference algorithm.

In Sugeno-WA algorithm, the resulting fuzzy evaluation U is then computed
as a weighted average of the fuzzy evaluations Ui, i = 1, 2, . . . , n, which model
the mathematical meanings of linguistic evaluations on the right-hand sides of
the rules, with the weights hi. This is done by the following formula

(10) U =

n�
i=1

hi.Ui

n�
i=1

hi

.

The expert chooses values on the right-hand sides of each rule from the lin-
guistic fuzzy scale (E , T (E), [0, 1],Me). We can see that the result can be also
obtained as a weighted average of the fuzzy numbers which model the meaning
of all values of this scale. Let E1, ...Ek be those fuzzy numbers, i.e.

(11) Ei = M(Ei), where Ei ∈ T (E), i ∈ {1, .., k}.

We can assume that those fuzzy numbers are numbered according their ordering
from the greatest to the lowest one, i.e., Ei > Ei+1 for i ∈ {1, ..., k − 1}

Let A1, ..., Ak be sets of indices such that Ai contains indices of all rules which
have Ei on their right-hand side, i.e.

(12) Ai = {j ∈ {1, .., n} | Uj = Ei}, i = 1, ..., k where Uj = M(Uj).

The weights w
�
1, ..., w

�
k ∈ �, which correspond to the values of the linguistic

scale E , are calculated, for every i=1,..k, as follows

(13) w
�
i =

�

j∈Ai

hj

and for the further calculations they are normalized:

(14) wi =
w

�
i�k

j=1 w
�
j

.

The resulting evaluation of Sugeno-WA inference algorithm can be then ex-
pressed as

(15) U =
k�

i=1

wiEi.
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Sugeno-WOWA algorithm works in the similar way but, instead of weighted
average, weighted OWA operator was used. Weighted OWA operator is described
in [14]. This operator uses two sets of weights. Weights wi are the same as in the
case of Sugeno-WA. The second set of weights, pi, is defined by the expert. This
gives him/her possibility to specify how important is each value of the scale for the
resulting evaluation. Implementation of this inference system was motivated by
the real application of this software. A risk rate was calculated by a fuzzy expert
system. Expert set significantly greater weight to linguistic value ”high risk”
than to the value ”medium risk”. This causes that a single rule that estimated
the risk to be high is taken much more seriously than a rule which estimated it to
be just medium. So the evaluation algorithm behaves according to the expert’s
needs because it respects his/her preferences defined by the weights pi.

The resulting evaluation of Sugeno-WOWA inference algorithm is calculated
as follows

(16) U =
k�

i=1

ωiEi,

where the weight ωi is defined as

(17) ωi = f(
�

j≤i

wj)− f(
�

j<i

wj),

the weights wi are the same as in Sugeno-WA algorithm and f is a nondecreasing
piecewise linear function that is determined by the following points

(18) {(0, 0)} ∪ {(i/k,
�

j≤i

pj)}i=1,...,k.

In case that the weights pi are uniform (all scale values have the same weight),
the result will be the same as the result calculated by Sugeno-WA. The fact that
the values of the scale are ordered simplifies the previous formula. Definition of
weighted OWA for more general cases can be found in [14].

3.4. Overall fuzzy evaluations, the optimum alternative. The final result
of the consecutive aggregation of the partial fuzzy evaluations is an overall fuzzy
evaluation of the given alternative. The obtained overall fuzzy evaluations are
fuzzy numbers on [0, 1]. They express uncertain degrees of fulfillment of the main
goal by the particular alternatives.

The FuzzME software compares alternatives according to the centers of gravity
of their overall fuzzy evaluations. A center of gravity of a fuzzy number U on
[0, 1] that is not a real number, is defined as follows

(19) tU =

� 1
0 U(x).x dx
� 1
0 U(x) dx

.
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If U = u and u ∈ �, then tU = u. In the FuzzME software, the optimum
alternative is the one whose overall fuzzy evaluation has the largest center of
gravity.

At present, the FuzzME software is aimed above all at solving multiple-criteria
evaluation problems. To ensure high performance in choosing the optimum alter-
native, it will be necessary to include in the software other methods of ordering
of the fuzzy evaluations in the future. Some approaches are proposed in [8] and
further research in this area is planned.

Figure 6. A list of alternatives ordered by centers of gravity method

3.5. Import and export of data. For fuzzy models of evaluation created in
the frame of the program FuzzME, the criteria values of alternatives can be either
set directly or imported e.g. from Excel. Similarly resulting evaluations can be
exported to the Excel for their further processing.

4. Example

The possibilities of this software can be demonstrated on a simple example. Let
us consider a company which is going to hire a new employee. There are several
candidates and the company naturally wants to select the best of them.

In this example, there are six candidates which are evaluated according to
fifteen criteria. Both qualitative and quantitative criteria were used.

For the most of the tree nodes, the fuzzy weighted average was sufficient for the
aggregation. One of the exceptions was aggregation of the candidate’s references.
In this example, it is assumed that the company will try to ask last three of the
candidate’s previous employers on their experiences with this candidate. The
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company is careful and wants the worst of these three evaluations to have the
greatest weight. But the other two evaluations should be also taken into account.
This can be easily solved by fuzzy OWA operator.

Figure 7. The goals tree used in this example

For the evaluation of candidate’s technical/professional knowledge a fuzzy ex-
pert system was used. This evaluation is obtained from evaluation of candidate’s
education level and his/her length of practice. Naturally, if the candidate has lots
of years of practice then the education level is irrelevant. On the other hand, if
the candidate has only small or no practice, the education level should be taken
into account. This relationship is too complicated for fuzzy weighted average or
fuzzy OWA, but can be easily modeled by a fuzzy rule base.

This simple example shows the advantage over other software products for
fuzzy evaluation and decision making. The user has freedom in choosing the
aggregation method and they can be arbitrarily combined in the same goals tree.

The FuzzME demo version with this example can be downloaded at
http://FuzzME.wz.cz/.

5. Conclusion

The FuzzME software makes it possible to create and use fuzzy models of mul-
tiple criteria evaluation in the user-friendly way. It has several positive features.
The essential one is the solid theoretical basis of the methods contained in the
program. The mathematical potential of the software is a result of many years
of research. The implemented methods were tested on real problems.
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In the FuzzME software, several new methods, algorithms and tools of fuzzy
modeling were implemented, e.g.: a structure of normalized fuzzy weights, fuzzy
weighted average and ordered fuzzy weighted average operations and algorithms
for their calculation and Sugeno-WOWA inference algorithm.

Well-elaborated theoretical basis of the FuzzME software provides a clear in-
terpretation of all steps of the evaluation process and brings understanding of
methodology to the user.
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[12] O. Pavlačka and J. Talašová. The fuzzy weighted average operation in decision making
models. Proceedings of the 24th International Conference Mathematical Methods in Eco-
nomics, 13th - 15th September 2006, Plzeň (Ed. L. Lukáš), pages 419–426, 2006.
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FISHER INFORMATION AS THE MEASURE OF SIGNAL

OPTIMALITY IN OLFACTORY NEURONAL MODELS

ONDŘEJ POKORA

Abstract. Some new approximations of Fisher information are introduced
and their properties are derived. These approximations are computed and
applied to locate the optimal odorant concentration in two simple theoretical
models for coding of odor intensity in olfactory sensory neurons. The results
are compared with the deterministic criterion and with results based on
Fisher information measure.

1. Introduction

Characterization of the input-output properties of sensory neurons and their mod-
els is commonly done by using the so called input-output response functions,
R(s), in which the response is plotted against the input s. The output is usu-
ally the spiking frequency, or rate of firing, but it can be also concentration of
activated receptors as presented e.g. in [7, 8, 9] and also in this contribution.
The response curves are usually monotonously increasing functions (most often
of sigmoid shape) assigning a unique response to an input signal (see Fig. 1 for
illustration).

The intuitive concept of “just noticeable difference”, which has been deeply
studied in psychophysics, is also implicitly involved in understanding of signal op-
timality in neurons. Having the transfer function R(s) and minimum detectable
increment � of the response, we can calculate ∆s which is the just noticeable dif-
ference in the signal. If the response curve is nonlinear (for example sigmoidal as
in Fig. 1) we can see that ∆s varies along D and the smallest values of the just no-
ticeable difference in the signal are achieved where the response curve is steepest.
The stimulus intensity for which the signal is optimal, that is the best detectable,
is where the slope of the transfer function is highest.

2000 Mathematics Subject Classification. Primary 94A17; Secondary 62P10.
Key words and phrases. Approximations of Fisher information, olfactory neuron, optimal
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Figure 1. A schematic example of transfer function R(s) (solid
curve). The dynamic range D, threshold response rmin, maximal
discharge rmax and just noticeable difference ∆s in the signal
corresponding to the just noticeable difference � in the response
are given.

However, in practice, an identical signal does not always yield the same re-
sponse. The presence of noise complicates the concept of signal optimality based
on the just noticeable difference. Not only a fixed response is assigned to ev-
ery level of the stimulus (as in the classical frequency coding schema), but also
a probability distribution of the responses.

In [9], Fisher information was used as a general measure of signal optimality
in the case of “noisy response” and applied on theoretical models. The aim of
this contribution is to extend a known approximation of Fisher information to
a sequence of approximations, apply the same approach on introduced approxi-
mations of Fisher information and compare these new optimality measures with
known results.

2. Fisher information and its approximation

In this section, some necessary facts about Fisher information measure are re-
called. Then, some approximations of Fisher information are introduced and
their properties are derived.

2.1. Fisher information and its properties. Let us assume, it is dealt with
real random variables upon the same probability space (Ω,A,P), which have finite
second moments and probability density function with respect to some countably
additive measure µ. The probability density function f(x; θ) is assumed to be
dependent on a scalar parameter θ ∈ Θ.
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Regular class. Class of probability density functions {f(x; θ); θ ∈ Θ} is called
regular if following conditions hold:

(R1) parametric space Θ is nonempty open set,
(R2) support M = {x ∈ (−∞,∞); f(x; θ) > 0} does not depend on θ,

(R3) for almost all x ∈ M (with respect to µ), finite derivative ∂f(x;θ)
∂θ exists,

(R4) for all θ ∈ Θ :
�
M

∂f(x;θ)
∂θ dµ(x) = 0,

(R5) J
X(θ) =

�
M

�
∂ ln f(x;θ)

∂θ

�2
f(x; θ)dµ(x) holds 0 < J

X(θ) < ∞.

Regular estimator. Estimator θ̂ = H(X) of parameter θ in random variable
X with p.d.f. f(x; θ) is called regular if following conditions hold:

(R6) the class {f(x; θ); θ ∈ Θ} is regular,
(R7) θ̂ is unbiased,

(R8) for all θ ∈ Θ :
�
M H(x)∂f(x;θ)∂θ dµ(x) = ∂

∂θ

�
M H(x)f(x; θ)dµ(x).

Fisher information. The value

(1) J
X(θ) = E

��
∂ ln f(X; θ)

∂θ

�2
�

=

�

M

�
∂ ln f(x; θ)

∂θ

�2

f(x; θ)dµ(x)

is called Fisher information about parameter θ in random variable X. Fisher
information is not measure of information in the sense of the theory of information
(e.g. like entropy). However, it gives how much “information” is transferred
into the distribution of X when the parameter θ changes. In other words, it
indicates how precisely the change in parameter can be identified (estimated)
from the knowledge of the changed distribution. This point of view is induced
by following well-known result published in [2].
Cramér-Rao inequality. Let θ̂ = H(X) be regular estimator of parameter θ

with finite second moment. Then, for all θ ∈ Θ following inequality is fulfilled,

(2)
1

JX(θ)
≤ Var

�
θ̂

�
.

Hence, it gives the lower bound for variance of any regular estimator of the pa-

rameter. The proof is based on Cauchy-Schwarz inequality for variables θ̂−E
�
θ̂

�

and ∂ ln f(X;θ)
∂θ .

Assuming we know the best estimator θ̂ = H(X) of θ in the sense of minimal
variance, Cramér-Rao inequality (2) can be seen as relation which gives the qual-
ity of estimator θ̂ as a function of the true value of parameter θ. The idea of
analyzing Fisher information J

X(θ) as a function of θ to find the “optimal” value
of θ, i.e. the value for which the best estimator θ̂ has the lowest variance, was
one of the reasons, for which the Fisher information has become a common tool
in computational neuroscience (see e.g. [6, 10, 3]).
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2.2. Approximation of Fisher information. In general, it is difficult task to
compute the Fisher information analytically. Usually the integral has to be com-
puted numerically. Moreover, having only measured data without the knowledge
of their distribution (which is a typical situation), it is impossible to compute
the Fisher information without estimation of the probability density function
(e.g. using kernel estimators). These reasons lead to search for some approxima-
tion of the Fisher information. Following definition introduce a sequence of such
approximations. It is an extension of definition of approximation J

X
2 (θ), which

was already used by several authors, see e.g. [6].
Approximations of Fisher information. For k = 2, 3, . . ., let us define se-
quence of approximations

(3) J
X
k (θ) =

1

Var (Xk−1)

�
∂E

�
X

k−1
�

∂θ

�2

and sequence of conditions

(R9)
�
M

∂
∂θ

�
x
k−1

f(x; θ)
�
dµ(x) = ∂

∂θ

�
M x

k−1
f(x; θ)dµ(x).

Following theorems say that, in general, approximations JX
k (θ) are lower bounds

for Fisher information J
X(θ) and that for some special distributions of X there

is equality achieved.
Theorem 1. If the class {f(x; θ); θ ∈ Θ} satisfies regularity conditions (R1)–(R5),
then, for those k = 2, 3, . . . for which condition (R9) is satisfied for all θ ∈ Θ,
there is inequality

(4) J
X
k (θ) ≤ J

X(θ) for all θ ∈ Θ .

The principal idea of proof of this inequality uses Cauchy-Schwarz inequality for
variables Xk−1 − E

�
X

k−1
�
and ∂ ln f(X;θ)

∂θ .
Theorem 2. Under the same conditions as in Theorem 1 the equality

(5) J
X
k (θ) = J

X(θ) for all θ ∈ Θ

is fulfilled if and only if the probability density function f(x; θ) of random variable
X has the form

(6) f(x; θ) = exp
�
x
k−1

c(θ)− b(θ) + a(x)
�

for some functions a(x), b(θ), c(θ). The main way of proof follows the idea of
sequential equivalent conditions published in [6] for the case k = 2. This result
might be useful in further work for expressing the accuracy of the approximation
in terms of a distance between the real distribution and form (6). The previous
condition leads to introducing of following definition.
Exponential class with natural power. Random variable X has a distribu-
tion belonging to exponential class with respect to parameter θ and with power
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Figure 2. Fisher information J
X(µ) (dashed curve 1) and its

approximations J
X
k (µ) for k = 3, 4, 5, 6 (curves 3–6) computed

from random variable X ∼ N(µ,σ2 = 1).

k, k = 1, 2, . . ., if probability density function of X takes the form

(7) f(x; θ) = exp
�
x
k
c(θ)− b(θ) + a(x)

�

for some functions a(x), b(θ), c(θ).
Example. Let us suppose that random variable X has Gaussian distribution
X ∼ N(µ,σ2) with known variance σ

2. Fisher information about the unknown
mean value µ, J

X(µ) = 1
σ2 does not depend on the true value µ; it means,

all values of mean are estimable with equal accuracy, which only depends on
the variance. Both Fisher information J

X(µ) and its approximations JX
k (µ) for

k = 3, 4, 5, 6 are depicted in Fig. 2. Approximation J
X
2 (µ) = J

X(µ) = 1
σ2 is ac-

curate. This corresponds with Theorem 2, because Gaussian distribution belongs
to the exponential class with respect to parameter µ with power k = 1, e.g. for

σ
2 = 1 probability density function is f(x;µ) = exp

�
x
1
µ−

µ2

2 −
x2

2 −
ln 2π
2

�
.

3. Theoretical models of olfactory neurons

Signal processing in olfactory systems is initialized by binding of odorant molecu-
les to receptor molecules embedded in the membranes of sensory neurons. Binding
of odorants and receptor activation trigger a sequence of biochemical events that
result in the opening of ionic channels, the generation of receptor potential which
triggers a train of action potentials. Studied models of the binding and activation
of receptor sites are based on models proposed by [4, 7, 8].
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3.1. Methods. Searching for “optimal odorant concentration”, we aim to in-
vestigate how precisely the odorant concentration, s, can be determined from
a knowledge of the response, concentration of activated receptors, C(s), and
which concentration levels are optimal, that means can be well determined from
the knowledge of a random sample of C(s). In other words, we consider an ex-
periment in which a fixed concentration is applied and steady-state responses
of the system are observed. These are independent (it is the random sample)
realizations of random variable C(s) from which we wish to determine s.

Deterministic approach to determine the optimal concentration is based on
shape of the input-output function, R(s), and it uses the optimality criterion

(8) J1(s) =
∂E (C(s))

∂s
.

From the stochastic point of view, the determination of the concentration, s,
from sampling responses of C(s) corresponds to its estimation, ŝ, in chosen family
of probability density functions. For reasons explained in Section 2, as measures of
optimality, the Fisher information (1), JX(s), is commonly used. Here, we focus
on approximations (3), JX

k (s), and on their application as another optimality
criteria in search of optimal odorant concentration in investigated theoretical
models.

3.2. Models and results. In general, the models consider interaction between
odorant molecules and receptors on the surface of olfactory receptor neurons.
We assume that there is only one odorant substance, that each receptor molecule
possesses only one binding site and that the total number of the receptors on
the surface of the membrane is fixed and equal to N . Let A denote the odorant
molecules in perireceptor space, with concentration A = exp(s) which is assumed
to be fixed until the olfactory system achieves the steady state. We distinguish
three states in which the receptors can appear: unbound (free) state, R, bound
inactive state (inactive complex of the odorant molecule and the receptor), C∗,
and bound activated state (activated complex of the odorant molecule and the re-
ceptor) C. Only activated receptors trigger the response.

Optimality criteria Jk(s) given by (3) are applied on two simple theoretical
models of olfactory neurons. The stochastic description of both the models and
results of application of J(s), J1(s) and J2(s) criteria are already known. Detailed
description, derivation of the steady-state (stationary) distribution of number of
activated receptors C(s) and results of the criteria can be found in [9]. The
results of new criteria are also compared with these previous results.
Basic model.

In the simplest model each occupied receptor becomes activated instanta-
neously with its occupation. It is assumed that each receptor is occupied and
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released independently of others in accordance with stochastic reaction schema

(9) A + R
k1
−→←−
k−1

C ,

where k1 and k−1 are fixed reaction rates coefficients of association and disso-
ciation of the odorant molecules. The ratio K1 = k−1/k1 is commonly called
the dissociation constant. The model can be fully described by birth and death
process (see [9] for details). Using this stationary distribution to derive the mean
and variance of the count of activated receptors in steady state, C(s), we obtain

E (C(s)) =
N

1 +K1e−s
,(10)

Var (C(s)) =
NK1e−s

(1 +K1e−s)2
,(11)

E
�
C

2(s)
�
=

N
2 +NK1e−s

(1 +K1e−s)2
,(12)

E
�
C

4(s)
�
=

N (K1e−s)
N−1

(1 +K1e−s)N
4F3

�
2, 2, 2, 1−N ; 1, 1, 1;−

es

K1

�
,(13)

where pFq(a1, . . . , ap; b1, . . . , bq;x) stands for generalized hypergeometric function

(see [1]). We have 4F3(2, 2, 2, 1−N ; 1, 1, 1;x) = 1+
�∞

k=1
xk

k! (k+1)3
�k

i=1(i−N).
Assuming the normal distribution of C(s), criteria of optimality J1(s), J(s)

and J2(s) are directly derived (see[9]),

(14) J2(s) = J1(s) =
NK1e−s

(1 +K1e−s)2
,

(15) J(s) =
1

2
+

(N − 2)K1e−s

(1 +K1e−s)2
=

1

2
+

N − 2

N
J2(s) .

The new approximations Jk(s) can be computed using relation (3) via higher
moments of C(s) and can be expressed in terms of hypergeometric functions.

The shapes of optimality criteria are plotted in Fig. 3. The criteria J1(s)
and J2(s) are equal and have unimodal shape. For N > 2 (which is natural in
reality), the Fisher information J(s) is also unimodal and it is very close to J1(s).
As stated in [9], all these criteria attain maximum value N/4 for the odorant log-
-concentration

(16) s0 = lnK1 .

The approximations J3(s) and J4(s) has also unimodal shape, but their maxima
are slightly shifted from s0 to higher odorant concentrations. This shift, however,
is small and depends only on N (the shift rises with increasing N). For extremely
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Figure 3. (a) Optimality criteria in the basic model: Fisher
information J(s), and the criteria J1(s) = J2(s), J3(s) and J4(s)
(dashed curves, up to bottom). Parameters are K1 = 1 and
N = 100. Criteria J, J1, J2 attain maximum value N/4 = 25 for
the odorant log-concentration s0 = lnK1 = 0. (b) Detail of (a);
note, that the maxima of J3 and J4(s) criteria are slightly biased.

low as well as high odorant concentrations all the criteria decrease. Both the
deterministic and Fisher information criteria give the same result and locate
the optimal concentration of odorant in the region around the concentration s0

(see Fig. 3). The criteria based on approximations are slightly biased in positive
direction.
Model with simple activation.

Considering the model where not every bound receptor is activated immedi-
ately, the receptors really appear in three different states: unbound, R, occupied
but not activated, C∗, and occupied activated, C. Model described by [5] supposes
that each occupied receptor can either become activated, C, with probability
p ∈ (0, 1), or stay inactive, C∗, with probability 1 − p, independently of its past
behavior and of the behavior of other receptors. Such an interaction corresponds
to the following reaction schema,

(17) C∗ k−1
−→←−
k1N

A+R
k1A
−→←−
k−1

C ,

where k1A = pk1 and k1N = (1− p)k1 are association rates for the activated and
inactive state and k1, k−1 have the same meaning as in basic model (9).

It can be proved (see [9]) that the steady-state number of activated receptors
has binomial distribution C(s) ∼ Bi(N, q(s)) with q(s) = p/(1 +K1e−s) and its
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moments are equal to

E (C(s)) =
Np

1 +K1e−s
,(18)

Var (C(s)) =
NpK1e−s

(1 +K1e−s)2
+

Np(1− p)

(1 +K1e−s)2
,(19)

E
�
C

2(s)
�
=

Np (1 + p(N − 1) +K1e−s)

(1 +K1e−s)2
,(20)

E
�
C

4(s)
�
=

Np

�
1− p es

K1+es

�N

4F3

�
2, 2, 2, 1−N ; 1, 1, 1; p es

es(p−1)−K1

�

K1e−s − (p− 1)
.(21)

Criteria J1 and J2 are derived analytically,

(22) J1(s) =
pNK1e−s

(1 +K1es)
2 ,

(23) J2(s) =
pNK

2
1e

−s

(1 +K1e−s)2 (K1 + (1− p)es)
,

Fisher information J(s) and its approximations Jk(s) for Gaussian distributed
C(s) are evaluated numerically.

As well as in basic model (9), maximum value of the criterion J1(s) is located
at odorant log-concentration s1 = lnK1, independently on the value of activa-
tion probability p. According to [9], criterion J2(s) achieves its maximum for
the odorant log-concentration

(24) s2 = lnK1 − ln
4(1− p)

√
9− 8p− 1

.

For lower activation probabilities p the location of maximum of J2(s) is shifted
to lower concentrations of odorant.

As shown in Fig. 4, the shape and location of maxima of Fisher information
criterion J(s) and approximations J2(s), J3(s) and J3(s) are similar, but different
from the maximum of deterministic criterion J1(s). The deterministic and sta-
tistical approaches can give different results, the optimum from statistical point
of view is located at lower concentrations of odorant than that obtained with
the approach based on the slope of the input-output function. In comparison
with Fisher information, the maxima of approximations Jk(s) are slightly biased
in positive sense, i.e. locate the optimal signal in higher odorant concentrations
than criterion J(s) does. Nevertheless, these maxima are less than the determin-
istic optimum (as already known for maximum of J2(s)).
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Figure 4. Optimality criteria in the model with simple activa-
tion: (a) first derivative of the input-output function J1(s) (dot-
ted curve) and Fisher information J(s) (solid), (b) Fisher infor-
mation J(s) (solid curve) and its approximations Jk(s) (dashed
curves, up to bottom for k = 2, 3, 4) as functions of the odor-
ant log-concentration, s, in the perireceptor space. Maximum
of J1(s) is located at s1 = 0. Maximum of J(s) is located at
s ≈ −0.565. Maxima of approximations Jk(s) are shifted to
higher concentrations. Parameters are K1 = 1, N = 100 and
p = 0.4.

4. Conclusions

Two theoretical models of theoretical models of olfactory sensory neurons were
searched for the optimal signal, s, as defined by the application of approximations
Jk(s) of Fisher information J(s). In both models, the approximations Jk(s) have
similar shape as Fisher information J(s). In comparison with optimal concentra-
tion defined by Fisher information, the maxima of the approximations are biased
in positive sense, it means the corresponding odorant concentration determined
as optimal are located in higher values. In the model with simple activation, the
optimal odorant concentration defined in the sense of approximations Jk(s) is dif-
ferent (less) than the deterministically determined value. Interesting is, that in
investigated models the approximations seem to be ordered, even thought there
is no clear ordering of functions Jk(s) in general.
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sity; Kotlářská 2; 611 37 Brno; Czech Republic

E-mail address: pokora@math.muni.cz

63





Acta Universitatis Matthiae Belii ser. Mathematics, 16 (2009), 65–79.

Received: 28 June 2009, Accepted: 2 February 2010.

THE USE OF WPF FOR DEVELOPMENT OF INTERACTIVE

GEOMETRY SOFTWARE

DAVORKA RADAKOVIĆ AND -DOR-DE HERCEG

Abstract. The Windows Presentation Foundation (WPF) is a graphical
subsystem in .NET Framework 3.5, that uses a markup language, called
XAML, for rich user interface development. Interactive geometry software
(IGS) are computer programs that allow one to create and then manipulate
geometric constructions, primarily in plane geometry. Some of the free well
known 2D IGS are Geogebra, Cabri and Cinderella. Besides the intended
use as a means of teaching and studying geometry, IGS are often used for
other purposes, such as development of mathematical games or as a part of
other mathematical software (e.g. mathematical drawing viewers). Thanks
to its JavaScript interface, GeoGebra is often used in that role and controlled
externally by some other software. However, there are some limitations to
GeoGebra’s usefulness in that respect, since it wasn’t developed primarily
for that purpose.
Our aim is to offer a solution that can be easily used as a software com-
ponent for mathematical visualization and interaction. The framework we
developed, called ”Geometrijica”, is simple, straightforward and extensible.
It is based on the WPF, which enables it to have a rich graphical appearance
and interactivity.
In this paper we demonstrate how our framework, when used together with
a mathematical expression evaluator, can be used as a starting point for
developing interactive mathematical software.

1. Introduction

Today there are many interactive geometry software (IGS) products available [1],
[2], [3]. They are used mostly in teaching and studying geometry, and some more
advanced IGS can also graph functions and their derivatives, perform algebraic
and symbolic manipulations and so on.

The importance of IGS in today’s teaching is widely studied and recognized
[9], [11]. For that reason, teachers team up with software developers in order to

2000 Mathematics Subject Classification. 68N19.
Key words and phrases. WPF, XAML, IGS, Geometry software, Teaching software, Com-

ponent development, Mathematical games.



create interactive teaching and learning materials. In order to reach wide audi-
ences, such as elementary school pupils and teachers, the resulting software must
be affordable and able to run on various platforms.
GeoGebra is one such IGS, which has gained wide acceptance due to several fac-
tors: it is free, runs on all modern operating systems, it is constantly updated
and improved, its user interface and user manual have been translated into more
than 40 languages, there exist a number of examples and teaching materials freely
available on the Internet, and GeoGebra applets can be embedded and used in-
teractively in Web pages [10]. Most importantly, GeoGebra is easy and intuitive
to use.

However, the situation is not so simple when it comes to developing new,
stand-alone software that should use an existing IGS as a component. First of
all, the licensing mode of the IGS in question may not permit such use, and
even if it does, there may be some technical limitations or interoperability prob-
lems. On the other hand, there are commercial software packages which are more
than suitable for such development [4], but the prices for development and run-
time versions of these packages may prohibit their widespread use. One of the
possible approaches to this problem is to use tools, such as Adobe Flash [5] or
OpenLaszlo [6], which are not primarily intended for geometrical applications,
for development of mathematical teaching materials, games and examples.

In our previous work, we used GeoGebra to develop course materials [13],
[14], primarily because it is a free software and therefore accessible to our target
audience. However, we encountered some of GeoGebra’s limitations:

• Geometrical shapes in GeoGebra have properties, such as color, line width
and shape of points, which can only be changed via the user interface.
It would be much more useful if properties of geometrical shapes could
get their values from the results of mathematical expressions. That way
we could have visual indicators that change their appearance based on
the state of the geometrical drawing. For example, an oval representing
a set of even numbers could change its color or border width when all the
appropriate elements (represented as points) are placed inside its bounds.

• GeoGebra can be controlled from an external program by means of its
JavaScript interface. However, this interface, in its current state, provides
only the basic functionality. We would like to be able to control every
aspect of the geometrical drawing and to react to all the events, such as
mouse clicks, keyboard pressed, or object overlapping.

• Properties of objects in GeoGebra are accessed by means of special func-
tions, unlike properties of objects in object-oriented programming lan-
guages, which we feel is a more natural way. For example, to obtain the
x-coordinate of a point, one needs to type x(A) instead of A.x. This
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method is awkward when there are a large number of properties, since
each property requires a special function to access it.

• For mathematical game development, we often need to create customized
graphical objects, such as coins, fruits, traffic lights, houses, cars etc.
While this is possible in GeoGebra, it can be awkward and time consum-
ing. Furthermore, it is not possible to create more than one instance of
a customized graphical object needed in any other way but by drawing
each instance separately.

For that reason, we decided to develop a new framework, which will solve these
problems, while retaining all good aspects of GeoGebra. Since we already had
developed a mathematical expression parser and evaluator in C#, we decided to
base our framework on it. However, our solution can easily be adopted to use
another computer algebra system. Windows Presentation Foundation (WPF)
was chosen as the graphical subsystem.

2. Expression evaluator and parser

We developed an expression evaluator and parser, which are based on the same
principles as the ones in GeoGebra.

Expression is any simple or complex expression which can be constructed by
using constants, variables, arithmetic and logic operations, properties of objects
and function calls. Supported functions include common mathematical functions
such as power, trigonometry and logical functions. Basically, an Expression is
what we are used to seeing in most programming languages like C#. Complex
expressions are built by combining simpler expressions using function compo-
sition. Besides that, expressions are used to describe geometrical notions, their
properties and relations. For example, if M=Segment(A, B) represents a segment
between points A and B, then Perpendicular(M, M.Midpoint) represents a line
perpendicular to M, passing through its midpoint.

Parser is tasked with accepting textual input and transforming it into expres-
sions. The syntax resembles expression syntax in C#, with arithmetic operations,
function calls, and member access. Internally, arithmetic and logic operations
and member access are transformed into function calls. For example, the input
A=M.X+3 is transformed into SetVar(”A”, Plus(MemberOf(”M”, ”X”), 3)).
Therefore, all evaluation is actually performed by executing functions.
Expressions have data types. Some common data types are: Number, String,
Logical, Color, Point, Segment, Line, Circle and so on. Arguments of functions
are checked for data type compatibility at execution. When an expression can-
not be evaluated for any reason, it returns a value of the Error data type. Any
expression depending on that value also returns a value of the Error data type.
Variable is a named expression maintained by the evaluator. A variable consists
of an expression and its result.
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Variables can depend on other variables. For example, if M=Segment(A,
B) is a segment between points A and B, and the coordinates of the point A
change, then M must change accordingly. Evaluation of variables is dynamic. As
soon as one variable changes its value, all dependent variables are reevaluated.
Circular dependencies are not allowed. Therefore, the expressions A=f(B) and
B=g(A) are not allowed at the same time. Table 2.1 shows the most impor-
tant members of the Var class, which is used to keep variables in the evaluator.
One important feature of the Var class is that it implements the INotifyProper-
tyChanged interface, which enables it to notify data consumers of changed values.

Table 1. Members of the Var class

public string Name The name of the variable.
public Expression Expr The expression assigned to the variable.
public Expression Result Result of evaluation of the variable.
public bool Valid Indicates whether the result is valid.
public event PropertyChangedEventHandler
PropertyChanged

Event from the INotifyPropertyChanged
interface, which must be implemented in
order to use this class as a data source.

Evaluator is a computational engine that keeps a set of named expressions
and maintains dependencies between them, ensuring that when one expression
changes, all dependent expressions get reevaluated. It also maintains the expres-
sion set in a consistent state by preventing creation of circular dependencies and
by deleting all dependent expressions of a deleted expression.

3. Design goals

The requirements placed before the Geometrijica framework are the following:

• Mathematical notions that can be drawn on paper, such as points, lines,
circles and graphs of functions, can be shown on screen. For example, by
defining a variable M=Segment(A, B) we are also creating a graphical
representation of the segment M, which is drawn on screen. When the
value of the variable changes, the image on the screen also changes.

• Geometrical drawing is a 2D image, consisting mostly of (but not
limited to) geometrical shapes, such as points, lines and circles. It is
kept in computer memory as a list of visual elements with their respective
coordinates and other properties, such as color, size and border width.

• Any property of a visual element can be bound to any variable of the
appropriate type. For example, the location of a point in the Cartesian
coordinate system can depend on a variable of the type Point. When
the value of the variable changes, the position of the visual element is
updated on the screen.
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• Visual elements can represent geometrical shapes, mathematical no-
tions, but they can also be controls, such as buttons, check boxes or slid-
ers. They are implemented by inheriting from WPF controls and user
controls, or by inheriting from System.Windows.FrameworkElement. Ex-
isting functionality of inherited controls is retained.

• Dependency properties of WPF user controls can be bound to any vari-
able of the appropriate type. Data types are converted by special con-
verter classes. For each pair of types there exists a converter class that
provides conversion between them. This enables creation of rich visual
representations, which can be controlled by expressions from the evalua-
tor. For example, one can develop a user control that displays a traffic
light, with a property that specifies which light is on, and then animate
the lights by binding the property to a variable in the evaluator.

• GeoCanvas is a WPF control that displays geometrical drawings. Geo-
Canvas inherits from System.Windows.Controls.Canvas. The part of the
2D plane that is shown inside the GeoCanvas is specified by the coordi-
nates of the lower left and upper right corners. The area displayed in the
GeoCanvas can be panned and zoomed.

• GeoCanvas supports both screen coordinate system and geometrical Carte-
sian coordinate system. Visual elements that are placed on a GeoCanvas
decide which coordinate system they will use. Objects using screen co-
ordinates do not move when the geometrical coordinate system moves.
This facilitates mixing of user interface elements with the elements of a
geometrical drawing.

4. Implementation

4.1. System overview. The structure of a program built on the Geometrijica
framework is shown in Fig. 4.1. The scope of this discussion is limited to the Vi-
suals, Conversion and Algebra packages, which correspond to appropriate names-
paces in Geometrijica.

The Algebra package contains classes discussed in the section ”Expression
evaluator and parser”. A partial list of the classes is shown in Table 4.1.

Table 2. A partial list of classes in the Algebra namespace

Number, String, Logical, EColor Data types
Neg, Plus, Times Arithmetic operations
Sqrt, Power, Sin, Cos Mathematical functions
EPoint, Segment, Line, Circle Geometrical shapes
Evaluator Calculation engine
Var A variable, used in the calculation engine
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Figure 1. Overall structure of a system.

The Visuals package contains the GeoCanvas class, which is a special Canvas
control that supports the geometrical coordinate systems, besides the usual pixel-
based screen coordinate system. The package also contains classes for graphical
representation of geometrical notions, as well as other graphical classes and user
interface elements, such as classes derived from WPF controls.
The Conversion package contains converters which perform data type conversions
necessary for data binding.

4.2. Interfaces and enums. Positioning mode of visual elements is determined
by the LocationMode enumeration. The value Screen means that the location
of an element is expressed in screen pixels, while the value Geometry means
that the location is expressed in geometrical coordinates and that a conver-
sion to screen coordinates is necessary before the element is drawn on screen.

public enum LocationMode
{

Screen, Geometry
}

Listing 1. LocationMode enumeration

All visual elements must implement the IElement interface (Table 4.2), which
provides basic functionality for element positioning and visibility control. The
Valid property is used to control element’s visibility based on the validity of the
expression it is bound to.

For example, let M=Segment(A, B) be a segment between the points A and
B, and P=Perpendicular(M, M.Midpoint) a line perpendicular to M, passing
through its midpoint. Suppose that both M and P have their corresponding vi-
sual elements shown on screen. Then, if the points A and B are equal, the length
of the segment M is zero and the line P cannot exist. In that case, the value of
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the variable P in the evaluator will be marked as invalid, and the visual element
corresponding to P should not be drawn. This is accomplished by binding the
Valid property of the visual element to the Valid property of the variable in the
evaluator.

Table 3. Members of the IElement interface

GeoCanvas GeoCanvas The GeoCanvas object this element belongs to. Elements use
this reference to obtain information about geometrical coordi-
nates in the GeoCanvas.

bool Valid Determines whether the element is valid, i.e. whether it should
be drawn.

public Expression Result Result of evaluation of the variable.
bool Visible Controls visibility of the element.
void CalcScrLocation() Calculates and updates the location of the visual element on

the screen.

private GeoCanvas _geoCanvas;

public GeoCanvas GeoCanvas
{

get { return _geoCanvas; }
set { _geoCanvas = value; }

}

public void CalcScrLocation()
{

if (GeoCanvas != null)
{

switch (LocationMode)
{

case LocationMode.Geometry:
ScrLocation = GeoCanvas.Geo2Scr(Location);
break;

case LocationMode.Screen:
ScrLocation = Location;
break;

}
}

}
(code omitted)

Listing 2. A typical IElement implementation in a visual element class

The ILocation interface (Table 4.3) should be implemented by visual elements
which can choose the positioning mode between LocationMode.Screen and Loca-
tionMode.Geometry. Most visual elements that represent geometrical shapes do
not implement this interface. On the other hand, user interface elements such as
buttons, check boxes and sliders, which can be placed either on fixed location on
screen or bound to geometrical coordinates, implement the ILocation interface.
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Table 4. Members of the ILocation interface

Point Location Location of the visual element, either in screen or geom-
etry coordinates.

LocationMode LocationMode Specifies how the element’s location is interpreted.

4.3. GeoCanvas. The GeoCanvas class extends the System.Windows.Controls.Canvas
class. It represents a view of a 2D plane in the Cartesian coordinate system.
GeoCanvas has four properties, named X0, Y0, X1 and Y1, which determine the
region of the 2D plane that is shown on the GeoCanvas.

Visual elements are added to the GeoCanvas by calling the RegisterVisual
method.

The Geo2Scr method is used to convert geometrical coordinates into screen
coordinates. This method is called by child visual elements, when they are re-
quested by the GeoCanvas to determine their locations. Obviously, only the
elements in the ’geometry’ positioning mode use this method.

Figure 2. The GeoCanvas class.

4.4. Dependency properties and data binding. The main idea in our work
is to create visual elements which react dynamically to changes in expression
values in the evaluator. WPF data binding [7] provides a simple and consistent
way of binding elements to data sources, such as databases, XML documents,
CLR objects etc.

In our case, data sources are evaluator variables (objects of type Var, Ta-
ble 2.1). These objects implement the INotifyPropertyChanged interface, which
takes care of notifying the WPF infrastructure when a property of a variable
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changes. Typical scenario is as follows. When a visual element is created, its
properties are bound to the appropriate properties of the corresponding Var ob-
ject. The visual element is then placed on a GeoCanvas and thus displayed on
screen. Each subsequent change of Var object’s properties causes the data bind-
ing infrastructure to change corresponding properties of the visual element, which
is displayed immediately on screen. For this purpose, one-way data binding is
used.

Since the data types used in the Evaluator are different from those used in the
visual elements, converters must be implemented for each pair of data types for
which data binding is meaningful. Listing 3 shows the EPointConverter class,
which converts values of type EPoint into values of type Point.

[ValueConversion(typeof(EPoint), typeof(Point))]
public class EPointConverter: IValueConverter
{

public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
EPoint ep = value as EPoint;
if ((ep != null) && (targetType.Equals(typeof(Point))))
{

double x1 = ((Number)ep.X).Value;
double y1 = ((Number)ep.Y).Value;
return new Point(x1, y1);

}
else
{

throw new ArgumentException("Invalid type. EPoint expected.", "value");
}

}

public object ConvertBack(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)

{ (code omitted) }
}

Listing 3. A partial listing of the DoubleConverter class

Listing 4 shows lines of code that bind the result of the evaluator variable A
to the first point of the segment sg. After this code has executed, all changes in
the result of the variable A will be immediately reflected on the drawing on screen.

sg = new VSegment(new Point(0, 0), new Point(3, 5));
GeoPanel1.RegisterVisual(sg);

Binding bA = new Binding("Result");
bA.Source = Evaluator.Default.Variables["A"];
bA.Converter = new HMS.Geometrijica.Visuals.Conversion.EPointConverter();
sg.SetBinding(VSegment.AProperty, bA);

Listing 4. Binding of an evaluator variable to a visual element
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4.5. Visual Elements. Visual elements are objects that are actually drawn on
GeoCanvas. They can be simple dots and lines, or complex drawings. Besides
that, common WPF controls, such as buttons, check boxes and sliders can be
turned into visual elements and placed on GeoCanvas, while retaining all their
functionality. Even complex user controls, with graphical effects and animations
can be turned into visual elements and used.

Figure 3. Visual elements VPoint, VSegment and VButton.

The process of making a new visual element is different depending on what
class is chosen as a starting point. We can start from System.Windows.FrameworkElement
and program everything by hand, or we can start from either Control, UserCon-
trol or one of the existing WPF controls and implement only a few necessary
methods. In either case, the IElement interface must be implemented.

4.5.1. Creating a new visual element from FrameworkElement. In this section,
the steps necessary to create a visual element from FrameworkElement will be
explained. The VPoint class represents a geometrical point and it is drawn as a
small circle on screen. The important members of the VPoint class are explained
in Table 4.4.
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Table 5. Important members of the VPoint class

public GeoCanvas GeoCanvas The GeoCanvas object this VPoint belongs
to.

private static void RegisterProperties() Registers dependency properties and their
corresponding event handlers. Called from
the static constructor.

public Point Location Location of the geometrical point, either in
screen or geometry coordinates.

public LocationMode LocationMode Specifies how the location property is in-
terpreted.

public double Size Size of this VPoint in pixels.
protected override void
OnRender(DrawingContext drawingContext)

Called by the WPF when the VPoint needs
to be drawn.

private DrawingVisual DrawIt() Performs actual drawing of the VPoint in
the specified DrawingContext.

public int VisualChildrenCount

public void AddVisual(Visual v)
public int VisualChildrenCount

public int VisualChildrenCount

Required by the FrameworkElement spec-
ification. These methods must be im-
plemented in all classes deriving from
the System.Windows.FrameworkElement
class.

To implement a geometrical point, we start by inheriting the FrameworkEle-
ment class. The methods VisualChildrenCount, AddVisual, DeleteVisual and
GetVisualChild must be implemented as specified in [8].

We also implement the IElement interface, and the optional ILocation inter-
face. Actual drawing of the point takes place in the DrawIt method, which is
called when needed from the overridden OnRender method. The VPoint class
has properties that determine its visual appearance. We will consider only the
Size property, as implementation details are similar for all other such properties.

static VPoint()
{

RegisterProperties();
}

private static void RegisterProperties()
{

FrameworkPropertyMetadata mdSize =
new FrameworkPropertyMetadata(8.0, FrameworkPropertyMetadataOptions.AffectsRender,

new PropertyChangedCallback(OnSizeChanged));
SizeProperty =

DependencyProperty.Register("Size", typeof(double), typeof(VPoint), mdSize);

(code omitted)
}

public static DependencyProperty SizeProperty;

public double Size
{
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get { return (double)GetValue(SizeProperty); }
set { SetValue(SizeProperty, value); }

}

private static void OnSizeChanged(DependencyObject obj,
DependencyPropertyChangedEventArgs e)

{
VPoint t = (VPoint)obj;
t.DrawIt();

}

private DrawingVisual DrawIt()
{

DrawingVisual vis = (DrawingVisual)visuals[0];
using (DrawingContext dc = vis.RenderOpen())
{

// selection circle
Brush sbr = new SolidColorBrush(Colors.Orange);
sbr.Opacity = SelectionOpacity;
Pen sp = new Pen(sbr, 5.5);
dc.DrawEllipse(null, sp, ScrLocation, Size + 4, Size + 4);

// shape of the point
Brush br = Brushes.Blue;
Pen p = new Pen(br, 2.0);
dc.DrawEllipse(br, p, ScrLocation, Size, Size);

}
return vis;

}

Listing 5. Implementation of the Size property and the DrawIt method

Figure 4.4 shows the sequence diagram for the RegisterVisual method. When a
new visual element (VPoint in this case) is added to the GeoCanvas via the Reg-
isterVisual method, the GeoCanvas control invokes the CalcScrLocation method
from the IElement interface. Since the VPoint in question is in the geometry
positioning mode, it calls the Geo2Scr method of the GeoCanvas, in order to
transform its geometrical coordinates into screen coordinates. After that, the
OnRender method is invoked, which, in turn calls the DrawIt method. This
method performs the actual drawing of the point at the screen coordinates.

4.5.2. Creating visual elements from existing controls. WPF controls already have
full functionality, in other words, they know how to draw themselves and to react
to user interaction, such as keyboard actions and mouse clicks. It is much easier
to create visual elements from existing WPF controls than to code all drawing
and behavior logic by hand, as is the case with visual elements based on Frame-
workElement. In order to make a visual element from the Button class, we only
need to implement the IElement interface in the inheriting class. If we want
to be able to place the button on geometrical coordinates, as well as on screen
coordinates, we should implement the ILocation interface too. Figure 4.3 shows
the VButton class, which was created in the described way.
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Figure 4. Sequence diagram for the RegisterVisual method.

4.5.3. Creating visual elements from UserControl. As WPF controls can be spec-
ified in XAML, it is also possible to create visual element in that way. Listing
6 shows the specification of a traffic light control with three controllable lights,
which can be switched on and off by setting the TrafficLight.Light dependency
property. Since the TrafficLight control also implements the IElement interface,
it can be placed on GeoCanvas in the same way as all other visual elements, and
its appearance can be controlled by a variable from the evaluator (Figure 4.5).

<UserControl x:Class="HMS.Geometrijica.Visuals.TrafficLight"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Height="90" Width="30">

<Border BorderBrush="#FFDA1818" BorderThickness="3,3,3,3">
<Grid x:Name="LayoutRoot" Background="#FFDDCECE">

<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition Height="*"/>
<RowDefinition/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition/>
</Grid.ColumnDefinitions>
<Ellipse Fill="#000000" Stroke="#FF000000" Grid.Row="0" />
<Ellipse Fill="#000000" Stroke="#FF000000" Grid.Row="1" />
<Ellipse Fill="#000000" Stroke="#FF000000" Grid.Row="2" />
<Ellipse Fill="#FFFF3304" Stroke="#FF000000" Margin="3 3 3 3" Grid.Row="0"

x:Name="RedLight" Opacity="100"/>
<Ellipse Fill="#FFDFE22A" Stroke="#FF000000" Margin="3 3 3 3" Grid.Row="1"

x:Name="YellowLight" Opacity="100"/>
<Ellipse Fill="#FF1D8B35" Stroke="#FF000000" Margin="3 3 3 3" Grid.Row="2"

x:Name="GreenLight" Opacity="100"/>
</Grid>

</Border>
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</UserControl>

Listing 6. Specification of the TrafficLight control in XAML

One benefit from creating visual elements from existing controls is that these
elements retain full functionality of the controls they are based on. This way,
we can mix geometrical shapes with WPF controls on a GeoCanvas control.
Furthermore, dependency properties of those controls can be bound to results
of arbitrary expressions in the evaluator (provided that appropriate converters
exist).

4.6. Example. Figure 4.5 shows a simple window, containing a GeoCanvas con-
trol, which in turn contains three TrafficLight controls at screen coordinates, and
one point, one segment and one button at geometrical coordinates. When the
GeoCanvas is resized, panned and zoomed, the traffic light controls retain their
positions, while the other controls’ positions move accordingly.

Figure 5. Point, segment, button and three traffic light controls
on a GeoCanvas.

5. Conclusion

Existing interactive geometry software (IGS) are used in teaching of geometry and
mathematics in general. GeoGebra is one IGS that has gained wide acceptance
thanks to its intuitive use and a great range of features. However, GeoGebra
cannot without difficulty be used as a component in other software products.
Therefore we developed the ’Geometrijica’ framework for geometry software de-
velopment. A significant part of our framework is the graphical subsystem, which
can display geometrical shapes, WPF controls and user controls at the same time.
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By using dependency properties and data binding infrastructure in the WPF, we
have managed to link the calculation engine with the graphical subsystem, so
that all changes in calculation results are reflected in the geometrical drawing.
We have also demonstrated that any property of a visual object can be bound
to an arbitrary expression in the calculation engine, which is a step further from
what GeoGebra offers in this respect. Also we have demonstrated how new visual
objects can be made, either by programming them from scratch or by inheriting
existing controls. By following a few simple rules, new visual objects can easily
be created and used in geometrical drawings. Geometrijica can easily be used as
a component in other programs.
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Obradovića 4, 21000 Novi Sad, Serbia

E-mail address: herceg@dmi.uns.ac.rs

79





Acta Universitatis Matthiae Belii ser. Mathematics, 16 (2009), 81–89.

Received: 7 July 2009, Accepted: 2 February 2010.

DECOMPOSITION AND PROJECTIVITY

OF QUANTALE MODULES

RADEK ŠLESINGER

Abstract. We prove that every quantale module join-generated by its sub-
set of join-irreducible elements can be uniquely decomposed into a collection
of further indecomposable submodules. This decomposition actually corre-
sponds to the direct product when the module is “sufficiently distributive”.
After showing that regular projective indecomposable modules over a given
quantale Q are isomorphic to Qd for an idempotent d ∈ Q, we characterize
regular projective essential modules that admit this product decomposition
as products of such cyclic modules.

Outside the original area of modules over unital rings, the concept of projectivity
has also been investigated for sets endowed with an action of a semigroup or a
monoid (so called S-acts, see [5]), and their partially-ordered variants [13]. Be-
cause of similarity of quantale modules to these structures, projectivity suggests
to be studied in their categories as well. A recent article [3] presents use of pro-
jective objects in study of equivalences of consequence relations on powersets of
propositional formulas or sequents, which form unital modules over quantales of
sets of substitutions.

In this paper we follow a part of the article [13] where decomposability and
projectivity were studied in the category of S-posets, i.e., partially ordered sets
equipped with an action of a partially ordered monoid that is compatible with
the order relation. In accordance with the article, we first develop a little theory
of decomposability, and then we apply it to obtain the main result. For the
extension to the non-unital case, we make use of the article [2]. For facts on
categories of quantales and quantale modules, the reader can refer to [12] and [6].

1. Preliminaries

Our base environment will be the category of sup-lattices. Its objects are com-
plete lattices but morphisms include all join-preserving maps. The greatest and
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Key words and phrases. quantale module, projective module, projectivity, decomposition.



the least element of a sup-lattice are denoted by 1 and 0, respectively. A quan-
tale stands for a sup-lattice endowed with associative binary multiplication ‘·’
distributing over arbitrary joins in both operands. Quantales possessing a mul-
tiplicative unit, denoted by e, are called unital. Quantale homomorphisms are
then sup-lattice homomorphisms preserving multiplication as well.

Given a quantale Q, a left Q-module M means a sup-lattice with an associative
left action of the quantale · : Q × M → M that distributes over joins in both
components. Throughout this article, ‘module’ shall stand for a left module.
When Q is a unital quantale and e · m = m for all m ∈ M , M is called unital,
too. As we often consider all multiples of an element m by elements of a set
A ⊆ Q, we denote by Am the set {a ·m | a ∈ A}, and, by analogy, AN = {a · n |

a ∈ A, n ∈ N}.
A module homomorphism f is a sup-lattice homomorphism satisfying f(q ·m)

= q · f(m) for any q ∈ Q and m ∈ M . A subset N of M is called a submodule if
it is nonempty and closed under arbitrary joins and multiplication by elements
of Q, while an ideal stands for a downward-closed sub-sup-lattice. A submodule-
ideal will stand for an ideal that is a submodule as well. Submodule-ideals arise
as principal downsets ↓m given by elements m such that 1Q ·m ≤ m.

When A ⊆ M is closed under quantale action, the submodule of M join-
generated by A shall be denoted by �A�. A Q-module M satisfying �QM� = M

is called essential [9]. The class of essential modules provides the setting for some
of the results presented in this paper. In particular, unital modules belong to
this class, as well as unital quantales and idempotent quantales, when one regards
quantales as modules over themselves.

A nonzero element x of a lattice L is called join-irreducible if x = a ∨ b

implies x = a or x = b. To derive our results, we shall deal with modules that
are join-generated by their sets of join-irreducible elements. Such lattices have
been called finitely spatial by F. Wehrung [16]. This class includes, for instance,
supercontinuous modules (see [4], Theorem I-3.16, an equivalent statement for
completely distributive complete lattices and co-prime, i.e. join-prime elements).

An object P is regular projective when for a given regular epimorphism g : A →

B any morphism f : P → B can be lifted to h : P → A satisfying g ◦ h = f .
In categories of quantale modules, regular epimorphisms are exactly surjective
homomorphisms. As only regular projectivity is discussed in this article, it shall
be called projectivity for short.

Two following propositions present well-known properties of projective mod-
ules [1, section 4.6].

Proposition 1. For a Q-module P , the following conditions are equivalent:

(1) P is projective.
(2) Every epimorphism f : R → P splits, that is, a monomorphism g : P → R

exists and satisfies f ◦ g = idP .
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(3) P is a retract of a free module.

Proposition 2. Let P =
�

i∈I Pi be a coproduct of modules. Then P is projective
iff each Pi is projective.

In categories of sup-lattices and quantale modules, the notions of products and
coproducts coincide, so we do not have to distinguish between them.

There exists a free Q-module over any set. Provided that Q is unital, the free
module over a set X is QX with standard product ordering and componentwise
action. For a non-unital quantale Q, the module (2 ×Q)X plays the role of the
free object (2 stands for the two-element quantale in which 1 · 1 = 1). Action of
Q on such a module is given as follows:

q · (b,m) =

�
(0, q ·m) if b = 0,

(0, q ∨ q ·m) if b = 1.

This construction was presented in [8], an alternative formulation can be found
in [6].

2. Decomposition of Modules

A module M is called decomposable if there exist two nontrivial submodule-
ideals of M , A and B, A ∩ B = {0} that generate M as a sup-lattice by joins.
Expressed using elements, there exist a, b ∈ M satisfying a ∧ b = 0, 1Q · a ≤ a,
1Q · b ≤ b, and for any m ∈ M it holds that m = (m ∧ a) ∨ (m ∧ b). If this does
not happen, we say that M is indecomposable.

Lemma 3. Let M be a Q-module and m ∈ M be a join-irreducible element.
Then N = ↓�Qm∪{m}� = ↓((1Q ·m)∨m) is an indecomposable submodule-ideal.

Proof. Obviously, N is an ideal because it is a lower set, and it is also a submodule
since the quantale action is order-preserving. Suppose that N is decomposable,
that is, there exist A and B, submodule-ideals of N , A ∩ B = {0} such that
m = a ∨ b for some a ∈ A, b ∈ B. As m is join-irreducible, we have m = a or
m = b. Without loss of generality we can suppose m = a, thus m ∈ A, Qm ⊆ A,
and b = 0. �

Lemma 4. Let a module M = �
�

i∈I Ai� = �
�

j∈J Bj� for two families (Ai)i∈I ,
(Bj)j∈J of its submodule-ideals. Then for each i ∈ I, the submodule-ideal Ai

equals �
�

j∈J(Ai ∩Bj)�.

Proof. It is evident that Ai ⊇ �
�

j∈J(Ai∩Bj)�. The converse inclusion also holds:
if a ∈ Ai, it is a join of elements bk ∈ Ai where each bk is contained in some Bj

since
�

j∈J Bj generates the whole M . �
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Lemma 5. Let Mi, i ∈ I, be a family of indecomposable submodule-ideals of
a finitely spatial module M satisfying

�
i∈I Mi �= {0}. Then the submodule

↓�
�

i∈I Mi� is also an indecomposable submodule-ideal.

Proof. Suppose ↓�
�

i∈I Mi� is decomposable into A and B. Since a non-zero
element, which is a supremum of join-irreducibles, belongs to

�
i∈I Mi, and all

Mi are lower sets, there certainly exists a join-irreducible element m ∈
�

i∈I Mi.
If m could be written as a ∨ b for some a ∈ A and b ∈ B, it would equal either
a, or b. Again, without losing generality, if m ∈ A, Mi ∩ A �= {0} for any i.
By Lemma 4, Mi = �(Mi ∩ A) ∪ (Mi ∩ B)�. As all Mi are indecomposable,
Mi ∩B = {0}, Mi = �Mi ∩A� ⊆ A, therefore ↓�

�
i∈I Mi� = A. �

Theorem 6. Every finitely spatial Q-module can be uniquely decomposed into a
collection of its Q-submodule-ideals that are indecomposable and pairwise meeting
in 0 only.

Proof. We already know that ↓�Qm ∪ {m}� is indecomposable when m is join-
irreducible. Therefore, considering a join-irreducible element x, the setDx = {N |

x ∈ N, N is an indecomposable submodule-ideal} is nonempty, and
�

N∈Dx
N �=

{0} because it contains x. From Lemma 5 it follows that the setAx = ↓�
�

N∈Dx
N�

is an indecomposable submodule-ideal.
Consider two join-irreducible elements x �= y. Then either Ax ∩ Ay = {0}, or

Ax = Ay. This holds because if there exists m ∈ Ax ∩ Ay, m �= 0, also a join-
irreducible element n ≤ m belongs to the intersection. Obviously Ax ⊆ ↓�Ax ∪

Ay�. Using Lemma 5 again, ↓�Ax ∪ Ay� is downward-closed, indecomposable
(since Ax ∩Ay �= {0}), and containing y, so ↓�Ax ∪Ay� ⊆ Ay (as Ay includes all
indecomposable submodule-ideals containing y). The converse inclusion can be
shown in the same way.

We can therefore set an equivalence θ on join-irreducible elements of M as
xθy iff Ax = Ay. Since every element of M is a supremum of join-irreducibles,
M = �

�
x∈C Ax� where C is a suitable set of representatives of classes of θ.

Suppose there exist two such decompositions, so M = �
�

i∈I Ai� = �
�

j∈J Bj�,
and consider one of the Bj . By Lemma 4, Bj = �

�
i∈I(Ai ∩ Bj)�. For any i ∈ I

we then obtain a decomposition of Bj as �(Ai ∩ Bj) ∪ �
�

l �=i(Al ∩ Bj)��. Let
b ∈ Bj be nonzero. It equals to the supremum of join-irreducibles ak such that
ak ≤ b for all k. Pick any ak of them and the submodule Aik that contains
ak. As Bj is indecomposable and Aik ∩Bj is nontrivial, �

�
l �=ik

(Al ∩Bj)� = {0},
Bj = �Aik ∩Bj�, and thus Bj ⊆ Aik . And vice versa, inclusion of Aik in some Bm

(which is necessarily the considered Bj) can be shown. Identity of the collections
Ai, i ∈ I, and Bj , j ∈ J , follows. �

The result can be further improved if we strengthen our assumptions on the or-
der structure of the module. Extending the notion of 0-distributivity [15, section
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3.4], we shall call a complete lattice L infinitely 0-distributive if L is distributive,
and a ∧ b = 0 for all b ∈ B implies a ∧

�
B = 0 for any a ∈ L, B ⊆ L. As

was pointed out by the referee, the class of infinitely 0-distributive modules in-
cludes some structures introduced by P. Resende [11]: so-called quantal frames,
quantales in which binary meets also distribute over arbitrary joins (hence they
possess the structure of a frame as well), and stably supported quantales where
the support ςQ of such a quantale Q is a frame and becomes a left Q-module.

Theorem 7. Every finitely spatial, infinitely 0-distributive Q-module is isomor-
phic to the direct product of its Q-submodule-ideals that are indecomposable and
pairwise meeting in 0 only.

Proof. We need to show that representation of any element x of M by a join of
elements that belong to the compositing submodules is unique. Let M have a
decomposition M = �

�
i∈I Ai� as shown in the previous theorem, and let x ∈

M satisfy x =
�
{ai | ai ∈ Ai} =

�
{bi | bi ∈ Ai}. Then, since the only

pairwise-common element of the compositing downward-closed submodules is 0,

for each j ∈ I we have aj = aj ∧ x = aj ∧
�

i∈I bi = aj ∧

���
i �=j bi

�
∨ bj

�
=

�
aj ∧

�
i �=j bi

�
∨ (aj ∧ bj) = 0∨ (aj ∧ bj), hence aj ≤ bj . Using this argument we

can see that the collections of ai and bi are equal.
The join map f :

�
i∈I Ai → M given as f((ai)) =

�
i∈I ai is then a module

isomorphism as it is surjective by the assumptions, injective according to the
previous paragraph, and it can be verified that it is a homomorphism. �

Example. Consider the lattice L = Idl(Z60) of ideals of the ring Z60. Its subset
JI(L) of join-irreducible elements consists of a = ([12]60), b = ([15]60), c =
([20]60), and d = ([30]60). With multiplication of ideals it becomes also a unital
quantale, hence a module as well, and the cyclic submodules then look as follows:
La = {(0), (12)}, Lb = {(0), (15), (30)}, Lc = {(0), (20)}, Ld = {(0), (30)}.
All of them are subchains connecting 0 and the respective elements, and they
are identical to their down-sets. The resulting decomposition then consists of
Aa = La, Ab = Ad = Lb, and Ac = Lc.

A different-looking module results from the construction of the endomorphism
quantale Q(L). Multiplication by a quantale element is then performed by en-
domorphism application. All the elements of L can be achieved from any join-
irreducible element this way, hence all cyclic submodules Q(L)m generated by
elements m ∈ JI(L) are equal to L, and L is therefore indecomposable as Q(L)-
module by Proposition 3.
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Now look at the quantale Q(L). As shown more generally in [14, Proposition
1.7], it is join-generated by its join-irreducible elements of the form

fij(x) =

�
cj if x ≥ ci,

0 otherwise,

for ci and cj ranging over JI(L), and so it allows application of our results.
Any endomorphism f ∈ Q(L) is uniquely determined by setting images of join-
irreducible elements. This prescription can be almost arbitrary, it just has to
preserve the partial order on JI(L). As a sup-lattice, Q(L) is thus isomorphic to
C = {g : JI(L) → L | g is monotone}.

The poset JI(L) can be viewed as a union of disjoint components (with respect
to the ordering relation) L1 = {a}, L2 = {b, d}, L3 = {c}. Then each Ci =
{g : JI(L) → L|g is monotone, g(x) = 0 for all x /∈ Li} is also a submodule of
Q(L), and it can be seen that C1 ∪ C2 ∪ C3 join-generates Q(L). Therefore,
Q(Idl(Z60)) can be decomposed as Idl(Z60) ⊕ Idl(Z60) ⊕ Idl(Z60)2 where S

2

means the poset of all monotone maps from 2 to a sup-lattice S.

3. Projective Essential Modules

Lemma 8. Let Q be a quantale and d ∈ Q be idempotent. Then the module Qd

is projective.

Proof. Let f : Qd → N be a homomorphism and g : M → N be a surjective
homomorphism. If f(d) = n ∈ N , there exists m ∈ M such that g(m) = n.
Define h : Qd → M as h(q ·d) = (q ·d) ·m. This map is a module homomorphism
because h(r · (q · d)) = (r · (q · d)) · m = r · h(q · d) and h

��
i∈I(qi · d)

�
=��

i∈I(qi · d)
�
· m =

�
i∈I(qi · d · m) =

�
i∈I(h(qi · d)). The fact of d being

idempotent makes the homomorphisms commute: (g ◦ h)(q · d) = g(q · d ·m) =
q · d · g(m) = q · d · n = q · d · f(d) = f(q · d · d) = f(q · d). �

Note that the above Lemma implies that unital quantales are projective when
they are regarded as modules.

Proposition 9. Let M be a Q-module and m ∈ M belong to Qm. Then the
following conditions are equivalent:

(1) Qm is projective.
(2) There exists an idempotent d ∈ Q such that m = d ·m and q ·m �→ q · d

is a homomorphism.
(3) Qm ∼= Qd for some idempotent d ∈ Q.

Proof. 1. ⇒ 2. Let Qm be projective. Since ψ : Q → Qm taking q to q ·m is onto,
by Proposition 1 it is a retraction and there exists a homomorphism g : Qm → Q

such that ψ◦g = idQm. Let d ∈ Q denote the g-image ofm. Thenm = ψ(g(m)) =
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ψ(d) = d ·m, and d is idempotent: d = g(m) = g(d ·m) = d · g(m) = d
2. We can

see that g is the desired homomorphism: g(q ·m) = q · g(m) = q · d.
2. ⇒ 3. The image of g which was obtained in the previous step is Qd, and

we know that g is injective.
3. ⇒ 1. See the previous proposition. �

Proposition 10. An indecomposable essential Q-module is projective if and only
if it is isomorphic to Qd for an idempotent d ∈ Q.

Proof. The sufficient condition for projectivity is implied by Lemma 8, so suppose
that an essential Q-module P is projective and indecomposable.

Let A = QP and for each a ∈ A fix a pair qa, ra such that a = qa · ra. As P is
essential, P = �A�. For each a ∈ A we can set a map fa : Q → P as fa(q) = q ·ra.
It can be easily seen that fa is a module homomorphism containing a in its image.

Using the homomorphisms fa we can define a map f :
�

a∈A Q → P as f(x) =
f((xa)) =

�
a∈A fa(xa). Note that

�
a∈A Q is also a coproduct equipped with

natural injections ιa from Q. As for every a ∈ A f ◦ ιa = fa, universal property
of the coproduct yields that f is a homomorphism. Moreover, f is a surjection
— let p ∈ P be arbitrary, then p =

�
B for some B ⊆ A. Take the element

y ∈
�

a∈A Q given as

ya =

�
qa if a ∈ B,

0 if a /∈ B.

Then f(y) =
�

a∈A fa(ya) =
�

a∈B(qa · ra) = p. By Proposition 1 there is an
injective homomorphism g : P →

�
a∈A Q satisfying (f ◦ g)(P ) = P . This gives

us a submodule g(P ) ⊆
�

a∈A Q isomorphic to P .
Suppose there is an element 0 �= x ∈ g(P ) with xa and xb different from 0 for

distinct a, b ∈ A. Consider the submodules R = {z ∈ g(P ) | zb = 0 for all b �= a}

and S = {z ∈ g(P ) | za = 0}. By the assumption, these two submodules are
nontrivial and downward-closed in g(P ), and they join-generate g(P ). However,
this contradicts indecomposability of g(P ). Therefore all non-zero elements of
g(P ) must be contained in a copy of Q for some b ∈ A.

Hence we obtain that P = f(g(P )) ⊆ f
��

a∈A Q
�
= P , thus f(g(P )) =

fb(Q) = Q ·rb for rb ∈ P . By part 3. of Proposition 9, P ∼= Qd for an idempotent
d ∈ Q. �

Lemma 11. The product M =
�

i∈I Mi is essential iff each Mi is essential.

Proof. If m =
�

j∈J(qj · nj) for an index set J with qj ∈ Q and nj ∈ M , then
obviously every mi, the i-th component of m, equals

�
j∈J(qj · (nj)i).

For the converse, let m ∈
�

i∈I Mi. For every i ∈ I there is a set Ji such that
mi =

�
j∈Ji

(qj · nj) for qj ∈ Q and nj ∈ Mi. Then m =
�

i∈I,j∈Ji
(qj · ιi(nj))

where ιi denotes the injection into the i-th component of the coproduct. �
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Theorem 12. An infinitely 0-distributive finitely spatial essential Q-module is
projective if and only if it is isomorphic to

�
i∈I Qdi where each di is an idem-

potent element of Q.

Proof. The ‘if’ direction follows from the previous proposition and from the fact
that products of Q-modules coincide with their coproducts.

For the converse, we have seen that every infinitely 0-distributive finitely spa-
tial Q-module M has a unique decomposition into a set of its indecomposable
submodules Mi, i ∈ I, making M isomorphic to their coproduct. As a coprod-
uct of modules is projective iff each one is projective and the same holds true
for essentiality, by Proposition 10 each Mi has to be isomorphic to Qdi for an
idempotent di ∈ Q. �

The example of decomposition of a quantale/module of sup-lattice endomor-
phisms on page 85 also illustrates the above result. Since Q(L) is a unital quan-
tale, all summands can be expressed as cyclic submodules of the quantale which
are generated by idempotent homomorphisms. In this case, these homomor-
phisms are of the form (when prescribed on join-irreducible elements) fi(x) = x

if x ∈ Li, and 0 otherwise.
Note that if the only idempotents of a unital quantale Q are 0 and the neutral

element e, then every projective infinitely 0-distributive finitely spatial unital
module over Q is free since its decomposition consists only of copies of Q.

Obviously, finite spatiality and infinite 0-distributivity are not necessary in the
‘if’ part of the main theorem. In certain cases, they may not be required in the
other direction either. An instance of quantales which allow these assumptions
on a projective module to be omitted is provided by supercontinuous quantales.
Recall that a complete lattice is called supercontinuous if every its element x is
a join of elements that lie completely below x, that is, such elements y satisfying
x ≤

�
A =⇒ (∃a ∈ A)(y ≤ a). G. N. Raney [10] proved that supercontinuity

equals to complete distributivity, and from [4, Theorem I-3.16] it then follows that
supercontinuous lattices are finitely spatial. Complete distributivity also implies
infinite 0-distributivity. As products of supercontinuous complete lattices are
supercontinuous as well [17] and supercontinuity is preserved by retraction of
modules (shown in [7]), projective modules over supercontinuous quantales are
supercontinuous, too. The above also implies that finite spatiality and infinite
0-distributivity are satisfied for all projective modules over finite quantales which
are distributive as lattices.

Example. Consider the lattice O(X) of open sets of a topological space X =
[0, 1] ∪ [2, 3] with standard topology on reals. With intersection as the binary
operation, it becomes a unital idempotent commutative quantale (i.e., a frame),
hence a module over itself. Although it is not finitely spatial since it lacks enough
join-irreducible elements, it is a decomposable projective module because it is
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a unital quantale and it is join-generated by its two submodules O([0, 1]) and
O([2, 3]).
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