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REGULAR ORIENTED HYPERMAPS

UP TO FIVE HYPERFACES

ANTONIO BREDA D’AZEVEDO AND MARIA ELISA FERNANDES

Abstract. The chiral hypermaps with at most four hyperfaces were clas-

sified in [A. Breda d’Azevedo and R. Nedela,Chiral hypermaps with few
hyperfaces, Math. Slovaca, 53 (2003), n.2, 107–128]. It arises from this

classification that all chiral hypermaps are “canonical metacyclic”, that is,

the one-step rotation about a hypervertex, or about a hyperedge, or about
a hyperface, generates a normal subgroup in the orientation-preserving au-

tomorphism group. In this paper we complete the above classification by
classifying the reflexible regular oriented hypermaps with three and four

hyperfaces, and extend the classification to five hyperfaces. The chiral hy-

permaps arising in this work will be either canonical metacyclic or coverings
of canonical metacyclic hypermaps. All have metacyclic monodromy groups

and cyclic chirality groups.

1. Introduction

Regular oriented hypermaps algebraically correspond to two-generated groups G
with a prescribed couples of generators a and b. Geometrically they determine
cellular embeddings of hypergraphs (bipartite graphs) in orientable compact and
connected surfaces. Endowing the compact surface with an orbifold-induced met-
ric, the edges of the bipartite map can be seen as geodesics. The genus of the
compact surface is the genus of the hypermap. If H = (G; a, b) is a hypermap,
the Euler characteristic of H (that is, the Euler characteristic of its underlying
surface) is calculated according to the formula

χ(H) = V + E + F − |G| ,
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where V is the number of orbits of 〈b〉 (the hypervertices of H), E is the number
of orbits of 〈ab〉 (the hyperedges of H) and F is the number of orbits of 〈a〉 (the
hyperfaces of H), under the right action of G = 〈a, b〉 on itself. If ab is an involu-
tion, H is a map. A common central problem in the theory of maps/hypermaps
has been the classification of regular oriented hypermaps either by size (order of
G) [22, 25], by number of hyperfaces [26, 6], by underlying graph [18, 24, 12], by
automorphism group [3], or by genus [14, 15, 16, 21]. As a consequence of the well
known Hurwitz bound, the number of regular oriented hypermaps of genus g > 1
is finite and bounded by 84(g − 1). Regular oriented hypermaps on the sphere
are easily deduced from the Euler formula, viz. the five Platonic solids, two in-
finite families of types (1, n, n) and (2, 2, n), plus their duals. A classification of
the regular oriented maps on the torus can be seen in Coxeter and Moser [11].
The generalisation to hypermaps was done by Corn and Singerman [10]. The
classification problem for double torus was settled in [4] and for higher genera
only partial results are known. Conder and Dobcsanyi [9], with computational
support, classified all regular oriented maps1 from genus 8 to 15, raising previous
classifications of Sherk [21], Grek [14, 15, 17] and Garb [13]. On the other hand,
Breda and Nedela [7] classified the chiral hypermaps of genus up to 4. Accord-
ing to this classification any chiral hypermap must have at least 3 hyperfaces.
Chiral hypermaps are regular oriented hypermaps that are not isomorphic with
their mirror images (see for instance [1, 6, 5, 11, 19, 23]). We say that a regular
oriented hypermap H = (G; a, b) is canonical metacyclic if the rotation one-step
about a hyperface, or about a hypervertex or about a hyperedge, generates a nor-
mal cyclic subgroup of G (the automorphism group of Q). This is equivalent to
say that a rotation one-step about a hyperface (or a hyperedge or a hypervertex)
fixes all the hyperfaces (resp. all the hyperedges or all the hypervertices). The
monodromy (or automorphism) group of a canonical metacyclic hypermap is a
metacylcic group, but the converse is not true. One feature standing out from
the classification [7] is that the chiral hypermaps with 3 and 4 hyperfaces are all
canonical metacyclic.

The classification by number of faces appears most frequently inside other clas-
sifications. In [8] it was classified the reflexible hypermaps (the regular oriented
hypermaps that are isomorphic to their mirror images) with one and two hyper-
faces. In [6] we find a classification of chiral hypermaps up to 4 hyperfaces and in
[26] a classification of the non-orientable reflexible maps with a prime number of
faces and the non-orientable reflexible hypermaps with 1, 2, 3 and 5 hyperfaces.
With 4 hyperfaces only a partial result has been established. Non-orientable re-
flexible hypermaps H are regular hypermaps on non-orientable compact surfaces
- these correspond to groups G with prescribed involutory triples of generators

1By the time we have finished writing this paper Conder released in his web-homepage a

computer-classification of all regular and chiral hypermaps up to genus 101.
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r0, r1, r2 such that the even words r0r1 and r1r2 still generate G. In this settle-
ment, hypervertices, hyperedges and hyperfaces correspond to orbits of 〈r1, r2〉,
〈r2, r0〉 and 〈r0, r1〉. If r0r1 and r1r2 generate instead a proper subgroup G+

(necessarily a normal subgroup of index 2 in G), the reflexible hypermap is ori-
entable and therefore accomplished by the reflexible regular oriented hypermap
H+ = (G+; r0r1, r1r2); in other words, both H and H+ determine the same
hypergraph cellular embedding on the same compact orientable surface.

Contrary to hypermap theory, in map theory classifying by size is the same as
classifying by the number of edges since the size of a regular oriented map with
E number of edges is 2E. This has been done extensively by Wilson [22] with a
quasi complete classification of regular oriented maps up to 100 edges, now col-
lected and better completed in the census [25]. More recently Orbanic′ [20] gave
a classification of reflexible maps up to 100 edges which are not parallel-product
decomposable. On the other hand, we can find a classification of reflexible hy-
permaps of size 2p (p prime) in [2] and a classification of non-orientable reflexible
hypermaps of size a power of 2 in [26].

In this paper we complete the classification [6] by computing the reflexible
hypermaps with 3 and 4 hyperfaces, and extend this classification to 5 hyperfaces.
A complete list of the regular oriented hypermaps (up to duality) with at most
5 hyperfaces can be seen in the Table 1.1.

Most of the definitions and notations are borrowed from [6], where we can also
find a more deep introduction to maps, hypermaps and chirality. For short, by
a reflexible hypermap we mean a reflexible regular oriented hypermap (usually
refered as regular hypermap).

# faces extra relations (〈a, b | an = 1, xtra relations〉) κ X

1 b = as (cyclic group Cn) 1 1

2 [a, b] = 1, b2 = au 1 1

2 b2 = (ab)2 = 1 (dihedral group Dn) 1 1

2 (ab)2 = 1, b2 = a
n
2 1 1

n even

3 [a, b] = 1, b3 = au 1 1

3 b3 = au, bab−1 = at n
(n,t2−1)

〈at
2−1〉

n ≥ 7, (t− 1)u = 0 mod n, t3 = 1 mod n, t 6= 1 mod n

3 [a2, b] = 1, b3 = au, (ab)2 = av 1 1
n, u, v even and 3v − 2u = 6 mod n

4 b4 = au, [a, b] = 1 1 1

4 b4 = 1, bab−1 = a−1 1 1

23



4 b4 = a
n
2 , bab−1 = a−1 1 1

n even

4 b4 = au, bab−1 = at n
(n,t2−1)

〈at
2−1〉

n ≥ 5, t4 = 1 mod n, t2 6= 1 mod n, u(t− 1) = 0 mod n

4 [a2, b2] = 1, b4 = au, (ab)2 = av, b−2ab2 = at 1 1
n, u, v even, t odd, 2(t− 1) = 0 mod n and

(2v − u− t− 3) u
2 = (2v − u− t− 3) v

2 = 0 mod n

(2v − u− t− 3) t−1
2 = 0 mod n

4 [a3, b] = 1, b3 = au, (ab)2 = av 1 1
n, u, v = 0 mod 3 and − 4u+ 6v = 12 mod n

4 [a3, b] = 1, b3 = au, (ab)3 = a3u+3v−3, (ab−1)2 = av 1 1
n, u, v = 0 mod 3 and 4u+ 6v = 12 mod n

5 [a, b] = 1, b5 = au 1 1

5 b5 = au, bab−1 = at n
(n,t2−1)

〈at
2−1〉

n ≥ 5, t5 = 1 mod n, t 6= 1 mod n, u(t− 1) = 0 mod n

5 b5 = au, (ab)2 = av, b−1ab−1 = a3−v 1 1
n, u, v even and − 2u+ 5v = 10 mod n

5 [a4, b] = 1, b4 = a4t, (ab)2 = a2t+2, b2ab−1 = at+1 5 〈[a, b]〉
n = 0 mod 4 and t = 1 mod 4

5 [a4, b] = 1, b5 = a5(t−1), b2ab−1 = at 5 〈[a, b]〉
n = 0 mod 4 and t = 1 mod 4

Table 1.1: The regular oriented hypermaps (up to duality and a chiral pair) with 1, 2, 3,

4 and 5 hyperfaces (“faces” in the table) and their chirality indices κ and chirality groups X.

Chirality index 1 means reflexible. All the information were collected from [6, 8] and this paper.

Apart from the brief introduction to the classification made in section 2 where
the necessary tools and notation are given, the rest of the paper is organised in
two sections, one dealing with reflexible hypermaps with 3 and 4 hyperfaces and
the other with reflexible and chiral hypermaps with 5 hyperfaces. The sensation
of repetition cannot be avoided at all since the relations that appear are different
in each case.

2. Preamble to the classification

In what follows, let Q = (D; a, b) be a regular oriented hypermap of type (l,m, n)
with n hyperfaces. We use the bipartite map representation of a hypermap: black
and white vertices are the hypervertices and the hyperedges respectively, while
faces are the hyperfaces. The set D is the set of darts (of the bipartite map),
that is, a pair of hyperedge-hypervertex incident flags (see Fig. 1), where a flag
is a (local) mutually incident triple hypervertex-hyperedge-hyperface (usually
represented by a little triangle). The permutation a permutes the darts around
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Figure 1

hyperfaces as local one-step counter-clockwise face-rotations, while permutation
b permutes the darts around hypervertices as local one-step counter-clockwise
vertex-rotations. The group Q generated by a and b is called the monodromy
group of Q and often denoted by Mon(Q). We have Q ∼= (Q; a, b), where a and
b “act” on Q by right multiplication (an isomorphism (D; a, b) −→ (D′; a′, b′) is
a bijective function φ : D → D′ such that aφ = φa′ and bφ = φb′). Q is reflexible
if Q is isomorphic to its mirror pair (D; a−1, b−1). All actions in this paper are
right actions.

Let r denote the number of hyperfaces about a hypervertex and s the number
of hyperfaces about a hyperedge. As observed in [6], if Q has 3 or more hyperfaces
then r, s ≥ 2 and one of the following possibilities must occur, either r ≥ 3 or
s ≥ 3. Up to a (0, 1)-duality we assume that r ≥ s. By a σ-duality we mean
the duality operation that the permutation σ ∈ S3 induces by interchanging the
role of the hypervertices (0-cells), hyperedges (1-cells) and hyperfaces (2-cells);
so (0, 1)-duality just changes hypervertices with hyperedges resulting most of the
times a new hypermap.

Let f1 be a hyperface of Q, v be a hypervertex incident to f1, e be a hyperedge
incident to both v and f1, and f2 be the hyperface incident to f1, v and e. Label
the other hyperfaces of Q as f3, f4, ... , fn. The monodromy group Mon(Q) of
a regular oriented hypermap acts regularly on the darts as well as on half of the
flags. Fix a dart’s root-flag ω (the black flag pictured below) which we identify
with the identity of Mon(Q). Acting Mon(Q) on ω, each dart will be marked
with a root-flag.

Each element γ ∈Mon(Q) induces an automorphism ϕγ of Q by sending each
dart g ∈ G to the dart γ−1g. The regularity of Q implies that each automorphism
φ of Q is of the form ϕγ for some γ ∈ G. Moreover, Aut(Q) ∼= Q and Q ∼=
(Aut(Q);ϕa , ϕb

). Since we have assigned the identity of Mon(Q) to a fixed
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root-flag of f1, the automorphism ϕ
a

is a one-step clockwise rotation about the
hyperface f1 while ϕ

b
is a one-step clockwise rotation about the hypervertex v.

The action of Aut(Q) on the hyperfaces induces a permutation of hyperfaces
πg by assigning each hyperface f of Q to fϕγ (functions are written on the right).
The automorphisms ϕ

a
and ϕ

b
induce the permutations πa and πb. Of course

the composition ϕ
a
ϕ

b
= ϕab induces the permutation πab. For convenience let

A = π−1
a and B = π−1

b . By the way f1, v and e were chosen, the first cycles
of B and AB (that is, the cycles containing 1 = f1) are (123...) and (12...)
respectively. The length of the first cycles of B and AB are r and s respectively.
These two permutations must generate a transitive group on {1, 2, 3, .., n}. Hence
the Schreier like diagram2 induced by B and AB, the B − AB diagram, must
be connected. A relabelling of f3, f4 , ... , fn produces a new permutation
pair (B′, A′B′) which we call a relabelling pair. Relabelling pairs correspond to
conjugation pairs (Bg, (AB)g) by a permutation g ∈ Sn centralising B and such
that (AB)g sends 1 to 2. Let P be the group generated by A and B, and let
P be the regular oriented hypermap (P ;A−1, B−1). The permutations A−1 and
B−1 when acting on the right (by right multiplication) give the generators of the
monodromy group of P while when acting on the left (by left multiplication) give
the generators of the automorphism group of P. Since (Aut(Q);ϕa, ϕb) covers
(P ;πa, πb) = (P ;A−1, B−1) then the function a 7→ A−1 and b 7→ B−1 gives rise
to a covering from Q to P. If (P ;A−1, B−1) is not isomorphic to (P ;A,B) then
these two hypermaps form a chiral pair. The classification is done up to a chiral
pair.

3. Regular oriented hypermaps with 3 and 4 hyperfaces

In this section we complete the classification [6] by analysing the cases that lead to
reflexible hypermaps. In Table 3.1 we reprint the list of all possible enumerations
of the hyperfaces (through the permutations B, AB and A) of a generic regular
hypermap with 3 and 4 hyperfaces, up to a duality and a relabelling of hyperfaces.
These permutations determine a regular oriented hypermap P = (P ;A,B) and
in this table we also display the associated H-sequence of P, that is, a sequence
[l,m, n, V,E, F, |P |] formed by the type (l;m;n), the number of hypervertices V ,
the number of hyperedges E, the number of hyperfaces F and the order |P | of
the group generated by A and B.

2The diagram whose vertices are 1,...,n, and whose edges reflects the action of A and AB

on 1,...,n.
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#hyperfaces Case B AB A [ l m n V E F |P | ]
3 I (1, 2, 3) (1, 2) (2, 3) [ 3 2 2 2 3 3 6 ]
3 II X (1, 2, 3) (1, 2, 3) () [ 3 3 1 1 1 3 3 ]

4 III (1, 2, 3) (1, 2)(3, 4) (2, 3, 4) [ 3 2 3 4 6 4 12 ]
4 IV (1, 2, 3) (1, 2, 4) (2, 4, 3) [ 3 3 3 4 4 4 12 ]
4 V (1, 2, 3, 4) (1, 2)(3, 4) (2, 4) [ 4 2 2 2 4 4 8 ]
4 VI X (1, 2, 3, 4) (1, 2, 3, 4) () [ 4 4 1 1 1 4 4 ]

Table 3.1: List of all possible enumerations of the 3 and 4 hyperfaces.

Cases II and VI give rise mostly to chiral hypermaps. The chiral ones where
classified in [6] so here we classify only the reflexible hypermaps.

Case I. In this case we have an = 1, b3 = au, (ab)2 = av and b−1ab−1 = at,
for some n even and u, v, t ∈ {0, . . . , n − 1}. Let G be the group generated
by a, b subject to these relations and let K be the subgroup generated by a.
This has index three in G and so G is partitioned into 3 cosets K, Kb and
Kb2. From the relations we deduce that Kbai = Kb or Kb2, according as i
is even or odd. Since Kbau = Kbav = Kb and Kbat = Kb2 we find that u
and v are even and t is odd. From the second and third relations we derive
b−1a2b = ba2b−1 = av+t−1 which shows that a2 commutes with b2, and thus a2

also commutes with b. Hence v + t − 1 = 2 mod n ⇔ t = 3 − v mod n. Then
a3−v = b−1ab−1 = b2ab2a−2u = bav−1ba−2u = av−2baba−2u = a2v−3−2u which
gives 3v−2u−6 = 0 mod n. The last relation can then be replaced by [a2, b] = 1
and we have

G = 〈a, b|an = 1, b3 = au, (ab)2 = av, [a2, b] = 1〉 ,

where n, u and v are even and 3v − 2u − 6 = 0 mod n. We now show that
these congruencies are enough to describe a group of order 3n. As G is indexed
by 3 even numbers, n, u and v, we rewrite G as GI

(n,u,v). Consider the parti-

cular case (n, u, v) = (n, 0, 2), which satisfies the congruency 3v − 2u − 6 = 0
mod n. Let now G be GI

(n,0,2) = 〈a, b|an = 1, b3 = 1, (ab)2 = a2, [a2, b] = 1〉.
Changing generators α = a, β = ba−v+u+2, where u, v are even integers satisfy-
ing 3v − 2u − 6 = 0 mod n, we get GI

(n,u,v). Hence GI
(n,u,v) has 3n elements if

and only if G has 3n elements. Consider the normal subgroup H of index 2 of
G generated by b and a2. The set T = {1, a} is a transversal for H in G. By
the Reidmaster-Schreier Rewriting Process, H is freely generated by A = a2 and
B = b subject to the relations A

n
2 = 1, B3 = A

u
2 and [A,B] = 1 ⇔ BA = A.

Hence H is an abelian metacyclic group of order 3n2 . Thus |G| = 2|H| = 3n and

so |GI
(n,u,v)| = 3n.

Case II gives a metacyclic group GII
n,u,t = 〈a, b | an = 1, b3 = au, ab = at〉 with

u(t−1) = 0 mod n and t3 = 1 mod n, and in [6] it was shown that this induces
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a reflexible hypermap HII
(n,u) = (GII

n,u,1; a, b) when t = 1 mod n. These two cases

show,

Theorem 1. Any reflexible hypermap with 3 hyperfaces is, up to a duality,
isomorphic to HI

(n,u,v) = (GI
n; a, bau−v+2) for some n, u and v even such that

3v − 2u = 6 mod n, where GI
n is the group with presentation 〈a, b|an = 1, b3 =

1, (ab)2 = a2, [a2, b] = 1〉, or to HII
(n,u) = (GII

n,u,1; a, b) for some n and u, where

GII
n,u,1 is the abelian metacyclic group (cyclic C3n or a direct product Cn × C3)

with presentation 〈a, b | an = 1, b3 = au, ab = a〉.

The H-sequences of HI
(n,u,v) and HII

(n,u) are respectively

[ 3n
(n,u) ,

2n
(n,v) , n; (n, u), 3

2 (n, v), 3; 3n] and [ 3n
(n,u) ,

3n
(n,u+3) , n; (n, u), (n, u+ 3), 3; 3n].

Case III. In this case an = 1, b3 = au, (ab)2 = av and b−1a2b−1 = at, for some
n = 0 mod 3 and u, v, t ∈ {0, . . . , n − 1}. As bab−2 and b2a2b−1 are elements
of K = 〈a〉, any coset-word Kw can be reduced to one of 4 cosets, K, Kb, Kb2

and Kb2a. This means that the oriented monodromy group G of the hypermap
corresponding to this case has presentation

〈a, b | an = 1, b3 = au, (ab)2 = av, b−1a2b−1 = at〉

for some n = 0 mod 3, u, v, t ∈ {0, . . . , n− 1}. Since b−1a3b = ba3b−1 = av+t−1

then b2 commutes with a3 and since b3 ∈ Z(G), b commutes with a3. From
Kba = Kb2 and Kba3 = Kb one has Kbai = Kb, Kb2 or Kba2 according as
i = 0, 1 or 2 mod 3. Since Kbau = Kbav = Kb and Kbat = kb2 we get u = 0
mod 3, v = 0 mod 3 and t = 1 mod 3. Using the relation [a3, b] = 1 we deduce
b−1a2b−1 = b−1a−1b−1a3 = a4−v, that is, the relation 4 can be replaced by

[a3, b] = 1. From ba
−1b = b−1aba−1b = b−2av−2b = av−3b−2ab = av−u−3bab =

a2v−u−4 we deduce that au = a6v−3u−12. Thus

G = GIII
(n,u,v) = 〈a, b | an = 1, b3 = au, (ab)2 = av, [a3, b] = 1〉

with n, u, v = 0 mod 3 and 4u− 6v+ 12 = 0 mod n. To show that under these
conditions G(n,u,v) has exactly 4n elements take the normal subgroup H = 〈a3〉
which factors G onto A4. Using the Schreier transversal T = {1, a, a−1, b, b−1, ab,
ba, a−1b, ba−1, b−1a, ab−1, ab−1a} of H in G in the Reidmaster-Schreier Rewriting
Process we get

H = 〈x | xn
3 = 1, x

4u−6v+12
3 = 1〉 .

Since 4u−6v+12
3 = 0 mod n

3 , H is a cyclic group of order n
3 and thus G has

order 4n. Denote by HIII
(n,u,v) the family of reflexible regular oriented hypermaps

(GIII
(n,u,v); a, b), where n, u, v = 0 mod 3, 6v− 4u = 12 mod n and a, b generate

the group GIII
(n,u,v) subject to the relations of the above presentation.
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Case IV. In this case we have an = 1 and b−3, (ab−1)2, ba2b ∈ K = 〈a〉. Thus
this is just the ψ-dual of Case III where ψ is the automorphism of the free
group ∆+ = F (a, b) determined by a 7→ a, b 7→ b−1. Denote by HIV

(n,u,v) =

Dψ(HIII
(n,u,v)) = (GIII

(n,u,v); a, b
−1), where a, b generates GIII

(n,u,v) subject to the

relations that defines this group.

Case V. Here an = 1, b4 = au, (ab)2 = av, b−2ab2 = at and b−1ab−1 = aw

for some even n and u, v, t, w ∈ {0, . . . , n − 1}. As before we let K = 〈a〉.
As Kba = Kb−1, Kb2a = Kb2 and Kb−1a = Kb, the index of K in G is
at most four, namely G/rH = {K,Kb,Kb2,Kb−1}. Moreover Kbai = Kb or
Kb−1, according as i is even or odd. Thus Kbau = Kbav = Kb and Kbaw =
Kb−1 implies that w is odd and u, v are even. From the third and the last
equations we get b−1a2b = av+w−1 = ba2b−1, thus a2 
 b2. Then b−1ab−1 =
b−2av−1b−2 = avb−2a−1b−2 = av−ub−2a−1b2 = av−u−t and so the last equation
is equivalent to [a2, b2] = 1. As w = v − u − t mod n, t is odd. Moreover
a2 = b−2a2b2 = a2t, thus 2(t− 1) = 0 mod n. Now au and av are in the centre
of G and as b−1at−1b = b−3ab2a−1b = a−ubab2a−1b = a−u+v−1ba−1b = at−1,
at−1 is also in the centre of G. From the equality b−1a2b = a2v−u−t−1 we deduce
that au = b−1aub = a(2v−u−t−1) u

2 , av = b−1avb = a(2v−u−t−1) v
2 and at−1 =

b−1at−1b = a(2v−u−t−1) t−1
2 . The hypermaps in this case have monodromy group

GV
(n,u,v,t) ≡ G = 〈a, b|an = 1, b4 = au, (ab)2 = av, b−2ab2 = at, [a2, b2] = 1〉 ,

where n, u, v are even, t is odd, 2(t − 1) = 0 mod n and (2v − u − t − 3)u2 =

(2v−u−t−3)v2 = (2v−u−t−3) t−1
2 = 0 mod n. For any value of these parameters

we always get a group of order 4n. In fact, the normal closure H = 〈a2, b2〉 in
G factors G onto C2 × C2. Considering the Schreier transversal T = {1, a, b, ab}
for H in G and applying the Reidmaster-Schreier Rewriting Process we get H =
〈A,B | An

2 = 1, B2 = A
u
2 , [A,B] = 1〉, which is an abelian metacyclic group of

order n
2 2 = n. Consequently G has order |G| = 4n.

Let HV
(n,u,v,t) denote the reflexible hypermap (GV

(n,u,v,t); a, b) where a, b gen-

erate GV
(n,u,v,t) subject to the above relations.

Recalling [6], case VI gives rise to a metacyclic group GVI
n,u,t = 〈a, b | an =

1, b4 = au, bab−1 = at〉 with t4 = 1 mod n, and u(t − 1) = 0 mod n. This
induces a reflexible hypermap HVI

(n,u,t) = (GVI
n,u,t; a, b) only when t2 = 1 mod n.

This leads to two families of reflexible hypermaps, HVIa
(n,u) = HVI

(n,u,1) and HVIb
(n,u) =

HVI
(n,u,−1), the first of which all its members are abelian while in the second (where

2u = 0 mod n) its members are abelian only when n ≤ 2. This proves,

Theorem 2. Any reflexible hypermap with 4 hyperfaces is, up to a duality, iso-
morphic to HIII

(n,u,v), or HIV
(n,u,v), for some n, u, v = 0 mod 3 and 6v − 4u = 12

mod n, or HV
(n,u,v,t) for some n, u, v even, t odd, t = 1 mod n

2 and (2v − u −
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t − 3)u2 = (2v − u − t − 3)v2 = (2v − u − t − 3) t−1
2 = 0 mod n, or the abelian

HVIa
(n,u) for some n and u, or HVIb

(n,u) for some n and u such that 2u = 0 mod n.

The H-sequences of these hypermaps are displayed in the following table

HIII
(n,u,v) : [ 3n

(n,u) ,
2n

(n,v) , n ; 4
3 (n, u), 2(n, v), 4 ; 4n]

HIV
(n,u,v) : [ 3n

(n,u) ,
n

(n,v−u−1) , n ; 4
3 (n, u), 4(n, v − u− 1), 4 ; 4n]

HV
(n,u,v,t) : [ 4n

(n,u) ,
2n

(n,v) , n ; (n, u), 2(n, v), 4 ; 4n]

HVIa
(n,u) : [ 4n

(n,u) ,
4n

(n,u+4) , n ; (n, u), (n, u+ 4), 4 ; 4n]

HVIb
(n,0) : [4, 4, n ; n, n, 4 ; 4n]

HVIb
(n,n2 ) : [8, 8, n ; n

2 ,
n
2 , 4 ; 4n] (n even)

4. Regular oriented hypermaps with five hyperfaces

The number of hyperfaces fixed by a rotation (as an automorphism) about a
hyperface must divide 5 ([26], Corollary 13) and so it must be 1 or 4. This means
that the permutation A has support {2, 3, 4, 5} or is the identity. Not counting
relabelling pairs, and having into account the form of A, we easily find 21 possible
pairs (B,AB) determining a connected B − AB diagram and such that r ≥ s
(Table 4.1), each pair defining a hypermap P.

# B AB A [ l m n V E F |P | ]
1 (1, 2, 3) (1, 2)(3, 4, 5) (2, 3, 4, 5) [ 3 6 4 40 20 30 120 ]
2 (1, 2, 3) (1, 2, 4)(3, 5) (2, 4, 3, 5) [ 3 6 4 40 20 30 120 ]
3 (1, 2, 3)(4, 5) (1, 2)(3, 4) (2, 3, 5, 4) [ 6 2 4 20 60 30 120 ]
4 (1, 2, 3)(4, 5) (1, 2, 4) (2, 5, 4, 3) [ 6 3 4 20 40 30 120 ]
5 (1, 2, 3)(4, 5) (1, 2, 4)(3, 5) (2, 5)(3, 4) [ 6 6 2 20 20 60 120 ]
6 (1, 2, 3, 4) (1, 2)(3, 5) (2, 4, 3, 5) [ 4 2 4 5 10 5 20 ]
7 (1, 2, 3, 4) (1, 2)(4, 5) (2, 4, 5, 3) [ 4 2 4 5 10 5 20 ]
8 (1, 2, 3, 4) (1, 2)(3, 5, 4) (2, 4)(3, 5) [ 4 6 2 30 20 60 120 ]
9 (1, 2, 3, 4) (1, 2, 5) (2, 5, 4, 3) [ 4 3 4 30 40 30 120 ]
10 (1, 2, 3, 4) (1, 2, 4, 5) (2, 3)(4, 5) [ 4 4 2 5 5 10 20 ]
11 (1, 2, 3, 4) (1, 2, 5, 3) (2, 5)(3, 4) [ 4 4 2 5 5 10 20 ]
12 (1, 2, 3, 4, 5) (1, 2) (2, 5, 4, 3) [ 5 2 4 24 60 30 120 ]
13 (1, 2, 3, 4, 5) (1, 2)(3, 5) (2, 5)(3, 4) [ 5 2 2 2 5 5 10 ]
14 (1, 2, 3, 4, 5) (1, 2)(3, 5, 4) (2, 5, 3, 4) [ 5 6 4 24 20 30 120 ]
15 (1, 2, 3, 4, 5) (1, 2, 4) (2, 3)(4, 5) [ 5 3 2 12 20 30 60 ]
16 (1, 2, 3, 4, 5) (1, 2, 4)(3, 5) (2, 3, 4, 5) [ 5 6 4 24 20 30 120 ]
17 (1, 2, 3, 4, 5) (1, 2, 4, 3) (2, 3, 5, 4) [ 5 4 4 4 5 5 20 ]
18 (1, 2, 3, 4, 5) (1, 2, 5, 3) (2, 4, 3, 5) [ 5 4 4 24 30 30 120 ]
19 (1, 2, 3, 4, 5) (1, 2, 5, 4) (2, 4, 5, 3) [ 5 4 4 4 5 5 20 ]
20 (1, 2, 3, 4, 5) (1, 2, 3, 4, 5) () [ 5 5 1 1 1 5 5 ]
21 (1, 2, 3, 4, 5) (1, 2, 5, 4, 3) (2, 4)(3, 5) [ 5 5 2 12 12 30 60 ]

Table 4.1: The 21 cases and the corresponding H-sequences of P.

One observes from this table that most of the hypermaps P have more than 5
hyperfaces, a situation that cannot occur. This eliminate most of the items in
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the above table, leaving only 6 possible cases behind, namely the cases 6, 7, 13,
17, 19 and 20.

Looking at the action of 〈B,AB〉 on the hyperfaces {1, 2, 3, 4, 5} and taking
into account the regularity of Q, the following word relations are common to all
cases and are therefore omitted in Table 4.2:

an = 1 , where n = 0 mod |A| ;

br = au , for some u ∈ {0, . . . , n− 1} ;

(ab)s = av , for some v ∈ {0, . . . , n− 1} .
For each case we derive extra word relations (shown in Table 2). The letters u,
v, x, y, z, w, t appearing in these relations are integers in {0, ..., n− 1}.

# B AB A Extra relations for Mon(Q)

6 (1,2,3,4) (1,2)(3,5) (2,4,3,5) b2ab−1 = aw, b−1aba−1b = at, b−1a2b2 = az

7 (1,2,3,4) (1,2)(4,5) (2,4,5,3) b−1ab2 = aw, ba−1bab−1 = at, b2a2b−1 = az

13 (1,2,3,4,5) (1,2)(3,5) (2,5)(3,4) b−1ab−1 = az, b−2ab−2 = ax, b2ab2 = ay

17 (1,2,3,4,5) (1,2,4,3) (2,3,5,4) b−1ab−2 = ax, b−2ab = ay, bab2 = az, b2ab−1 = at

19 (1,2,3,4,5) (1,2,5,4) (2,4,5,3) b−2ab−1 = ax, bab−2 = ay, b2ab = az, b−1ab2 = at

20 (1,2,3,4,5) (1,2,3,4,5) 1 bab−1 = at, b2ab−2 = ax, b−1ab = ay, b−2ab2 = az

Table 4.2: The 6 cases with their extra relations.

Before we start with the classification we remark that four of these six reg-

ular oriented hypermaps form two chiral pairs. Denote by P i

the regular ori-

ented hypermap corresponding to item i in table 4.1. In item 6 we have P6

=

(P
6

;A−1, B−1) where B−1 = (1, 4, 3, 2) and A−1 = (2, 5, 3, 4). Relabelling the
hyperfaces according to the permutation (2, 4), we get B−1 = (1, 2, 3, 4), A−1 =

(2, 4, 5, 3), which are the permutations B and A in line 7, and P6

= (P
6

;A,B)

where A = (2, 4, 5, 3) and B = (1, 2, 3, 4) (line 7). This shows that P
6

= P
7

. Its
chiral pair is

chiral(P
6

) = (P
6

;A−1, B−1) = (P
7

;A−1, B−1) = P
7

.

It is not difficult to see that P6

is the toroidal chiral map {4, 4}2,1. Similarly P17

and P19

form a chiral pair. The hypermaps P13

and P20

are easily seen to be
reflexible.

4.1. The Reflexible hypermaps with five hyperfaces. In this section we
analyse the reflexible oriented hypermaps with 5 hyperfaces that appear in the
cases 13 and 20. Only two families of reflexible hypermaps will arise and they
are exhibited in Theorem 3. In the next section we will see that the remaining
cases will give rise to chiral hypermaps.

Theorem 3. If H is a reflexible hypermap with 5 hyperfaces (of valency n > 0)

then, up to a (0, 1)-duality and an isomorphism, H is either H13

n,u,v = (G
13

n ; a, bau−2v+4)
for some non-negative even numbers n, u, v (with u, v < n) such that 2u− 5v +
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10 = 0 mod n, or H20

n,u = (G
20

n,u; a, b) for some non-negative numbers n and u.

Here G
13

n is the metacyclic group 〈a, b | an = b5 = 1, a−1ba = b−1〉 and G
20

n,u

is the abelian metacyclic group 〈a, b|an = 1, b5 = au, bab−1 = a〉, either a cyclic
group C5n or a direct product Cn × C5.

The H-sequences of H13
(n,u,v) and H20

(n,u) are, respectively,

[ 5n
(n,u)

, 2n
(n,v)

, n ; (n, u), 5
2
(n, v), 5 ; 5n] and [ 5n

(n,u)
, 2n
(n,u+5)

, n ; (n, u), (n, u+ 5), 5 ; 5n] .

Proof. The hypermap H13

n,u,v arises from case 13 while H20

n,u arises from case 20.
Actually this case gives rise to two families of regular oriented hypermaps with

5 hyperfaces (of valency n), one reflexible H20

n,u and the other chiral Q20

n,u,t. We
will skip the chiral part here and deal with it later in Theorem 4.

Case 13: Let G be the group with presentation

〈a, b | an = 1, b5 = au, (ab)2 = av, b−1ab−1 = az, b−2ab−2 = ax, b2ab2 = ay〉 ,

where u, v, z, x, y ∈ {0, ..., n − 1} and n = 0 mod 2. The monodromy group of
Q is then a factor of G. Let K be the subgroup generated by a. One can see
that K divides G into (no more than five) cosets K, Kb, Kb2, Kb3 and Kb4, not
necessarily distinct.

Clearly the elements b5 and (ab)2 = (ba)2 are central in G. From the 3rd
and 4th relations we get av−1az = azav−1 ⇔ ba2b−1 = b−1a2b ⇔ b2a2 = a2b2,
that is, a2 � b2. Moreover, from the 2nd relation we get b = axb−4, and so,
ba2 = axb−4a2 = axa2b−4 = a2axb−4 = a2b, which says that b � a2. On the
other hand, Kba = Kb−1 = Kb4 (3th relation) andKba2 = Kb. ThusKbai = Kb
or Kb4, according as i = 0 or 1 mod 2. Now, 4th and 2nd relations imply that
Kbaz = Kb−1 = Kb4, hence z = 1 mod 2. The 5th relation is redundant, in
fact, b−2ab−2 = b−1(b−1ab−1)b−1 = b−1azb−1 = b−1az−1ab−1 = az−1b−1ab−1 =
a2z−1. Also, Kb4a = Kb−1a = Kb (from 4th and 2nd relations), hence Kb4ai =
Kb4 or Kb, according as i = 0 mod 2 or i = 1 mod 2, respectively. Then the 3rd
and 2nd relations imply that Kb4av−1 = Kb−1av−1 = Kb, and so v = 0 mod 2.
But then the 6th relation is also redundant, b2ab2 = b(bab)b = av−2bab = a2v−3.

Looking back at cosets, we also have Kb2a = Kb−2 = Kb3 (6th relation),
therefore Kb2ai = Kb2 or Kb3, according as i = 0 or 1 mod 2, and Kb3a =
Kb−2a = Kb2 which gives Kb3ai = Kb3 or Kb2, according as i = 0 or 1 mod 2.
Hence, the above relations are enough to reduce any word Kw,w ∈ F (a, b), to
one of the cosets, K,Kb,Kb2,Kb3 or Kb4. Thus |G| ≤ 5|K| = 5n.

Now u = 0 mod 2 since Kb4au = Kb−1au = Kb4 (2nd relation). From
av−1+z = ba2b−1 = a2 we get av+z = a3 ⇔ az = a3−v. For any integer
i ≥ 0, biabi = ai(v−2)+1. Then a3−v = b−1ab−1 = a−ub4ab4a−u = a−2ua4v−7 ⇔
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a2u−5v+10 = 1, hence 2u− 5v + 10 = 0 mod n. Then

G = G
13

n,u,v = 〈a, b | an = 1, b5 = au, (ab)2 = av, b−1ab−1 = a3−v〉

with n, u, v even and 2u− 5v + 10 = 0 mod n.
The subgroup F = 〈a2〉 is normal in G and G/F = P = 〈A = Fa,B = Fb〉 =

〈A,B | A2 = B5 = (AB)2 = 1〉 = D5; this corresponds to the insertion of the
relation a2 = 1 in the above presentation. The epimorphism G −→ D5, mapping

a to A and b to B, induces a covering from H = H13

n,u,v = (G; a, b) to the spherical
reflexible map D5 with two vertices, 5 faces and automorphism group D5. This
shows that H has at least 5 faces.

The group G
13

n,0,2 = Gn with presentation

〈a, b | an = b5 = 1, (ab)2 = a2, b−1ab−1 = a〉 = 〈a, b | an = b5 = 1, a−1ba = b−1〉

is clearly a metacyclic group. By changing generators A = a, B = ba−2v+u+4 for
u and v even such that 2u − 5v + 10 = 0 mod n, and having into account that

a2 belongs to the center of G
13

n,0,2, we get the presentation

〈A,B | An = 1, B5 = Au, (AB)2 = Av, B−1AB−1 = A3−v〉

of Gn,u,v. Hence for all u, v even such that 2u−5v+10 = 0 mod n, G
13

n,u,v = Gn
is metacyclic of order 5n. 3

Case 20: Let G be the group generated by a and b given by the case 20.
As in the above case, the group Q (the monodromy group of Q) is a factor
group of G. In this case K = 〈a〉 � G since A = 1, and since G/K = 〈Kb〉
is also cyclic, G is metacyclic. Hence G = 〈a, b|an = 1, b5 = au, bab−1 = at〉,
for some u, t such that (t − 1)u = 0 mod n and t5 = 1 mod n. Theorem 8
of [6] says that Q′ = (G; a, b) is reflexible if and only if t2 = 1 mod n. As
t5 = 1 mod n then t2 = 1 mod n ⇔ t = 1 mod n ⇔ bab−1 = a, that is,

G is abelian. Let G
20

n,u := G = 〈a, b|an = 1, b5 = au, bab−1 = a〉 (the reflexible

case) and Q
20

n,u,t = 〈a, b|an = 1, b5 = au, bab−1 = at〉, where (t−1)u = 0 mod n,

t5 = 1 mod n and t 6= 1 mod n (the chiral case). Both H20

n,u = (G
20

n,u; a, b) and

Q20

n,u,t = (Q
20

n,u,t; a, b) have 5 hyperfaces of valency n (since a has order n and 〈a〉
has index 5 in G). Hence Q = Q′, that is, Q ∼= H

20

n,u or Q20

n,u,t.3

The other cases are easily seen to give chiral hypermaps. The proof of Theorem
3 is finished. �

4.2. The Chiral hypermaps with five hyperfaces. Each one of the remain-
ing cases 6, 7, 17 and 19 will give rise to families of chiral hypermaps.

33



Theorem 4. If Q is a chiral hypermap with 5 hyperfaces (of valency n) then,
up to a (0,1)-duality, mirror-symmetry and an isomorphism, Q is either the

canonical metacyclic hypermap Q20

n,u,t = (G
20

n,u,t; a, b) for some n, u, t such that

(t − 1)u = 0 mod n, t5 = 1 mod n and t 6= 1 mod n, or Q is Q6

n,t =

(Gn; a, bat−1), or Q17

n,t = (Gn; a−1, ba−t), for some n = 0 mod 4 and t = 1

mod 4. Here Q
20

n,u,t = 〈a, b|an = 1, b5 = au, bab−1 = at〉 and Gn = 〈a, b | an =

1, b4 = a4, (ab)2 = a4, a2b = b2a〉.

The chirality groups and indices of these hypermaps, shown in the table below,
are the last two entries of the H-sequences. In what follows γ = t4 + t3 + t2 + t+
1 + u.

Q : [type ; V,E, F ; |Mon(Q)| ; X(Q) ; κ]

Q20

n,u,t :
[

5n
(n,u) ,

5n
(n,γ) , n ; (n, u), (n, γ), 5 ; 5n ; 〈at2−1〉 ; n

(n,t2−1)

]
Q6

n,t :

[
n

(n4 , t)
,

n(
n
2 , t+ 1)

) , n ; 5(
n

4
, t), 5

(n
2
, t+ 1

)
, 5 ; 5n ; 〈[a, b]〉 ; 5

]

Q17

n,t :

[
5n

(n, 5(t− 1))
,

n(
n
4 , t
) , n ; (n, 5(t− 1)), 5

(n
4
, t
)
, 5 ; 5n ; 〈[b, a−1]〉 ; 5

]

Proof. Before we go any further, let us go back to the case 20 where, as we have
observed earlier, there is a family of canonical metacyclic chiral hypermaps.

Case 20: As seen in the proof of Theorem 3 (case 20), the group generated by
a and b corresponding to this case is the metacyclic group Q = 〈a, b|an = 1, b5 =
au, bab−1 = at〉, where (t − 1)u = 0 mod n and t5 = 1 mod n. The oriented
hypermap Q = (Q; a, b) is chiral if and only if t 6= 1 mod n, that is, Q is not

abelian. By Corollary 9 of [6] the chirality group of Q20

n,u,t = (Q
20

n,u,t; a, b), where

Q
20

n,u,t = Q with t 6= 1 mod n, is cyclic, given by X(Q20

n,u,t) = 〈at2−1〉, while its
chirality index is given by n

(n,t2−1) . 3

For the remaining cases 6, 7, 17 and 19 we observe that the cases 7 and 19
correspond to chiral pairs of 6 and 17 respectively. To avoid too much repetition
let us fix G to be the group with presentation 〈a, b|an = 1, br = au, (ab)s =
av,R = 1〉, where n = 0 mod |A| and R is the corresponding set of extra relators
given in Table 4.2 (the monodromy group of Q will be a factor group of G) and
K the subgroup of G generated by a.
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Case 6: an = 1, b4 = au, (ab)2 = av, b2ab−1 = aw, b−1aba−1b = at, b−1a2b2 =
az, for some u, v, w, t, z ∈ {0, ..., n − 1}, with n = 0 mod 4. One may check
that K divides G into at most 5 cosets, namely K, Kb, Kb2, Kb3 and Kba2,
hence |G| ≤ 5n. As (ab)2 ∈ Z(G) then (ba)2 = (ab)2 ∈ Z(G). Now, relation
3 implies that Kba = Kb−1 = Kb3; relation 4 implies that Kb2a = Kb; and
relation 5 implies that Kb−1ab = Kb−1a. Then Kba3 = Kb−1a2 = Kb−1aba =
Kb−2(ba)2 = K(ba)2b−2 = Kb−2 = Kb2 and Kba4 = Kb2a = Kb, thus Kbai =
Kb,Kb3,Kba2 or Kb2, according as i = 0, 1, 2, 3 mod 4, respectively. The 6th
relation was not used, it must be redundant; in fact, Kb−1a2b2 = K is equivalent
to Kb4 = K.

Since Kb2a = Kb then Kb2ai = Kbai−1. As Kb3 = Kb−1 = Kb−2aw =
Kb2aw = Kbaw−1 and Kbat = Kba−1b = Kb2b = Kb−1 we have w = 2 mod 4
and t = 1 mod 4. Since b4, (ab)2 ∈ Z(G), powering both sides of the fifth
relation by 4 we get au = a4t, squaring both sides of the fourth relation we get
av = a2w and combining the fifth and sixth relations we get az = a2w−t. We
have just reduced the six parameters n,w, t, u, v, z to three parameters n, w and
t,

G = 〈a, b|an = 1, b4 = a4t, (ab)2 = a2w, b2ab−1 = aw, b−1aba−1b = at〉 .
A further reduction can be done. The equalities ba4b−1 = (bab)(b−1a2b2)b−4(b2ab−1) =
a5w−5t−1 and b−1a4b = b−1a2b2b−4b2ab−1bab = a5w−5t−1 implies that a4 com-
mutes with b2. Then b−1at−1b = b−1a−1b−1aba−1bb = a−2w+2ba−1b−2a4t =
a−3w+4t+2 and baw−2b−1 = bb2ab−1a−2b−1 = b3abb−2a−2bb−2 = b3abat−2wb−2 =
b2a2w−1at−2wb−2 = at−1. Thus baw−2 = at−1b = ba−3w+4t+2, that is, a−4w+4t+4 =
1. On the other hand, b−1a2b2 = a2w−t ⇔ b−1a−2b2 = a2w−t−4 ⇒ (bab)b−1a−2b2 =
a4w−t−5 ⇔ ba−1b−2 = a4w−5t−5 ⇔ a−w = a4w−5t−5 ⇔ a5w−5t−5 = 1. Com-
bining these two relations we get aw = at+1. Now replacing aw above we get
ba4b−1 = b−1a4b = a4. Hence a4 is central in G and

G = G
6

n,t = 〈a, b|an = 1, b4 = a4t, (ab)2 = a2t+2, b2ab−1 = at+1, b−1aba−1b = at〉 ,
where n = 0 mod 4 and t = 1 mod 4.

Consider the particular case of n = 4 and t = 1:

G4,1 = 〈α, β|α4 = 1, β4 = 1, (αβ)2 = 1, β2αβ−1 = α2, β−1αβα−1β = α〉.
Last equation of this particular case is redundant,

α−1β−1αβα−1β = βα2βα−1β = β(β2αβ−1)βα−1β = β4 = 1 .

So the above presentation simplifies to

G4,1 = 〈α, β|α4 = 1, β4 = 1, (αβ)2 = 1, β2αβ−1 = α2〉

and reveals the monodromy group of the toroidal hypermap {4, 4}2,1 = P6

, with
5 hyperfaces, 5 hypervertices, 10 hyperedges, 20 darts and chirality index 5, see
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[1]. As n = 0 mod 4 and t = 1 mod 4 the function a → α, b → β extends
to an epimorphism Gn,t → G4,1. Consequently, all oriented hypermaps Qn,t =
(Gn,t, a, b) are coverings of {4, 4}2,1 and thus they all have five hyperfaces. On
the other hand, adjoining the relation b = at to the relations of Gn,t we get
Cn = 〈a | an = 1〉 and an epimorphism Gn,t −→ Cn, a 7→ a and b 7→ at. This
shows that a in Gn,t has order n and hence |Gn,t| = 5n. Thus Mon(Q) = Gn,t.

The chirality group ofQ is the normal closureX(Q) = 〈b−2a−1bat+1, ba−1b−1ab−1at〉G
whereG = Gn,t. Now b−2a−1bat+1 = b−1a−1ba = [b, a] and [b, a] = (b−1a−1)ba =
aba−2t−2ba = ab2aa−2t−2 = a(b2ab−1)ba−2t−2 = aat+1ba−2t−2 = a−tb. On the
other hand, ba−1b−1ab−1at = (b−3a4t)a−1b−1ab−1(b−1aba−1b) =
b−2(b−1a−1b−1)a(b−2a4t)aba−1b = b−2a−2t(b2ab−1)b2a−1b = b−2a−2tat+1b2a−1b =
b−2a−t+1b2a−1b = a−tb. Hence X(Q) = 〈[b, a]〉G. Let X = [b, a]. Table below
shows the conjugates Xd for d ∈ {a, a2, a3, a4, b, b2, b3, b4},

d a a2 a3 a4 b b2 b3 b4

Xd Y X−1 Y −1 X Y X−1 Y −1 X

where Y = [b, a−1]. From the 4th relation we derive [b−1, a−1] = b−1at (thus
[a−1, b−1] = a−tb = [b, a] = X) and from the 5th relation we deduce Y =
[b, a−1] = atb−1. Then X2 = [a−1, b−1][b, a] = aba−1b−2a−1ba = ba−1b−2ba =
[b−1, a]. But X2 = [b, a][a−1, b−1] = a−t(bab)a−1b−1 = avb−1 = [b, a−1], hence
[b−1, a] = [b, a−1], or equivalently, [a, b−1] = [a−1, b]. Thus Y = [b, a−1] =
[b, a]2 = X2 and hence Q has cyclic chirality group generated by [a, b]. Since
[b, a]3 = [a, b]2, Q has chirality index k = 5. 3

Case 17: G = 〈a, b|an = 1, b5 = au, (ab)4 = av, b−1ab−2 = ax, b−2ab =
ay, bab2 = az, b2ab−1 = at〉 for some u, v, x, y, z, t ∈ {0, ..., n − 1}, with n = 0
mod 4. The cosets K, Kb, Kb2, Kb3 = Kb−2 and Kb4 = Kb−1 is a complete set
of right cosets. As Kba = Kb−2, Kba2 = Kb−2a = Kb−1, Kba3 = Kb−1a = Kb2

and Kba4 = Kb2a = Kb then Kbai = Kb,Kb−2,Kb−1 or Kb2, according as
i = 0, 1, 2, 3 mod 4. Since Kb−2 = Kbax, Kb = Kb2ay = Kba3+y, Kb2 =
Kb−1az = Kbaz+2 and Kb−1 = Kb−2at = Kbat+1 we conclude that x, y, z, t = 1
mod 4.

Now b5 and (ab)4 ∈ Z(G). Since A4 = 1 the subgroup generated by a4 is
normal in G. The two equalities ba4b−1 = bab2b−2abb−1ab−2b2ab−1 = ax+y+z+t

and b−1a4b = b−1ab−2b2ab−1bab2b−2ab = ax+y+z+t shows that a4 commutes with
b2. Since a4 commutes with b5 then also a4 commutes with b = b5b−4 and so
a4 ∈ Z(G).

Equation b2ab−1 = at is equivalent to b(ba)b−1 = at. Powering by 4 we get
av = a4t. Because a4t−1 = (bab)abab = az(b−1ab)ab = avazb5b−2ab = az+x+u+y

we have au = a4t−x−z−y−1. Since a2x = b−1ab−2b−1ab−2 = b−1aa−ub2ab−2 =
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b−1aa−uatbb−2 ⇔ a2x+y+z = b−1a−u+t+1b−1(bab2)(b−2ab) = b−1a−u+t+3b =
a−u+t+3 we have ax = a4−3t. As ax+1 = b−1a(b−2a) = b−1aayb−1 ⇔ ax+y+z+1 =
b−1ay+1b−1(bab2)(b−2ab) = b−1ay+3b = ay+3 we have az = a2−x = a3t−2. Fi-
nally, from ax+t+z+y = a4 we get ay = a2−t and so au = a5(t−1). Therefore G
is determined by two parameters n and t satisfying n = 0 mod 4 and t = 1
mod 4:

G = 〈a, b | an = 1, b
5

= a
5(t−1)

, (ab)
4

= a
4t
, b

−1
ab

−2
= a

4−3t
, b

−2
ab = a

2−t
, bab

2
= a

3t−2
, b

2
ab

−1
= a

t〉 .

Adding [a4, b] = 1 we get G = 〈a, b | an = 1, b5 = a5(t−1), [a4, b] = 1, b2ab−1 =
at〉 = Gn,t.

The (0, 2)-dual of the particular case n = 4 and t = 1 yields a metacyclic group
of order 20

〈α, β|α5 = 1, β4 = 1, βαβ−1 = α2〉.
This is the monodromy group of a chiral hypermap with 4 hyperfaces, 5 hyper-
vertices, 5 hyperedges and chirality index k = 5 see [6]. ThusM = (G4,1;α, β) is
a chiral hypermap of order 20 with five hyperfaces. As n = 0 mod 4 and t = 1
mod 4 the function a → α, b → β extends to an isomorphism Gn,t → G4,1.
Consequently each Qn,t = (Gn,t; a, b) is a covering of M and therefore has five
hyperfaces. Adjoining the relation b = at−1 to the above presentation of Gn,t we
get a cyclic group Cn and an epimorphism Gn,t −→ Cn given by a 7→ a, b 7→ at−1.
Thus |a| = n and |Gn,t| = 5n, and therefore Mon(Q) = Gn,t.

The chirality group of Q = Qn,t is the normal closure X(Q) = 〈X〉G, where

X = b−2a−1bat = b−2a−1b3ab−1 = b−2a−1a2−tb3 = b−2a1−tb3 = a1−tb = [b, a−1]

and G = Gn,t. Notice that a1−t ∈ Z(G). Looking at the conjugates XΘ for
θ ∈ {a, a2, a3, a4, b} (table below)

Θ a a2 a3 a4 b

XΘ X−2 X−1 X2 X X

one sees that X(Q) is cyclic and generated by X = a1−tb. Since X has order 5
(X5 = a5−5tb5 = 1 and Xi 6= 1 for 0 < i < 5), Q has chirality index k = 5. 3

Let Gn be the group G
6

n,1 = 〈a, b | an = 1, b4 = a4, (ab)2 = a4, a2b = b2a〉.
One easily computes that (ba−1)2 = a−1b. This shows that (ba−1)a = (ba−1)b =
(ba−1)2 and so ba−1 generates a normal subgroup. Hence Gn is metacyclic. From

the covering Q6

n,1 −→ P
6

one sees that ba−1 has order at least 5. On the other

hand, (ba−1)4 = (a−1b)2 = ab−1 and so ba−1 has order 5. Changing generators

a′ = a and b′ = bat−1 we get G
6

n,t and changing generators a′ = a−1 and b′ = ba−t

we get G
17

n,t.
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Finally, if Q6

n,t and Q17

n,t were canonical metacyclic then also P6

and P17

would
be canonical metacyclic. But a quick checking shows that these are not canonical
metacyclic.

The proof of Theorem 4 is finished. �
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