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Proceedings of ISCAMI 2010 Conference

edited by

Radko Mesiar and Daniel Ševčovič





Editorial

International Student Conference on Applied Mathematics and Informatics is a
series of traditional student conferences organised in turn by Slovak Technical
University and University of Ostrava. In 2010, ISCAMI was organised by the
Department of Mathematics and Descriptive Geometry, Faculty of Civil Engi-
neering, Slovak University of Technology, in collaboration with IRAFM, Uni-
versity of Ostrava. The conference was held in May 20-23, 2010, in Bratislava.
It took over a tradition and has extended its scope by subjects in informatics
and applications in mathematical economics and finance. The main purpose of
the conference series is to bring together young researchers and students and to
give them an opportunity to present their achievements and ideas in the area of
applied mathematics, informatics and various applications.

The next five papers are full versions of peer reviewed contributions pre-
sented at the 11th ISCAMI 2010. This special issue was edited by R. Mesiar and
D. Ševčovič. The next conference is scheduled for May 6-8, 2011 in Malenovice,
Czech Republic.

R. Mesiar and D. Ševčovič
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A Confidence Interval for the Probability
Difference of Overall Treatment Effect –

Simulation Study

Pavla Dokoupilová
Department of Mathematics and Statistics

Faculty of Science, Masaryk University
Kotlářská 2, 611 37 Brno, Czech republic

E-mail: pavla@krajickova.cz

Abstract
One of the main aims of the meta-analysis of clinical trials is the determination of the
effectivity of a new type of treatment. The effectivity is determined by the difference of the
effectivity of a standard treatment and the new treatment. In the case of binary data the
difference can be measured by a probability difference. This paper presents the construction
of the confidence interval for the probability difference of overall treatment effects in the
meta-analysis based on multicentre trials. For the construction of the confidence interval
the procedures of Wimmer & Witkovský (2004) and Kenward & Roger (1997) have been
used. The second part of this paper is a simulation study which presents properties of the
proposed confidence interval.

Keywords multicenter trial, confidence interval, probability of success, linear model with
random effects.
MSC (2010) 62P10.
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1 The model

Let us consider a clinical trial performed in I centers. Suppose that the number
of subjects included in the trial in the ith center is nT,i + nC,i for i = 1, 2, . . . , I
where nT,i is the number of patients in the treated group and nC,i is the number of
patients in the control group. Patients in the treated group in the ith center succeed
with probability pT,i and patients in the control group in the ith center succeed with
probability pC,i for i = 1, 2 . . . , I. All subjects are consider to be independent.

Number of successes in the treated group in the ith center is denoted by ran-
dom variable XT,i and number of successes in the control group in the ith cen-
ter is denoted by random variable XC,i. Then XT,i ∼ Bi(nT,i, pT,i) and XC,i ∼
Bi(nC,i, pC,i). Xl,i ∼ Bi(nl,i, pl,i) for l ∈ {T,C} means that Xl,i has binomial dis-
tribution with the sample of size nl,i and the probability of success pl,i. Random
variables XT,1, . . . , XT,I , XC,1, . . . , XC,I are stochastic independent. We will next
work with random variables

Copyright c© 2011 Matej Bel University



8 Pavla Dokoupilová

Yl,i = Xl,i

nl,i
, for l ∈ {T,C} and i = 1, . . . , I. (1.1)

Suppose that the true probabilities of success in the ith center pT,i and pC,i, randomly
fluctuate around common probabilities of success pT and pC . We want to estimate
the probability difference pT − pC . So

pl,i = pl + bl,i, for l ∈ {T,C} and i = 1, . . . , I. (1.2)

where bl,i is a random effect of the ith center and suppose that bl,i ∼ N(0, σ2
l,0) 1

which means bl,i is normally distributed with the mean 0 and the variance σ2
l,0.

The final situation can be represented by linear model with random effects

Yl,i = pl + bl,i + εl,i for l ∈ {T,C} and i = 1, . . . , I (1.3)

where εl,i are error terms and εl,i ∼ N(0, σ2
l,i/nl,i). In matrix notation we get

Y =
(

YT
YC

)
≈ N

((
1I×1 0I×1
0I×1 1I×1

)(
pT
pC

)
,Σ = σ2

T,0

(
II×I 0

0 0

)
+

+ σ2
C,0

(
0 0
0 II×I

)
+
∑I
i=1 σ

2
T,iGi +

∑I
j=1 σ

2
C,jHj

)
, (1.4)

where for i, j = 1, . . . , I

Gi =




0 · · · 0
. . .

... 1
nT,i

...
. . .

0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0I×I

0I×I 0I×I




Hj =




0I×I 0I×I

0I×I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0
. . .

... 1
nC,j

...
. . .

0 · · · 0




.

Notation Y ≈ N (µ,Σ) means that Y has approximately normal distribution with
mean µ and variance matrix Σ.

2 Point estimator of the vector of common probabilities of success

If we know the variance components σ2
l,0 and σ2

l,i for l ∈ {T,C} and i = 1, . . . , I, the
optimal estimator of the vector of the common probability of successful treatment
would be
1Of course it is supposed that σ2

l,0 is such that "practically" 0 < pl + bl,i < 1. In
simulations it is ensured with a proper choice of σ2

l,0. In the case mentioned in sec-

tion 4, it is σ2
l,0 ∈

{
0, 1

4

(
pl
3

)2
, 1

2

(
pl
3

)2
, 3

4

(
pl
3

)2
,
(

pl
3

)2
}

for pl ≤ 0.5 and σ2
l,0 ∈

{
0, 1

4

( 1−pl
3

)2
, 1

2

( 1−pl
3

)2
, 3

4

( 1−pl
3

)2
,
( 1−pl

3

)2
}

for pl > 0.5. The unacceptable situations hap-

pened in case of σ2
l,0 =

(
pl
3

)2 in 0.14 %, σ2
l,0 = 3

2

(
pl
3

)2 in 0.03 % and σ2
l,0 = 1

2

(
pl
3

)2 in 0.001 %
from 100000 replications.
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(
p̂T
p̂C

)
=
((

11×I 01×I
01×I 11×I

)
Σ−1

(
1I×1 0I×1
0I×1 1I×1

))−1(11×I 01×I
01×I 11×I

)
Σ−1Y. (2.1)

So we replace unknown covariance matrix Σ by its estimator Σ̂ which we get if we
replace the unknown variance components σ2

l,0 and σ2
l,i by their estimators σ̂2

l,0 and
σ̂2
l,i for l ∈ {T,C} and i = 1, . . . , I. The estimators σ̂2

l,0 and σ̂2
l,i we derive as follows.

From (1.1) we get

var(Yl,i) = pl,i(1− pl,i)
nl,i

and using notation from (1.3) we obtain

σ2
l,i = pl,i(1− pl,i)

for l = {T,C} and i = 1, . . . , I. Now consider an estimator of σ2
l,i which was suggested

by Agresti & Caffo (2000) as

σ̂2
l,i = p̃l,i(1− p̃l,i), where p̃l,i = Xl,i + 2

nl,i + 4 .

Than we can write

σ̂2
l,i = Xl,i + 2

nl,i + 4

(
1− Xl,i + 2

nl,i + 4

)
for l ∈ {T,C} and i = 1, . . . , I.

For estimation of σ2
l,0 we use procedure suggested by Mandel & Paule (1982). The

estimator σ̂2
l,0 for l ∈ {T,C} we obtain as iterative solution of the following equations

µ̂MP
l =

∑I
i=1

Xl,i
nl,iσ̂2

l,0+σ̂2
l,i∑I

j=1
nl,j

nl,j σ̂2
l,0+σ̂2

l,j

I∑

i=1

(
Xl,i
nl,i
− µ̂MP

l

)2

σ̂2
l,0 + σ̂2

l,i

nl,i

= I − 1.

Finally we obtain a point estimator of the vector of the common probabilities of
successful treatment

p̂ =
(
p̂T
p̂C

)
=




∑I

i=1
XT,i

nT,iσ̂
2
T,0+σ̂2

T,i∑I

j=1
nT,j

nT,j σ̂
2
T,0+σ̂2

T,j

∑I

i=1
XC,i

nC,iσ̂
2
C,0+σ̂2

C,i∑I

j=1
nC,j

nC,j σ̂
2
C,0+σ̂2

C,j



. (2.2)
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3 Interval estimator of the probability difference

As an estimatior of the covariance matrix of p̂ is commonly used

Φ̂ =
((

11×I 01×I
01×I 11×I

)
Σ̂−1

(
1I×1 0I×1
0I×1 1I×1

))−1
.

Kenward & Roger (1997) suggested an adjusted estimator Φ̂A

Φ̂A = Φ̂ + 2Λ̂, (3.1)
where

Λ̂ = Φ̂
{2I+2∑

k=1

2I+2∑

l=1
Ŵkl(Q̂kl − P̂kΦ̂P̂l)

}
Φ̂

and Ŵkl is the (k, l)th element of estimator of the covariance matrix of the variance
components σ2

l,0 and σ2
l,i for l ∈ {T,C} and i = 1, . . . , I. The covariance matrix

W can be obtained as inversion of the expected information matrix of the variance
components REML estimators.

W(σ2
T0, σ

2
T1, . . . , σ

2
TI , σ

2
C0, σ

2
C1, . . . , σ

2
CI) = I−1

F (σ2
T0, σ

2
T1, . . . , σ

2
TI , σ

2
C0, σ

2
C1, . . . , σ

2
CI).

Elements of IF we get from

{IF }kl = 1
2 [{S}kl − Tr(2ΦQkl −ΦPkΦPl] for k, l ∈ {1, 2, . . . , 2I + 2}.

And next using Kenward & Roger’s procedure we have for i = 1, . . . , I, j = 1, . . . , I,
k = 1, . . . , I, i 6= k and j 6= k (in the same notation as in Kenward & Roger (1997))

PT,0 =
(
−∑I

i=1

(
nT,i

nT,iσ2
T,0+σ2

T,i

)2
0

0 0

)
, PC,0 =

(0 0
0 −∑I

j=1

(
nC,j

nC,jσ2
C,0+σ2

C,j

)2

)
,

PT,i =
(
− nT,i

(nT,iσ2
T,0+σ2

T,i
)2 0

0 0

)
, PC,j =

(
0 0
0 − nC,j

(nC,jσ2
C,0+σ2

C,j
)2

)
,

QT,0;T,0 =
(∑I

i=1

(
nT,i

nT,iσ2
T,0+σ2

T,i

)3
0

0 0

)
, QC,0;C,0 =

(0 0
0
∑I
j=1

(
nC,j

nC,jσ2
C,0+σ2

C,j

)3

)
,

QT,0;T,i =
(

n2
T,i

(nT,iσ2
T,0+σ2

T,i
)3 0

0 0

)
, QC,0;C,j =

(
0 0
0 n2

C,j

(nC,jσ2
C,0+σ2

C,j
)3

)
,

QT,i;T,i =
(

nT,i
(nT,iσ2

T,0+σ2
T,i

)3 0
0 0

)
, QC,j;C,j =

(
0 0
0 nC,j

(nC,jσ2
C,0+σ2

C,j
)3

)
,

QT,0;C,0 = QT,0;C,j = QT,i;C,0 =
(

0 0
0 0

)
,

QT,i;T,k = QC,j;C,k = QT,i;C,j =
(

0 0
0 0

)
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and nonzero elements of S

{S}T,0;T,0 =
I∑

i=1

(
nT,i

nT,iσ2
T,0 + σ2

T,i

)2

, {S}C,0;C,0 =
I∑

j=1

(
nC,j

nC,jσ2
C,0 + σ2

C,j

)2

,

{S}T,0;T,i = nT,i(
nT,iσ2

T,0 + σ2
T,i

)2 , {S}C,0;C,j = nC,j(
nC,jσ2

C,0 + σ2
C,j

)2 ,

{S}T,i;T,i = 1
(
nT,iσ2

T,0 + σ2
T,i

)2 , {S}C,j;C,j = 1
(
nC,jσ2

C,0 + σ2
C,j

)2 .

The matrices Ŵ, Q̂ and P̂ are estimators of W, Q and P which we obtain by re-
placing unknown variance components σ2

T,0, σ
2
T,1, . . . , σ

2
T,I , σ

2
C,0, σ

2
C,1, . . . , σ

2
C,I by their

estimators σ̂2
T,0, σ̂

2
T,1, . . . , σ̂

2
T,I , σ̂

2
C,0, σ̂

2
C,1, . . . , σ̂

2
C,I .

Kenward & Roger (1997) also suggested an approximation of the random variable

λF = λ(p̂T − p̂C − (pT − pC))2
((

1 −1
)
Φ̂A

(
1
−1

))−1

by Fisher-Snedecor distribution with 1 and m degrees of freedom where

λ = m

E∗(m− 2) and m = 4 + 3
ρ− 1 . (3.2)

Also in the same notation as in Kenward & Roger (1997) all necessary quantities we
get as

ρ = V ∗

2(E∗)2 , E∗ = 1
1−A2

, V ∗ = 2
[

1 + c1B

(1− c2B)2(1− c3B)

]
,

c1 = g

3 + 2(1− g) , c2 = 1− g
3 + 2(1− g) , c3 = 3− g

3 + 2(1− g) ,

g = 2A1 − 5A2
3A2

, B = 1
2(A1 + 6A2), Θ = L(LT Φ̂L)−1LT , L =

(
1
−1

)
,

A1 =
2I+2∑

k=1

2I+2∑

l=1
Wkl Tr(ΘΦPkΦ) Tr(ΘΦPlΦ),

A2 =
2I+2∑

k=1

2I+2∑

l=1
Wkl Tr(ΘΦPkΦΘΦPlΦ).

Finally we get the 100× (1− α) confidence interval for the difference of probabilities
of overall treatment effects pT − pC in the form

〈
p̂T − p̂C −

√
λ−1

((
1 −1

)
Φ̂A
(

1
−1

))
F1,m(α) ,

p̂T − p̂C +

√
λ−1

((
1 −1

)
Φ̂A
(

1
−1

))
F1,m(α)

〉
∩ 〈−1, 1〉 (3.3)
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where F1,m(α) is the critical α-value of the Fisher-Snedecor distribution with 1 and
m degrees of freedom, p̂T and p̂C are given in (2.2), Φ̂A is given in (3.1), λ and m
can be obtained from (3.2).

4 Simulation results

The simulation study was focused on empirical coverage probabilities of the 95%
interval estimator. To explore the behavior of the confidence interval for the difference
of probabilities of overall treatment effects, the simulations were conducted for four
main different settings. In all four settings the values of unknown parameters I,
nT,i and nC,i, σ2

l,0 where l ∈ {T,C}, pT and pC were following. The number of center
I ∈ {5, 10, 15, 20}, the number of subjects nTi, nCi ∈ {100, 50, 30, 15, 10}, the variance
of random effects σ2

l,0 ∈
{

0, 1
4
(
pl
3
)2
, 1

2
(
pl
3
)2
, 3

4
(
pl
3
)2
,
(
pl
3
)2
}

for pl ≤ 0.5, σ2
l,0 ∈{

0, 1
4
( 1−pl

3
)2
, 1

2
( 1−pl

3
)2
, 3

4
( 1−pl

3
)2
,
( 1−pl

3
)2} for pl > 0.5 and both true probabilities

of success pT , pC ∈ {0.05, 0.15, . . . , 0.85, 0.95}. For each situation 5000 replications
were made.

Except 95% confidence interval from (3.3) (CI) the simulations were also conducted
for modified 95% confidence interval (MCI) according Wimmer & Witkovsky (2004).
The modifications was made only for diagonal elements of S which were replaced by
following expressions for i = 1, . . . , I and j = 1, . . . , I

{S}T,i;T,i = nT,i
σ4
T,i

(
1−

2σ2
T,0

nT,iσ2
T,0 + σ2

T,i

+
nT,iσ

4
T,0

(nT,iσ2
T,0 + σ2

T,i)2

)
,

{S}C,j;C,j = nC,j
σ4
C,j

(
1−

2σ2
C,0

nC,jσ2
C,0 + σ2

C,j

+
nC,jσ

4
C,0

(nC,jσ2
C,0 + σ2

C,j)2

)
.

The empirical coverage probabilities are displayed using contour lines. The doted line
is contour line matching 95% level. In all situations described below the empirical
coverage probabilities of CI weren’t below the nominal 95% level. However they
weren’t lower than 99.5% level, as is illustrated by the Figure 1. The white places in
the graph means the empirical coverage probabilities were 1. This is mainly due to
large width of CI for small numbers of subjects.

4.1Balanced situation across the trial
In balanced situation across the trial the number of subjects in the i center in treated
group nT,i is the same as the number of subjects in the i center in control group nC,i
and is also the same as the number of subjects in the j center in treated group nT,j
and control group nC,j for i = 1, . . . , I and j = 1, . . . , I. That is

nT,i = nT,j = nC,i = nC,j for i, j = 1, . . . , I.

For the MCI one can observe two areas with lower empirical coverage probability
with cores at pT = 85% and pC = 15% and wise versa for nT,i = nC,i = 15 and
σ2
T,0 = σ2

C,0 = 0. When the value of nT,i or nC,i is increased the cores move to the
lower right corner and upper left corner (Figure 2). With growing value of I the area
around cores grow too. One can also observe that with growing σ2

T,0 or σ2
C,0 these

areas with lower empirical coverage probability fast grow too (Figure 3). The influence
of growing I and σ2

T,0 or σ2
C,0 is approximately same in all considered situations.
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I=5, nT = nC = 50, 2
0 = (p/3)2/2

pT

p C
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0.9
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0.999

0.9992

0.9994

0.9996

0.9998

1

Figure 1: Contour lines of CI

I=10, nT = nC = 100, 2
0 = 0
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I=10, nT = nC = 50, 2
0 = 0
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I=10, nT = nC = 30, 2
0 = 0
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I=10, nT = nC = 15, 2
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Figure 2: Contour lines of MCI in balanced situation

4.2Balanced situations across centers
In balanced situation across centers the number of subjects in the i center in treated
group nT,i is different from the number of subjects in the i center in control group
nC,i, but is the same as the number of subjects in the j center in treated group nT,j
for i = 1, . . . , I and j = 1, . . . , I. That is

nT,i = nT,j 6= nC,i = nC,j for i, j = 1, . . . , I.

As is illustrated in Figure 4 the second simulated situation showed similar results,
only cores of areas move according to the difference between nT,i and nC,i.
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I=10, n
T
 = n
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Figure 3: Contour lines of MCI in balanced situation and σ2
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4.3Balanced situations across groups
In balanced situation across groups the number of subjects in the i center in treated
group nT,i is the same as the number of subjects in the i center in control group nC,i,
but is different from the number of subjects in the j center in treated group nT,j and
control group nC,j for i = 1, . . . , I and j = 1, . . . , I. That is

nT,i 6= nT,j , nC,i 6= nC,j ∧ nT,i = nC,i for i, j = 1, . . . , I.

The third situation does not have big influence on results in compare to previous
situations. The results depended mainly on the highest value between nT,i or nC,i (Fi-
gure 5).

4.4Unbalanced situations
In unbalanced situation the number of subjects in the i center in treated group nT,i
can be different from the number of subjects in the i center in control group nC,i and
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Figure 5: Contour lines of MCI in balanced situations across groups

can also be different from the number of subjects in the j center in treated group nT,j
and control group nC,j for i = 1, . . . , I and j = 1, . . . , I. As expected this situation
combine results of two previous situations.

In all situations the width of CI was approximately two times the width of MCI.
In further work the comparing will be extended to higher values of I, because the
width of CI seems to be getting smaller with growing number of centers in which
is trial conducted along with the empirical coverage probability above the nominal
95% level. The reason for conducting simulations for σ2

C,0 = 0 was a possibility of
comparison these results with GLMM approach mentioned in section 4.5.
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4.5Comments on GLMM approach
The standard approach to the presented problem which can be found in Whitehead
(2002) is based on generalized linear mixed model (GLMM). Let us consider random
variables Zij which have Bernoulli distribution with success probability pij for i =
1, . . . , I and j = 1, . . . , ni (ni = nT,i + nC,i). Suppose the following GLMM model

ln
(

pij
1− pij

)
= α+ β0i + β1Uij + ν1iUij (4.1)

where Uij = 0 for the control group, Uij = 1 for the treated group, ν1i is a random
effect of the ith center and suppose that ν1i ∼ N(0, σ2

T,0). In this model there is only
one random effect of the treatment and no random effect for the control group, i.e.
σ2
C,0. The overall treatment effect is in this model measured by a log odds ratio β1.
According to our opinion the disadvantage of this approach is its computational

behavior for small numbers of subjects ni and lower probabilities. In these cases the
calculation of β1 do not converge. The greater number of centers I is the greater
numbers of subjects ni have to be. The comparison of the our and the GLMM
approach will be subject of further work.
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1 Introduction

Social Choice Theory shows that there does not exist a completely acceptable voting
system for electing and ranking alternatives. The well-known Arrow Impossibility
Theorem [1] proves with mathematic certainty that no voting system simultaneously
fulfills certain desirable properties1.

Recently Balinski and Laraki [2, 4, 5] have proposed a voting system called Ma-
jority Judgement (MJ) which tries to avoid these unsatisfactory results and allows
the voters to assess the alternatives through linguistic labels, as Excellent, Very good,
Good, . . . , instead of rank order the alternatives. Among all the individual assessments
1Any voting rule that generates a collective weak order from every profile of weak orders, and satisfies
independence of irrelevant alternatives and unanimity is necessarily dictatorial, insofar as there are
at least three alternatives and three voters.

Copyright c© 2011 Matej Bel University
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given by the voters, MJ chooses the median as the collective assessment. Balinski and
Laraki also describe a tie-breaking process which compares the number of labels above
the collective assessment and those below of it.

These authors also have an experimental analysis of MJ [3] carried out in Or-
say during the 2007 French presidential election. In that paper the authors show
some interesting properties of MJ and they advocate that this voting system is easily
implemented and that it avoids the necessity for a second round of voting.

Desirable properties and advantages have been attributed to MJ against the clas-
sical Arrow framework of preferences’ aggregation. Among them are the possibility
that voters show more faithfully and properly their opinions than in the conven-
tional voting systems, anonymity, neutrality, independence of irrelevant alternatives,
etc. However, some authors (see Felsenthal and Machover [6], García-Lapresta and
Martínez-Panero [7] and Smith [9]) have shown several paradoxes and inconsistencies
of MJ.

In this paper we propose an extension of MJ which diminishes some of the MJ
inconveniences. The approach of the paper is distance-based, both for generating a
collective assessment of each alternative and in the tie-breaking process that provides
a weak order on the set of alternatives. As in MJ we consider that individuals assess
the alternatives through linguistic labels and we propose as the collective assessment
a label that minimizes the distance to the individual assessments. These distances
between linguistic labels are induced by a metric of the parameterized Minkowski
family. Depending on the specific metric we use, the discrepancies between the col-
lective and the individual assessments are weighted in a different manner, and the
corresponding outcome can be different.

The paper is organized as follows. In Section 2, the MJ voting system is for-
mally explained. Section 3 introduces our proposal, within a distance-based approach.
Specifically, the election of the collective assessment for each alternative and the tie-
breaking method are introduced. In Section 4 we include two illustrative examples
showing the influence of the metric used in the proposed method and its differences
with respect to MJ and Range Voting (Smith [9]). Finally, in Section 5 we collect
some conclusions.

2 Majority Judgement

We consider2 a finite set of voters V = {1, . . . , m}, with m ≥ 2, who evaluate a finite
set of alternatives X = {x1, . . . , xn}, with n ≥ 2. Each alternative is assessed by each
voter through a linguistic term belonging to an ordered finite scale L = {l1, . . . , lg},
with l1 < · · · < lg and granularity g ≥ 2. Each voter assesses the alternatives in an
independent way and these assessments are collected by a matrix

(
vi

j

)
, where vi

j ∈ L
is the assessment that the voter i gives to the alternative xj .

MJ chooses for each alternative the median of the individual assessment as the
collective assessment. To be precise, the single median when the number of voters is
odd and the lower median in the case that the number of voters is even. We denote
with l(xj) the collective assessment of the alternative xj . Given that several alter-
natives might share the same collective assessment, Balinski and Laraki [2] propose
a sequential tie-breaking process. This can be described through the following terms
(see García-Lapresta and Martínez-Panero [7]):

2The current notation is similar to the one introduced by García-Lapresta and Martínez-Panero [7].
This allows us to describe the MJ process, presented by Balinski and Laraki [2], in a more precise
way.
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N+(xj) = #{i ∈ V | vi
j > l(xj)} , N−(xj) = #{i ∈ V | vi

j < l(xj)}
and

t(xj) =





−1, if N+(xj) < N−(xj),
0, if N+(xj) = N−(xj),
1, if N+(xj) > N−(xj).

Taking into account the collective assessments and the previous indices, we define
a weak order3 � on X in the following way: xj � xk if and only if one of the
following conditions hold:

1. l(xj) > l(xk).

2. l(xj) = l(xk) and t(xj) > t(xk).

3. l(xj) = l(xk), t(xj) = t(xk) = 1 and N+(xj) > N+(xk).

4. l(xj) = l(xk), t(xj) = t(xk) = 1, N+(xj) = N+(xk) and
N−(xj) ≤ N−(xk).

5. l(xj) = l(xk), t(xj) = t(xk) = 0 and
m−N+(xj)−N−(xj) ≥ m−N+(xk)−N−(xk).

6. l(xj) = l(xk), t(xj) = t(xk) = −1 and N−(xj) < N−(xk).

7. l(xj) = l(xk), t(xj) = t(xk) = −1, N−(xj) = N−(xk) and
N+(xj) ≥ N+(xk).

The asymmetric and symmetric parts of � are defined in the usual way:

xj � xk ⇔ not xk � xj

xj ∼ xk ⇔ (xj � xk and xk � xj).

Next example of how MJ works is shown.

Example 2.1. Consider three alternatives x1, x2 and x3 that are evaluated by seven
voters through a set of six linguistic terms L = {l1, . . . , l6}, the same set used in MJ
[3], whose meaning is shown in Table 1. The assessments obtained for each alternative

l1 l2 l3 l4 l5 l6
To reject Poor Acceptable Good Very good Excellent

Table 1: Meaning of the linguistic terms

are collected and ranked from the lowest to the highest in Table 2. For ranking the
three alternatives, first we take the median of the individual assessments, that will
be the collective assessment for each one of the mentioned alternatives: l(x1) = l5,
l(x2) = l4 and l(x3) = l4. Given that x1 has the best collective assessment, it will
be the one ranked in first place. However, the alternatives x2 and x3 share the same
3A weak order (or complete preorder) is a complete and transitive binary relation.
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x1 l1 l1 l3 l5 l5 l5 l6
x2 l1 l4 l4 l4 l4 l5 l6
x3 l1 l3 l4 l4 l5 l5 l5

Table 2: Assessments of Example 2.1

collective assessment, we need to turn to the tie-breaking process, where we obtain
N+(x2) = 2, N−(x2) = 1 and t(x2) = 1; N+(x3) = 3, N−(x3) = 2 and t(x3) = 1.
Since both alternatives have the same t (t(x2) = t(x3) = 1), we should compare
their N+: N+(x2) = 2 < 3 = N+(x3). Therefore, the alternative x3 defeats the
alternative x2, and the final order is x1 � x3 � x2.

3 Distance-based method

In this section the alternative method to MJ that we propose through a distance-
based approach is introduced. The first step for ranking the alternatives is to assign
a collective assessment l(xj) ∈ L to each alternative xj ∈ X. For its calculation, the
vectors (v1

j , . . . , vm
j ) that collect all the individual assessments for each alternative

xj ∈ X are taken into account.
The proposal, that is detailed below, involves how to choose a l(xj) ∈ L that min-

imizes the distance between the vector of individual assessments (v1
j , . . . , vm

j ) and the
vector (l(xj), . . . , l(xj)) ∈ Lm. The election of that term is performed in an indepen-
dent way for each alternative. This guarantees the fulfillment of the independence of
irrelevant alternatives principle4.

Once a collective assessment l(xj) has been associated with each alternative
xj ∈ X , we rank the alternatives according to the ordering of L. Given the pos-
sible existence of ties, we also propose a sequential tie-breaking process based on the
difference between the distance of l(xj) to the assessments higher than l(xj) and
the distance of l(xj) to the assessments lower than l(xj).

3.1 Distances
A distance or metric on Rm is a mapping d : Rm × Rm −→ R that fulfills the
following conditions for all (a1, . . . , am), (b1, . . . , bm), (c1, . . . , cm) ∈ Rm:

1. d((a1, . . . , am), (b1, . . . , bm)) ≥ 0.

2. d((a1, . . . , am), (b1, . . . , bm)) = 0 ⇔ (a1, . . . , am) = (b1, . . . , bm).

3. d((a1, . . . , am), (b1, . . . , bm)) = d((b1, . . . , bm), (a1, . . . , am)).

4. d((a1, . . . , am), (b1, . . . , bm)) ≤
d((a1, . . . , am), (c1, . . . , cm)) + d((c1, . . . , cm), (b1, . . . , bm)).

Given a distance d : Rm × Rm −→ R, the distance on Lm induced by d is the
mapping d̄ : Lm × Lm −→ R defined by

d̄((la1 , . . . , lam
), ((lb1 , . . . , lbm

)) = d((a1, . . . , am), (b1, . . . , bm)).
4This principle says that the relative ranking between two alternatives would only depend on the
preference or assessments on these alternatives and must not be affected by other alternatives, that
must be irrelevant on that comparison.



Acta Univ. M. Belii, ser. Math. 18 (2011), 17–27 21

An important class of distances in Rm is constituted by the family of Minkowski
distances {dp | p ≥ 1}, which are defined by

dp((a1, . . . , am), (b1, . . . , bm)) =
(

m∑

i=1
|ai − bi|p

) 1
p

,

for all (a1, . . . , am), (b1, . . . , bm) ∈ Rm.
We choose this family due to the fact that it is parameterized and it includes from

the well-known Manhattan (p = 1) and Euclidean (p = 2) distances, to the limit case,
the Chebyshev distance (p = ∞). The possibility of choosing among different values
of p ∈ (1,∞) gives us a very flexible method, and we can choose the most appropriate
p according to the objectives we want to achieve with the election.

Given a Minkowski distance on Rm, we consider the induced distance on Lm which
works with the assessments vector through the subindexes of the corresponding labels:

d̄p((la1 , . . . , lam), (lb1 , . . . , lbm)) = dp((a1, . . . , am), (b1, . . . , bm)).

Remark 3.1. The ordinal scale of linguistic terms we use, L, is just a finite scale
whose consecutive terms are equidistant. Following Balinski and Laraki [2], each term
of the scale has associated a linguistic label. What matters is not the name of the
label but the position of the label in the ordinal scale. This is the reason we consider
the number of changes we need for going from a term to another one5. In this sense,
the distance between two labels’ vectors is based on the number of positions that we
need to cover to go from one to another, in each of its components. To move from
lai

to lbi
we need to cover |ai − bi| positions. For instance between l5 and l2 we

need to cover |5− 2| = 3 positions: from l5 to l4, from l4 to l3 and from l3 to l2.

3.2 Election of a collective assessment for each alternative
Our proposal is divided into several stages. First we assign a collective assessment
l(xj) ∈ L to each alternative xj ∈ X which minimizes the distance between the
vector of the individual assessments, (v1

j , . . . , vm
j ) ∈ Lm, and the vector of m replicas

of the desired collective assessment, (l(xj), . . . , l(xj)) ∈ Lm.
For this, first we establish the set L(xj) of all the labels lk ∈ L satisfying

d̄p((v1
j , . . . , vm

j ), (lk, . . . , lk)) ≤ d̄p((v1
j , . . . , vm

j ), (lh, . . . , lh)),
for each lh ∈ L, where (lh, . . . , lh) and (lk, . . . , lk) are the vectors of m replicas of lh
and lk, respectively. Thus, L(xj) consists of those labels that minimize the distance
to the vector of individual assessments. Notice that L(xj) = {lr, . . . , lr+s} is always
an interval, because it contains all the terms from lr to lr+s, where r ∈ {1, . . . , g}
and 0 ≤ s ≤ g − r. Two different cases are possible:

1. If s = 0, then L(xj) contains a single label, which will automatically be the
collective assessment l(xj) of the alternative xj .

2. If s > 0, then L(xj) has more than one label. In order to select the most
suitable label of L(xj), we now introduce L∗(xj), the set of all the labels lk ∈
L(xj) that fulfill

d̄p((lk, . . . , lk), (lr, . . . , lr+s))≤ d̄p((lh, . . . , lh), (lr, . . . , lr+s)),
5This is not exactly the same that identifying each linguistic label with a number.
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for all lh ∈ L(xj), where (lk, . . . , lk) and (lh, . . . , lh) are the vectors of s + 1
replicas of lk and lh, respectively.

(a) If the cardinality of L(xj) is odd, then L∗(xj) has a unique label, the
median term, that will be the collective assessment l(xj).

(b) If the cardinality of L(xj) is even, then L∗(xj) has two different labels,
the two median terms. In this case, similarly to the proposal of Balinski
and Laraki [2], we consider the lowest label in L∗(xj) as the collective
assessment l(xj).

It is worth pointing out two different cases when we are using induced Minkowski
distances.

1. If p = 1, we obtain the same collective assessments that those given by MJ,
the median6 of the individual assessments. However, the final results are not
necessarily the same that in MJ because we use a different tie-breaking process,
as is shown later.

2. If p = 2, each collective assessment is the closest label to the “mean” of the
individual assessments7, which is the one chosen by the Range Voting (RV)
method8 (see Smith [9]).

It is interesting to note that when we choose p ∈ (1, 2), we find situations where
the collective assessment is located between the median and the “mean”. This allows
us to avoid some of the problems associated with MJ and RV. See García-Lapresta
and Martínez-Panero [7] for a different proposal based on centered OWA operators
(Yager [10]).

3.3 Tie-breaking method
Usually there exist more alternatives than linguistic terms, so it is very common to
find several alternatives sharing the same collective assessment. But irrespectively of
the number of alternatives, it is clear that some of them may share the same collective
assessment, even when the individual assessments are very different. For these reasons
it is necessary to introduce a tie-breaking method that takes into account not only the
number of individual assessments above or below the obtained collective assessment
(as in MJ), but the positions of these individual assessments in the ordered scale
associated with L.

As mentioned above, we will calculate the difference between two distances: one
between l(xj) and the assessments higher than l(xj) and another one between l(xj)
and the assessments lower than the l(xj). Let v+

j and v−
j the vectors composed

by the assessments vi
j from

(
v1

j , . . . , vm
j

)
higher and lower than the term l(xj),

respectively. First we calculate the two following distances:

D+(xj) = d̄p

(
v+

j , (l(xj), . . . , l(xj))
)

,

D−(xj) = d̄p

(
v−

j , (l(xj), . . . , l(xj))
)

,

6It is more precise to speak about the interval of medians, because if the assessments’ vector has an
even number of components, then there are more than one median. See Monjardet [8].

7The chosen label is not exactly the arithmetic mean of the individual assessments, because we are
working with a discrete spectrum of linguistic terms and not in the continuous one of the set of real
numbers.

8RV works with a finite scale given by equidistant real numbers, and it ranks the alternatives ac-
cording to the arithmetic mean of the individual assessments.
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where the number of components of (l(xj), . . . , l(xj)) is the same that in v+
j and

in v−
j , respectively (obviously, the number of components of v+

j and v−
j can be

different).
Once these distances have been determined, a new index D(xj) ∈ R is calculated

for each alternative xj ∈ X: the difference between the two previous distances:

D(xj) = D+(xj)−D−(xj).

By means of this index, we provide a kind of compensation between the individual
assessments that are bigger and smaller than the collective assessment, taking into
account the position of each assessment in the ordered scale associated with L.

For introducing our tie-breaking process, we finally need the distance between the
individual assessments and the collective one:

E(xj) = d̄p

(
(v1

j , . . . , vm
j ), (l(xj), . . . , l(xj))

)
.

Notice that for each alternative xj ∈ X, E(xj) minimizes the distance between
the vector of individual assessments and the linguistic labels in L, such as has been
considered above in the definition of L(xj).

The use of the index E(·) is important in the tie-breaking process because if two
alternatives share the same couple (l(·), D(·)), the alternative with the lower E(·)
is the alternative whose individual assessments are more concentrated around the
collective assessment, i.e., the consensus is higher.

Summarizing, for ranking the alternatives we will consider the following triplet

T (xj) = (l(xj), D(xj), E(xj)) ∈ L×R× [0,∞)

for each alternative xj ∈ X.
The sequential process works in the following way:

1. We rank the alternatives through the collective assessments l(·). The alterna-
tives with higher collective assessments will be preferred to those with lower
collective assessments.

2. If several alternatives share the same collective assessment, then we break the
ties through the D(·) index. The alternatives with a higher D(·) will be pre-
ferred.

3. If there are still ties, we break them through the E(·) index, in such a way such
that the alternatives with a lower E(·) will be preferred.

Formally, the sequential process can be introduced by means of the lexicographic
weak order � on X defined by xj � xk if and only if

1. l(xj) ≥ l(xk) or
2. l(xj) = l(xk) and D(xj) > D(xk) or
3. l(xj) = l(xk), D(xj) = D(xk) and E(xj) ≤ E(xk).

Remark 3.2. Although it is possible that ties still exist, whenever two or more
alternatives share T (·), these cases are very unusual when considering metrics with
p > 1.9 For instance, consider seven voters that assess two alternatives x1 and x2
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x1 l2 l2 l2 l2 l4 l4 l6
x2 l2 l2 l2 l2 l3 l5 l6

Table 3: Individual assessments

by means of the set of linguistic terms given in Table 1. Table 3 includes these
assessments arranged from the lowest to the highest labels.

It is easy to see that for p = 1 we have T (x1) = T (x2) = (l2, 8, 8), then x1 ∼ x2
(notice that MJ and RV also provide a tie). However, if p > 1, the tie disappears.
So, we have x2 � x1, excepting for p ∈ (1.179, 1.203), where x1 � x2.

4 Two illustrative examples

This section focus on how the election of the parameter p is relevant in the final
ranking of the alternatives. We show this fact through two different examples. The
first one considers a case where the median of the individual assessments is the same
for all the alternatives. And the second one considers a situation where the mean of
the individual assessments’ subindexes is the same for all the alternatives. In both
examples we use the set of six linguistic terms L = {l1, . . . , l6} whose meaning is
shown in Table 1.

As mentioned above, the sequential process for ranking the alternatives is based
on the triplet T (xj) = (l(xj), D(xj), E(xj)) for each alternative xj ∈ X. How-
ever, by simplicity, in the following examples we only show the first two components,
(l(xj), D(xj)). In these examples we also obtain the outcomes provided by MJ and
RV.

Example 4.1. Table 4 includes the assessments given by six voters to four alterna-
tives x1, x2, x3 and x4 arranged from the lowest to the highest labels.

x1 l1 l2 l4 l4 l4 l6
x2 l1 l1 l3 l4 l6 l6
x3 l2 l2 l2 l4 l5 l6
x4 l1 l1 l4 l5 l5 l5

Table 4: Assessments in Example 4.1

Notice that the mean of the individual assessments’ subindexes is the same for
the four alternatives, 21

6 = 3.5. Since RV ranks the alternatives according to this
mean, it produces a tie x1 ∼ x2 ∼ x3 ∼ x4. However, it is clear that this outcome
might not seem reasonable, and that other rankings could be justified. Using MJ,
where l(x1) = l(x4) = l4 > l3 = l(x2) > l2 = l(x3) and, according to the MJ tie-
breaking process, we have t(x1) = −1 < 1 = t(x4). Thus, MJ produces the outcome
x4 � x1 � x2 � x3.

We now consider the distance-based procedure for seven values of p. In Table
5 we can see the influence of these values on (l(xj), D(xj)), for j = 1, 2, 3. The
corresponding rankings are included in Table 6.

For p = 1, we have T (x1) = (l4,−3, 7), T (x2) = (l3, 10, 11), T (x3) = (l2, 9, 9)
and T (x4) = (l4,−3, 9). Then, we obtain the ranking x1 � x4 � x2 � x3, a different
9The Manhattan metric (p = 1) produces more ties than the other metrics in the Minkowski family
because of the simplicity of its calculations.
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p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2 p = 5 p = 10
x1 (l4, −3) (l4, −2.375) (l4, −2.008) (l4, −1.770) (l3, 1.228) (l3, 0.995) (l3, 0.000)

x2 (l3, 10) (l3, 2.264) (l3, 1.888) (l3, 1.669) (l3, 1.530) (l3, 1.150) (l3, 1.072)

x3 (l2, 9) (l3, 2.511) (l3, 2.254) (l3, 2.104) (l3, 2.010) (l4, −0.479) (l4, −0.232)

x4 (l4, −3) (l4, −2.815) (l4, −2.682) (l4, −2.585) (l3, 0.777) (l3, 0.199) (l3, 0.089)

Table 5: (l(xj), D(xj)) in Example 4.1

MJ p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2 p = 5 p = 10
x4 x1 x1 x1 x1 x3 x3 x3
x1 x4 x4 x4 x4 x2 x2 x2
x2 x2 x3 x3 x3 x1 x1 x1
x3 x3 x2 x2 x2 x4 x4 x4

Table 6: Rankings in Example 4.1

outcome than obtained using MJ. For p = 1.25, p = 1.5 and p = 1.75, we obtain
x1 � x4 � x3 � x2; and for p = 2, p = 5 and p = 10, we have x3 � x2 � x1 � x4.

Example 4.2. Similarly to the previous example, Table 7 includes the assessments
given by seven voters to three alternatives x1, x2 and x3 arranged from the lowest to
the highest labels.

x1 l1 l1 l2 l3 l6 l6 l6
x2 l2 l3 l3 l3 l6 l6 l6
x3 l3 l3 l3 l3 l4 l4 l4

Table 7: Assessments in Example 4.2

Clearly, the individual assessments of the three alternatives share the same median,
l3. According to the MJ tie-breaking process, we have

t(x1) = 0 < 1 = t(x2) = t(x3)
N+(x1) = N+(x2) = N+(x3) = 3
N−(x3) = 0 < 1 = N−(x2) < 3 = N−(x1).

Thus, MJ produces the outcome x3 � x2 � x1.
This outcome does not seem logical, because x2 has a clear advantage over x3. On

the other hand, RV ranks order the alternatives as follows: x2 � x1 � x3, since the
mean of the individual assessments’ subindexes are 3.571, 4.143 and 3.429 for x1,
x2 and x3, respectively.

We now consider the distance-based procedure for seven values of p, the same
considered in the previous example. Table 8 shows the influence of these values on
(l(xj), D(xj)), for j = 1, 2, 3.

Notice that in this example the same ranking is obtained for all the considered
values of p: x2 � x1 � x3. This outcome coincides with RV, and it is more consistent
than that obtained by MJ.
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p = 1 p = 1.25 p = 1.5 p = 1.75 p = 2 p = 5 p = 10
x1 (l3, 4) (l3, 3.168) (l3, 2.702) (l4, −1.475) (l4, −1.332) (l4, −1.000) (l4, −0.986)

x2 (l3, 8) (l4, 0.975) (l4, 0.922) (l4, 0.868) (l4, 0.818) (l4, 0.455) (l4, 0.235)

x3 (l3, 3) (l3, 2.408) (l3, 2.080) (l3, 1.873) (l3, 1.732) (l3, 1.246) (l3, 1.116)

Table 8: (l(xj), D(xj)) in Example 4.2

5 Concluding remarks

In this paper we have presented an extension of the Majority Judgement voting system
developed by Balinski and Laraki [2, 3, 4, 5]. This extension is based on a distance
approach but it also uses linguistic labels to evaluate the alternatives. We choose as
the collective assessment for each alternative a label that minimizes the distance to
the individual assessments. It is important to note that our proposal coincides in this
aspect with Majority Judgement whenever the Manhattan metric is used.

We also provide a tie-breaking process through the distances between the individ-
ual assessments higher and lower than the collective one. This process is richer than
the one provided by Majority Judgement, which only counts the number of alterna-
tives above or below the collective assessment, irrespectively of what they are. We
also note that our tie-breaking process is essentially different to Majority Judgement
even when the Manhattan metric is considered.

It is important to note that using the distance-based approach we pay attention to
all the individual assessments that have not been chosen as the collective assessment.
With the election of a specific metric of the Minkowski family we are deciding how to
evaluate these other assessments. We may distinguish four cases:

1. If p = 1, the collective assessment is just the median label and no other individ-
ual assessment is relevant in this stage. However, in the tie-breaking process, all
the individual assessments are taken into account, each of them with the same
weight or importance.

2. If p = 2, the collective assessment is a kind of “mean” of the individual as-
sessments because it minimizes the Euclidean distance to the individual assess-
ments. In this stage all the voters have the same importance. However, in the
tie-breaking process we are giving more importance to the assessments that are
further to the collective assessment than to those labels that are closer to the
collective assessment.

3. If p ∈ (1, 2), we are moving between the two previous cases. The collective
assessment gives less importance to the median of the individual assessments and
more to the other assessments whenever p increases. In the tie-breaking process
higher values of p give more importance to extreme individual assessments and
the smaller p, the more egalitarian the procedure will be (with the individual
assessments).

4. If p ∈ (2,∞), the collective assessment depends on the extreme assessments
more than on the central ones, the higher p, the more intense this dependency
will be. If they are balanced in both sides, this has no effect in the final outcome.
But if one of the sides has more extreme opinions, the collective label will go
close to them. The tie-breaking process gives also more weight to the extreme
opinions.
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These aspects provide flexibility to our extension and it allows to devise a wide
class of voting systems that may avoid some of the drawbacks related to Majority
Judgement and Range Voting without losing their good features. This becomes spe-
cially interesting when the value of the parameter p in the Minkowski family belongs
to the open interval (1, 2), since p = 1 and p = 2 correspond to the Manhattan
and the Euclidean metrics, respectively, just the metrics used in Majority Judgement
and Range Voting. For instance, the election of p = 1.5 allows us to have a kind of
compromise between both methods.

As shown in the previous examples, when the value of parameter p increases,
the distance-based procedure focuses more and more on the extreme assessments.
However, if the individual assessments are well balanced on both sides, the outcome
is not very affected by the parameter p.

In further research we will analyze the properties of the presented extension of
Majority Judgement within the Social Choice framework.
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1 Introduction

In this paper, we give a brief review of our work concerning the σ-number of two infi-
nite classes of graphs with cyclic structure – prisms and Isaacs graphs. The paper also
contains several research announcements of results to be published in the extended
version of the paper containing detailed proofs.

The S(2, 1)-labeling problem is a variation of the L(2, 1)-labeling problem or, more
general, of the L(d1, d2)-labeling problem – a survey on the L(d1, d2)-labeling problem
is given by Calamoneri in [1]. An r-S(2, 1)-labeling of a graph G is a mapping from
the vertex-set of G to the cyclic group Zr such that every pair of vertices adjacent
in G has labels at least 2 apart in Zr and simultaneously every pair of vertices at
distance 2 in G has distinct labels in Zr. The σ-number of a graph G is the smallest
r such that G admits an r-S(2, 1)-labeling. A survey on the σ-number is presented
by Yeh in [5].

Figure 1: Prism

Although a prism can be regarded as the Cartesian product of a cycle and of the
complete graph of order 2, a different equivalent description is more suitable for us. A

Copyright c© 2011 Matej Bel University
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prism Ym, for m ≥ 3, is a graph consisting of m segments isomorphic to the complete
graph K2 arranged into a cycle, where both vertices of a given segment are connected
to the corresponding vertices of the preceding and of the succeeding segments – a plain
given segment and its incidence with the dashed preceding and the dashed succeeding
segments are shown in Figure 1. The Isaacs graphs form a superclass of the Isaacs
snarks constructed by Isaacs in [4], as only odd members of the class are snarks. The
Isaacs graph Jm, for m ≥ 3, is a graph consisting of m segments isomorphic to the
claw K1,3 arranged into a cycle, where the leaves of a given segment are connected to
the leaves of the preceding and of the succeeding segments in the manner indicated in
Figure 2 – the given segment is plain while the preceding and the succeeding segments
are dashed.

Figure 2: The Isaacs graph

2 Strategy

In order to determine the σ-number of a graph, we investigate whether or not the
graph admits an r-S(2, 1)-labeling. It follows from the definition of the σ-number
that if a graph does admit an r-S(2, 1)-labeling, then its σ-number is at most r and,
conversely, if a graph does not admit an r-S(2, 1)-labeling, then its σ-number is at
least r + 1.

To find out whether a graph G admits an r-S(2, 1)-labeling, we proceed in two
steps. First, we cover G with overlapping subgraphs in such a way that for every
pair of vertices adjacent in G, as well as for every pair of vertices at distance 2 in G,
there is at least one of the covering subgraphs in which the vertices have the same
distances as in G. Second, we take such r-S(2, 1)-labelings of the subgraphs that
the labels of vertices in the overlapping parts match, so that they naturally form
an r-S(2, 1)-labeling of G. In the second step, we obtain an r-S(2, 1)-labeling of G
because of the choice of the covering subgraphs in the first step. Conversely, if no such
r-S(2, 1)-labelings of the subgraphs exist that the labels of vertices in the overlapping
parts match, then no r-S(2, 1)-labeling of G exists.

In the following, let Gm stand for Ym or Jm. Due to the cyclic structure of Gm,
we can choose m isomorphic subgraphs to cover Gm. To fulfil the conditions for the
cover, we take m subgraphs isomorphic to the graph YC shown in Figure 3 to cover
Ym and m subgraphs isomorphic to the graph JC shown in Figure 4 to cover Jm.
Now, let GC stand for YC whenever Gm = Ym and let GC stand for JC whenever
Gm = Jm. We cover the i-th, the (i + 1)-st and the (i + 2)-nd segment of Gm with
the i-th copy of GC ; throughout, indices are taken modulo m. Now, we have to
determine all r-S(2, 1)-labelings of GC and to find out whether there are m-tuples of
these r-S(2, 1)-labelings which can be assigned to the copies of GC in such a way that
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Figure 3: The graph YC

Figure 4: The graph JC

the labels of vertices in the overlapping parts match. We call an r-S(2, 1)-labeling li
of GC concatenable with the r-S(2, 1)-labeling li+1 of GC if li+1 labels the vertices
of the left and of the central segments of GC with the same labels as li labels the
corresponding vertices of the central and of the right segments of GC . Furthermore,
we call a cyclic m-tuple of r-S(2, 1)-labelings of GC concatenable if the i-th r-S(2, 1)-
labeling of GC is concatenable with the (i + 1)-st r-S(2, 1)-labeling of GC for every
i. Since there is a one-to-one correspondence between the r-S(2, 1)-labelings of Gm

and the concatenable cyclic m-tuples of r-S(2, 1)-labelings of GC , the existence of a
concatenable cyclic m-tuple of r-S(2, 1)-labelings of GC is a sufficient and a necessary
condition for the existence of an r-S(2, 1)-labeling of Gm. We define a directed graph
Dr(GC) whose vertex-set is formed by the r-S(2, 1)-labelings of GC and which has
an arc from one r-S(2, 1)-labeling of GC to an another precisely when the former
r-S(2, 1)-labeling of GC is concatenable with the latter. It follows from the definition
of Dr(GC) that the existence of a concatenable cyclic m-tuple of r-S(2, 1)-labelings
of GC is equivalent to the existence of a closed walk of length m in Dr(GC).

Since the number of r-S(2, 1)-labelings of GC might be very large for both GC =
YC and GC = JC , we use the action of translations and reflections of Zr and the
action of the automorphism group of GC to partition the r-S(2, 1)-labelings of GC

into orbits. Subsequently, we only consider the representatives of these orbits. Having
determined all representatives, we can reconstruct all r-S(2, 1)-labelings of GC by
applying automorphisms of GC and translations and reflections of Zr.

Since Gm is a cubic graph, it contains the claw K1,3 as a subgraph. Observe that
the σ-number of K1,3 is equal to 6. Since the σ-number of a subgraph does not exceed
the σ-number of the supergraph, we conclude that the σ-number of Gm is at least 6.
Thus, we only have to investigate the r-S(2, 1)-labelings of Gm and GC for r at least
6.

Due to the large number of distinct r-S(2, 1)-labelings of GC the proofs are rather
involved, although straightforward. We omit them by referring to the author’s PhD.
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Thesis [2].

3 Prisms

For r = 6, we have twelve distinct r-S(2, 1)-labelings of YC . It is easy to see that
in the directed graph D6(YC), there are closed walks of length m if and only if m ≡
0 (mod 3). Therefore σ(Ym) = 6 for m ≡ 0 (mod 3) and σ(Ym) ≥ 7 for m 6≡
0 (mod 3).

For r = 7, we have 196 distinct r-S(2, 1)-labelings of YC . From the directed graph
D7(YC), we construct a directed voltage graph D′ of order 28 with voltages in Z7 such
that there exists a closed walk of lengthm inD7(YC) if and only if there exists a closed
walk of length m with net voltage of 0 in D′. More details on voltage graphs can be
found in [3] by Gross and Tucker. It can be shown that in D′, there are closed walks
of length m with net voltage of 0 if and only if m /∈ {4, 5, 8, 11}. Therefore σ(Ym) = 7
for m 6≡ 0 (mod 3) and m /∈ {4, 5, 8, 11} and σ(Ym) ≥ 8 for m ∈ {4, 5, 8, 11}.

For r = 8, we can find r-S(2, 1)-labelings of YC that can form a concatenable
cyclic m-tuple of r-S(2, 1)-labelings of YC for every m ≥ 3. Therefore σ(Ym) = 8 for
m ∈ {4, 5, 8, 11}.

Summarizing previous results, we obtain the following theorem.

Theorem 3.1. [2, Theorem 3.1] Let Ym be a prism of order 2m, for m ≥ 3. Then

σ(Ym) =





6 for m ≡ 0 (mod 3)
7 for m 6≡ 0 (mod 3) and m /∈ {4, 5, 8, 11}
8 for m ∈ {4, 5, 8, 11}.

4 The Isaacs graphs

For r = 6, we have no r-S(2, 1)-labelings of JC . Therefore σ(Jm) ≥ 7 for every m ≥ 3.
For r = 7, we have 1176 distinct r-S(2, 1)-labelings of JC . From the directed

graph D7(JC), we construct its adjacency matrix A. Observe that a closed walk of
length m in D7(JC) exists if and only if there exists a non-zero diagonal element in
Am. By calculating the powers of A, we can see that there are non-zero diagonal
elements in Am if and only if m /∈ {3, 4, 5, 7, 8, 9, 11}. Therefore σ(Jm) = 7 for
m /∈ {3, 4, 5, 7, 8, 9, 11} and σ(Jm) ≥ 8 for m ∈ {3, 4, 5, 7, 8, 9, 11}.

For r = 8, we can find r-S(2, 1)-labelings of JC that can form a concatenable
cyclic m-tuple of r-S(2, 1)-labelings of JC for every m ≥ 3. Therefore σ(Jm) = 8 for
m ∈ {3, 4, 5, 7, 8, 9, 11}.

Summarizing previous results, we obtain the following theorem.

Theorem 4.1. [2, Theorem 4.1] Let Jm be an Isaacs graph of order 4m, for m ≥ 3.
Then

σ(Jm) =
{

7 for m /∈ {3, 4, 5, 7, 8, 9, 11}
8 for m ∈ {3, 4, 5, 7, 8, 9, 11}.

5 Remarks

The presented strategy can be used to calculate the σ-number of other graphs with
cyclic structure. Besides this, after minor modifications, it can be used to determine
also the σ-number of graphs with nearly cyclic structure – for instance the σ-number
of the generalized Blanuša snarks investigated in a subsequent paper.
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Abstract
The aim is to approve the Central limit theorem on MV-algebras by the new approach,
presented by Riečan in [1]. We use the observable as a distribution function instead of the
σ-homomorphism. The main idea is in local representation of σ-algebras.
The following theorem is proved: Let M be a σ-complete MV-algebra with product, m :
M −→ 〈0, 1〉 be a σ- additive state, (xn)n be a sequence of independent, equally distributed,
square integrable strong observables. Hence E [x1] = E [x2] = ... = a, σ(x1) = σ(x2) = ... =
σ. Then for any t ∈ R
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Seeing that the paper [1] haven’t been published yet, let us summarize the main ideas
of Riečan’s new approach to probability on MV-algebras. We will do it in the first two
paragraphs. In Paragraph 3 will we present our main result - a proof of the central
limit theorem.

1 MV-algebras

We shall use an excellent characterization of MV-algebras given by D . Mundici ([3])
by the help of l-groups. An l-group is an algebraic system

(G,+,≤)

such that

Copyright c© 2011 Matej Bel University
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(G,+) is an Abelian group,
(G,≤) is a partially ordered set being a lattice,
a ≤ b =⇒ a+ c ≤ b+ c for and a, b, c in G.

A typical example of an MV-algebra is the unit interval 〈0, 1〉 of real numbers with
two binary operations ⊕,�,

a⊕ b = (a+ b) ∧ 1
a� b = (a+ b− 1) ∨ 0

with the partial ordering ≤, and two fixed elements 0, 1 (0 is the least element of ≤,
1 is the greatest element of ≤).

Generally the situation is analogous.

Definition 1.1. An MV-algebra is an algebraic system

(M,⊕,�,≤, 0, u),
where

M = 〈0, u〉
is an interval in an l-group G = (G,+,≤), 0 is the neutral element of G (i.e. a+0 = a
for any a ∈ G), u is the strong unit of G (i.e. to any a ∈ G there exists n ∈ N such
that a ≤ u+ u+ ...+ u(n-times)),

a⊕ b = (a+ b) ∧ u,
a� b = (a+ b− u) ∨ 0.

In two-valued logic Boolean algebras can be represented e.g. by charateristic
functions χA : Ω→ {0, 1} where,

χA(v) =
{ 1, if v ∈ A,

0, if v /∈ A.

In multi-valued logic MV-algebras instead of two-valued functions

χA : Ω→ {0, 1},
multivalued functions

µA : Ω→ 〈0, 1〉
are considered. Evidently

χA ⊕ χB = χA∪B , χA � χB = χA∩B .

Hence µA � µB can be considered as the conjunction, µA ⊕ µB as the disjunction,
1− µA as the negation.

Unlike in [4], Riečan uses more general definition of a state and an observable
in [1].
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Definition 1.2. A state on an MV-algebraM is a mappingm : M → 〈0, 1〉 satisfying
the following conditions:

(i) m(u) = 1,m(0) = 0;

(ii) an ↗ a =⇒ m(an)↗ m(a);

(iii) (iii) an ↘ a =⇒ m(an)↘ m(a).

Definition 1.3. Let J = {(−∞, t); t ∈ R}. An observable on M is any mapping
x : J →M satisfying the conditions:

(i) tn ↗∞ =⇒ x((−∞, tn))↗ u;

(ii) tn ↘ −∞ =⇒ x ((−∞, tn))↘ 0;

(iii) tn ↗ t =⇒ x((−∞, tn))↗ x((−∞, t)).

Thus, a distribution function can be created as a composition of the observable and
the state (see also [1]).

Theorem 1.4. Let m : M → 〈0, 1〉 be a state, x : J → M be an observable. Define
F : R→ 〈0, 1〉 by the formula

F (t) = m(x((−∞, t))), t ∈ R
Then F has the following properties:

(i) F is non-decreasing;

(ii) limt→∞ F (t) = 1;

(iii) limt→−∞ F (t) = 0;

(iv) F is left continuous in any point t ∈ R.

Proof is straightforward.
Recall that in the Kolmogorov theory the mean value E(ξ) of a random variable

ξ : (Ω,S, P )→ R is defined as an integral

E(ξ) =
∫

Ω
ξdP.

Let g : R→ R be a Borel measurable function. The transformation formula states

E(g ◦ ξ) =
∫

R

g(t)dF (t),

where F is the distribution function of ξ. Therefore

E(ξ) =
∫

R

tdF (t),

E(ξ2) =
∫

R

t2dF (t),

σ(ξ)2 = E(ξ2)− E(ξ)2 =
∫

R

t2dF (t)− (
∫

R

tdF (t))2.



38 Jana Kelemenová, Mária Kuková

Definition 1.5. An observable x : J →M is called to be integrable if there exists

E(x) =
∫

R

tdF (t),

where F : R→ 〈0, 1〉 is the distribution function of the observable x. The observable
x is square integrable, if there exists

∫

R

t2dF (t).

2 MV algebras with product

Similarly as in [2] we shall work with a further binary operation called product (see
also [4] and [5]). Recall that an MV algebra in an interval is an l-group (G,+,≤) and
denote by – the inverse group operation, i.e. a− a = 0 for any a ∈ G.
Definition 2.1. An MV-algebra with product is a pair(M, ·), where M is an MV-
algebra and · is a commutative and associative binary operation on M satisfying the
following conditions:

(i) u · a = a for any a ∈M ;

(ii) a · ((b− c) ∨ 0) = (a · b− a · c) ∨ 0 for any a, b, c ∈M .

The first problem we shall solve is the construction of sums of observables. In the
classical case

(ξ + η) = g ◦ T, where T = (ξ, η) ; Ω −→ R2, g : R2 −→ R, g(u, v) = u+ v.

Therefore

(ξ + η)−1 = T−1 ◦ g−1.

Of course,

g−1 ((−∞, t)) = {(u, v) ;u+ v < t} = Dt.

Hence instead of T−1 we shall construct a mapping

h : {Dt; t ∈ R} −→M.

We will use the notation

x ( 〈a, b)) = x ((−∞, b))− x ((−∞, a))

Definition 2.2. For t ∈ R put

h (Dt) =
∞∨

n=1

∞⊕

i=−∞

[
x

(
〈 i− 1

2n ,
i

2n

))
. y

((
−∞, t− i

2n

))]

Theorem 2.3. Let M be a σ-complete MV-algebra with product, x, y : J −→ M be
observables, then the mapping z : J −→M defined by

z ((−∞, t)) = h (Dt) ,

is an observable.
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Proof. The properties (i) and (ii) of Definition 1.3 follows by the inequalities

x ((−∞, k)) . y ((−∞, k)) ≤ z ((−∞, 2k)) ≤ x ((−∞, 2k)) ∨ y ((−∞, k))

holding for any k ∈ Z. By [4, Proposition 3.2] we have

c. (a ∨ b) = (c .a) ∨ (c. b)
for any a, b, c ∈M. Therefore, if tk ↗ t, then

∞⊕

k=1
z ((−∞, tk)) =

∞⊕

k=1

∞∨

n=1

∞⊕

i=−∞
x

(
〈 i− 1

2n ,
i

2n

))
. y

((
−∞, tk −

i

2n

))
=

=
∞∨

n=1

∞⊕

i=−∞
x

(
〈 i− 1

2n ,
i

2n

))
.

( ∞⊕

k=1
y

((
−∞, tk −

i

2n

)))
= z ((−∞, t)) .

Definition 2.4. Let M be a σ-complete MV-algebra with product, x, y : J −→ M
be observables. Then its sum is defined by the formula

(x+ y) ((−∞, t)) = h (Dt) = h
(
g−1 ((−∞, t))

)
.

Remark 2.5. Evidently Theorem 2.3 and Definition 2.4 can be generalized for n
summs and x1, ..., xn : J −→M :

Dn
t = {(m1, ...,mn) ;m1 + ...+mn < t} ,Mn = {Dn

t ; t ∈ R} ,

gn (m1, ...,mn) = m1 + ...+mn

hn : Mn −→M,x1 + ...+ xn ((−∞, t)) = hn (Dn
t ) = hn

(
g−1
n ((−∞, t))

)
,

hence
(

n∑

i=1
xi

)
((−∞, t)) = hn

(
g−1
n ((−∞, t))

)
,

n∑

i=1
xi = hn ◦ g−1

n .

The second problem solved in the section is a characterization of independence of
observables in MV-algebras.

Definition 2.6. Observables x1, ..., xn are independent, if for any t1, ..., tn ∈ R

m (hn ((−∞, t1)× (−∞, t2)× ...× (−∞, tn))) =

= m (x1 ((−∞, t1))) .m (x2 ((−∞, t2))) . ... .m (xn ((−∞, tn))) .
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Remark 2.7. In the Kolmogorov theory also the following two assertions hold:

1. If F : R −→ 〈0, 1〉 is a distribution function, then there exists exactly one
probability measure λF : B (R) −→ 〈0, 1〉 such that

λF ( 〈a, b)) = F (b)− F (a)

for any a, b ∈ R, a ≤ b

2. If F1, ..., Fn : R −→ 〈0, 1〉 are distribution functions, then there exists exactly
one probability measure λF : B (Rn) −→ 〈0, 1〉 such that

λF (A1 ×A1 × ...×An) = λF1 (A1) . λF2 (A2) . ... .λFn
(An)

for any A1, A2, ..., An ∈ B (R). Notation λF = λF1 × λF2 × ...× λFn
.

Definition 2.8. An observable x : J −→M is called strong, if

〈a, b) ∩ 〈c, d) = ∅ =⇒ (x (〈a, b)) .α) . (x (〈c, d)) .β) = 0

for any α, β ∈M .

Definition 2.9. A state m : M −→ 〈0, 1〉 is called σ-additive, if

m

( ∞⊕

n=1
an

)
=
∞∑

n=1
m (an)

whenever an ∧ am = 0 (n 6= m) , an ∈M .

Theorem 2.10. Let M be σ- complete MV-algebra with product, m be a σ-additive
state, x1, . . . , xn independent strong observables. Then

λF1 × ...× λFn
(Dn

t ) = m (h (Dn
t ))

for any t ∈ R.

Proof. We have

Dt =
∞⋃

n=1

∞⋃

i=−∞
〈 i− 1

2n ,
i

2n 〉 ×
(
−∞, t− i

2n

)

h(Dt) =
∨

n

⊕

i

x1

(
〈 i− 1

2n ,
i

2n

))
· x2

((
−∞, t− i

2n

))

λF1( 〈a, b)) = F1(b)− F1(a)
F1(b) = m (x1((−∞, b)))

We shall present it for n = 2. Of course, since x1 is strong,

x1

(
〈 i− 1

2n ,
i

2n

))
· x2

((
−∞, t− i

2n

))
. x1

(
〈j − 1

2n ,
j

2n

))
·x2

((
−∞, t− j

2n

))
=

= x1 ( 〈a, b)) .α.x1 ( 〈c, d)) · β = 0
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for i 6= j. Therefore

m

( ∞⊕

i=−∞
x1

(〈
i− 1
2n ,

i

2n

))
· x2

((
−∞, t− i

2n

)))
=

=
∞∑

i=−∞
m

(
x1

(
〈 i− 1

2n ,
i

2n

))
· x2

((
−∞, t− i

2n

))

hence

λF1 × λF2 (Dt) = λF1 × λF2

( ∞⋃

n=1

∞⋃

i=−∞

(
〈 i− 1

2n ,
i

2n

)
×
(
−∞, t− i

2n

))
=

= lim
n→∞

∞∑

i=−∞
λF1 × λF2

(
〈 i− 1

2n ,
i

2n

)
×
(
−∞, t− i

2n

))
=

= lim
n→∞

∞∑

i=−∞
λF1

(
〈 i− 1

2n ,
i

2n

))
. λF2

((
−∞, t− i

2n

))
=

= lim
n→∞

∞∑

i=−∞
m

(
x1

(
〈 i− 1

2n ,
i

2n

)))
.m

(
x2

((
−∞, t− i

2n

)))
=

= lim
n→∞

∞∑

i=−∞
m

(
x1

(
〈 i− 1

2n ,
i

2n

))
. x2

((
−∞, t− i

2n

)))
.

= m

( ∞∨

n=1

∞⊕

i=−∞
x

(
〈 i− 1

2n ,
i

2n

))
.

( ∞⊕

k=1
y

((
−∞, tk −

i

2n

))))
= z ((−∞, t))

= m (h2 (Dn
t )) .

3 Central limit theorem

We have founded our reasoning on the Kolmogorov theory.

Theorem 3.1. Let (Ω,S, P ) be a probability space, (ξn)n be a sequence of indepen-
dent, square integrable, equally distributed random variables. Let E(ξ1) = E(ξ2) =
a, σ(ξ1) = σ(ξ2) = ... = σ. Then for any t ∈ R

lim
n→∞

P

(
( 1
n

∑n
i=1 ξi)− a
σ√
n

< t

)
= 1√

2π

∫ t

−∞
e−

u2
2 du.

Let (xn)n be a sequence of independent observables. We have already defined
n∑

i=1
xi((−∞, t)) = hn ◦ g−1

n ((−∞, t)),

where
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gn(u1, ..., un) = u1 + ...+ un.

And we have to define

( 1
n

∑n
i=1 ξi − a)
σ√
n

((−∞, t)) .

Where

1
n

∑n
i=1 ξi − a
σ√
n

< t

if and only if
n∑

i=1
ξi <

(
t
σ√
n

+ a

)
n.

Then we can define

Definition 3.2. Let M be a σ-complete MV-algebra with product, x1, ..., xn be
independent observables. Then we define

( 1
n

∑n
i=1 xi − a)
σ√
n

((−∞, t)) = (
n∑

i=1
xi)
((
−∞, (t σ√

n
+ a)n

))

= hn

(
g−1
n

((
−∞, (t σ√

n
+ a)n

)))
= hn ◦ g−1

n

((
−∞, (t σ√

n
+ a)n

))
.

Theorem 3.3. Let M be a σ-complete MV-algebra with product, m : M → 〈0, 1〉
be a σ-additive state, (xn)n be a sequence of independent, equally distributed, square
integrable strong observables. Denote E [x1] = E [x2] = ... = a, σ(x1) = σ(x2) = ... =
σ. Then for any t ∈ R

lim
n→∞

m

(
1
n

∑n
i=1 xi − a
σ√
n

((−∞, t))
)

= 1√
2π

∫ t

−∞
e−

u2
2 du

Proof. Now we have to construct Kolmogorov probability space (depending on the
sequence (xn)n). For any n ∈ N define

µn = λF1 × λF2 × ...× λFn
: B(Rn)→ 〈0, 1〉 .

Then (µn)n presents a consistent system of probability measures, i.e.

µn+1|B(Rn) = µn.

Let C be the family of all cylinders in RN , i.e. all sets of the form

{(un)∞n=1 ∈ RN ;ui1 ∈ A1, ui2 ∈ A2, ..., uik ∈ Ak}.
Then, using the Kolmogorov consistence theorem, there exists exactly one probability
measure
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P : σ(C)→ 〈0, 1〉
such that

P (π−1
n (A)) = µn(A)

for any n ∈ N,A ∈ B(Rn), where πn : RN → Rn is the projection

πn((ui)∞i=1) = (u1, ..., un).

Now we have obtained a probability space

(RN , σ(C), P ).

Next, define

ξk : RN → R

by the formula

ξk((ui)∞i=1) = uk.

Compute

Pξk
((−∞, t)) = P ({un ∈ Rn;uk < t}) =

= λF1 × ...× λFk
(R×R× ...×R× (−∞, t)) =

= λFk
((−∞, t)).

hence ξk : RN → R and xk : J →M have the same distribution function. Especially

E(ξk) =
∫

R

tdFk(t) = E(xk).

Moreover, put

ηn =
1
n

∑n
i=1 ξi − a
σ√
n

and

yn =
1
n

∑n
i=1 xi − a
σ√
n

i.e.

η−1
n ((−∞, t)) = π−1

n

(
g−1
n

((
−∞, (t σ√

n
+ a)n

)))

and

yn ((−∞, t)) =
(

1
n

∑n
i=1 xi − a
σ√
n

)
((−∞, t)) =
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= hn

(
g−1
n

((
−∞, (t σ√

n
+ a)n

)))

Then

P
(
η−1
n ((−∞, t))

)
= P

(
π−1
n

(
g−1
n

((
−∞, (t σ√

n
+ a)n

))))
=

= m

(
hn

(
g−1
n

((
−∞, (t σ√

n
+ a)n

))))
= m (yn ((−∞, t))) .

Now we shall prove that (ξn)n are independent:

P
(
ξ−1
1 ((−∞, t1)) ∩ ξ−1

2 ((−∞, t2)) ∩ ... ∩ ξ−1
n ((−∞, tn))

)
=

= P ◦ π−1
n ((−∞, t1)× (−∞, t2)× ...× (−∞, tn)) =

= m ◦ hn ((−∞, t1)× (−∞, t2)× ...× (−∞, tn)) ) =

= m (hn ((−∞, t1)× (−∞, t2)× ...× (−∞, tn))) =

= m (x1((−∞, t1))) .m (x2((−∞, t2))) . ... .m (xn((−∞, tn))) =

= P
(
ξ−1
1 ((−∞, t1))

)
.P
(
ξ−1
2 ((−∞, t2))

)
. ... .P

(
ξ−1
n ((−∞, tn))

)
.

Therefore by Theorem 3.1, Theorem 2.10 and the statement

P (η−1
n ((−∞, t))) = m (yn((−∞, t))) ,

for a = E (ξ1) = E (ξ2) = ... = E (ξn) we have

lim
n→∞

P

(
1
n

∑n
i=1 ξi − a
σ√
n

< t

)
= lim
n→∞

P
(
η−1
n ((−∞, t))

)
=

= lim
n→∞

P

(
π−1
n

(
g−1
n

((
−∞, (t σ√

n
+ a)n

))))
=

= lim
n→∞

P ◦ π−1
n

(
g−1
n

((
−∞, (t σ√

n
+ a)n

)))
=

= lim
n→∞

m

(
hn

(
g−1
n

((
−∞, (t σ√

n
+ a)n

))))
=

= lim
n→∞

m (yn((−∞, t))) = lim
n→∞

m

(
1
n

∑n
i=1 xi − a
σ√
n

((−∞, t))
)

=

= 1√
2π

∫ t

−∞
e−

u2
2 du.
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Remark 3.4. We have shown, that on σ-complete MV-algebra with product, each
observable corresponds to a random variable with the same distribution, and a couple
of independent observables corresponds to a couple of independent random variables.
This way all version of central limit theorems can be translated into the languange of
σ-complete MV-algebras with product. However, that was not the aim of this paper.
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Abstract
Kernel density estimates belong to the most popular nonparametric density estimates. It is
well known that these estimates depend on a bandwidth, which controls the smoothness of
the estimate, and on a kernel, which plays a role of weight function.
We focus on the kernel function choice, especially on kernels with bounded supports. Our
aim is to study the kernel optimality with respect to the bandwidth choice. In a simulation
we show a comparison of the kernels. We propose that the cosine kernel may be a good
alternative to the frequently used Epanechnikov kernel.
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1 Kernel density estimation

The concept of nonparametric estimates was introduced in the fifties and sixties, see
e.g. [3, 5] and references therein. After years, there are still problems to be solved or
to be improved.

Let a d-variate random sample X1, . . . , Xn come from distribution with a density
f . The kernel density estimator f̂ is defined as a weighted average of observations

f̂(x, H) = 1
n

n∑

i=1
KH(x−Xi) = 1

n
|H|−1/2

n∑

i=1
K
(
H−1/2(x−Xi)

)
.

K is a d-variate kernel function, which is often taken to be a probability density
function satisfying

∫
Rd K(x) dx = 1, where we omit the subscript Rd in the rest of

the text. H is a symmetric positive definite d× d matrix called a bandwidth matrix
and x = (x1, . . . , xd)T ∈ Rd is a generic vector.

Transfer of the kernel estimation from univariate settings to the multivariate set-
tings brings a few new issues. The first problem is to find a kernel and the second one
is to find an optimal bandwidth. There are two common ways to create the multivari-
ate kernel K from the univariate kernel k: the product kernel KP (x) =

∏d
i=1 k(xi)

∗This research was supported by Masaryk University under the Student Project Grant
MUNI/A/1001/2009.
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and the spherically symmetric kernel KS(x) = c−1
k k((xT x)1/2), ck =

∫
k(
√

xT x) dx.
Let us denote the class of symmetric positive definite d × d matrices as HF . One
needs to choose d(d + 1)/2 distinct entries of matrix H ∈ HF , which is computa-
tionally intensive. On the other hand, using a single parameter simplification, i.e.
H = h2 · Id (Id is a d×d identity matrix), is not advised for data which have different
dispersions in the co-ordinate directions, see [4]. Thus, the diagonal matrix class HD
(H = diag(h2

1, . . . , h
2
d)) seems to be a compromise between computational speed and

sufficient flexibility.
Mean integrated square error (MISE) quantifies the performance of a multivariate

kernel density estimator. MISE can be rewritten as a sum of an integrated variance
and an integrated square bias

MISE(H) = E

∫ [
f̂(x, H)− f(x)

]2 dx =
∫

Var f̂(x, H) dx +
∫

Bias2 f̂(x, H) dx.

It is easy to see, that finding the bandwidth matrix HMISE, which minimizes this
error, is very difficult. Wand and Jones [5] derived, under some assumptions on the
density f , the kernel function K, and the bandwidth matrix H, the asymptotic mean
integrated square error

AMISE(H) = n−1|H|−1/2V (K) + 1
4β2(K)2(vechH)T Ψ4(vechH).

V (K) =
∫
K2(x) dx, β2(K) =

∫
x2

iK(x) dx is independent of i and vech is a vector
half operator, i.e. for a matrixM , vechM is a d(d+1)/2×1 vector of stacked columns
of the lower triangular matrix of M . The matrix Ψ4 includes entries depending on
the unknown density f . For a d-variate function g and for a vector r = (r1, . . . , rd)
of non-negative integers, g(r) is defined

g(r)(x) = ∂|r|

∂xr1
1 · · · ∂xrd

d

g(x)

assuming that the derivative exists. The notation |r| is for the sum of the components
of the vector r. Each entry of Ψ4 can be written, under sufficient conditions, in the
form ψr =

∫
f (r)(x)f(x) dx, where |r| is even (see Section 4.3 in [5]).

2 Simulation study

2.1 Cross-validation methods
There is a wide range of methods for the optimal bandwidth choice, thus we aimed
our study to cross-validation (CV) methods.

The most widely used cross-validation method is the least square cross-validation
method (LSCV) [5].

LSCV(H) =
∫ (

f̂(x, H)
)2 dx− 2

n

n∑

i=1
f̂−i(Xi, H),

is the LSCV objective function, where f̂−i(Xi, H) = (n − 1)−1∑n
j=1,j 6=i KH(Xi −

Xj) is a leave-one-out estimator of f . LSCV function can be written in terms of
convolutions (f ∗ g)(x) =

∫
R f(t)g(x− t) dt (see e.g. [1])

LSCV(H) = n−1(n− 1)−1
n∑

i=1

n∑

j=1
i6=j

(KH ∗KH − 2KH)(Xi −Xj) + n−1V (K)|H|−1/2.
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LSCV is also called the unbiased cross-validation, because the LSCV(H) function is
unbiased in the sense that E[LSCV(H)] = MISE(H)−

∫
f2(x) dx.

Biased cross-validation (BCV) method estimates AMISE, i.e. BCV is a biased
estimate of MISE. There are two types of BCV, depending on the way of estimating
functionals ψr [1]:

BCV1(H) = n−1V (K)|H|−1/2 + 1
4β2(K)2(vechH)T Ψ̂4(vechH),

where

ψ̂r = n−2
n∑

i=1

n∑

j=1,
j 6=i

(
K

(r)
H ∗KH

)
(Xi −Xj).

The latter is defined by the function

BCV2(H) = n−1V (K)|H|−1/2 + 1
4β2(K)2(vechH)T Ψ̃4(vechH),

with

ψ̃r = n−1
n∑

i=1
f̂

(r)
−i (Xi, H) = n−1(n− 1)−1

n∑

i=1

n∑

j=1,
j 6=i

K
(r)
H (Xi −Xj).

2.2 Kernels
We focused on studying the product kernels with bounded supports. Due to a wide
range of the class of the kernels with bounded supports D : {[x1, x2] ∈ R2 : |x1| ≤
1 ∧ |x2| ≤ 1}, we selected the easiest five two-dimensional kernels listed in Table 1.
Their one-dimensional representations are displayed in Figure 1.

K(x1, x2) V (K) β2(K)
Uniform 1/4 1/4 1/3
Epanechnikov 9/16(1− x2

1)(1− x2
2) 9/25 1/5

Biweight 225/256(1− x2
1)2(1− x2

2)2 25/49 1/7
Cosine π2/16 cos(x1π/2) cos(x2π/2) (π/4)4 1− 8/π2

Triangular (1− |x1|)(1− |x2|) 4/9 1/6

Table 1: Two-dimensional product kernels with bounded supports.

Remark 2.1. Epanechnikov kernel is the optimal kernel in the AMISE sense, i.e.
Epanechnikov kernel minimizes the functional T (K) = [V (K)β2(K)]2/3 (see [5]).
From eff(K) = [T (K)/T (KEpan)]3/2 is apparent that the cosine kernel is a convenient
alternative to Epanechnikov kernel.

2.3 Densities
We drew samples of the size n = 50 and n = 100 from densities listed in Table 2.
Contour plots of target densities are displayed in Figure 2. One hundred replications
for each of the sample sizes and for each of the densities were generated.
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(a) Uniform (b) Epanechnikov (c) Biweight (d) Cosine (e) Triangular

Figure 1: One-dimensional kernels with bounded supports.

(A) Normal N2(0, 0; 4, 1, 0)
(B) Student t2(4)
(C) Weibull W (2, 2) ·W (2, 4)
(D) Exponential Exp(2) · Exp(1)
(E) Gamma Student Gamma(2, 1) · t(5)
(F) Lognormal LN2(0, 0; 1, 1, 0)

Table 2: Target densities.

2.4 Comparative criteria
In the case of the diagonal AMISE-optimal bandwidth matrixHAMISE = diag(h2

1,A, h
2
2,A),

we can express its entries [5]

h1,A =
[

ψ
3/4
04 V (K)

β2(K)2ψ
3/4
40 (ψ22 + ψ

1/2
04 ψ

1/2
40 )n

]1/6

,

h2,A =
[

ψ
3/4
40 V (K)

β2(K)2ψ
3/4
04 (ψ22 + ψ

1/2
04 ψ

1/2
40 )n

]1/6

.

We used two criteria to decide which kernel fits best the chosen method: the
average of squared Euclidean norm of difference vectors

ED = avgH‖(ĥ1 − h1,A, ĥ2 − h2,A)T ‖2
2

and the average of integrated square errors

ISE = avgH

∫ [
f̂(x, H)− f(x)

]2 dx,

where the average is taken over simulated realizations. ED can be considered as
a visual criterion and ISE, which was computed numerically, can be viewed as a
numerical criterion.

3 Results

We compared a performance of kernels within each of the mentioned cross-validation
methods. We selected bandwidth matrices — we computed values of minH∈HD LSCV(H),
minH∈HD BCV1(H), and minH∈HD BCV2(H) on a dense grid numerically. For a
faster computation, we used ideas by Horová et al. [2]. Tables 3 and 4 summarize
results of ED criterion and Tables 5 and 6 summarize results of ISE criterion.
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(a) Normal (b) Student (c) Weibull

(d) Exponential (e) Gamma Student (f) Lognormal

Figure 2: Contour plots of target densities.

ED LSCV
density n Uni Epan Biw Cos Tri
(A) 50 0.76(0.07) 0.69(0.05) 0.67(0.06) 1.82(0.16) 4.24(0.28)

100 0.85(0.05) 0.76(0.04) 0.58(0.04) 2.01(0.12) 4.97(0.21)
(B) 50 0.86(0.04) 0.88(0.05) 0.82(0.05) 1.21(0.08) 2.75(0.17)

100 0.92(0.02) 0.90(0.02) 0.81(0.02) 1.16(0.05) 2.61(0.09)
(C) 50 0.80(0.02) 0.81(0.02) 0.75(0.02) 1.62(0.07) 3.32(0.12)

100 0.95(0.02) 1.00(0.02) 0.95(0.02) 1.84(0.05) 3.28(0.10)
(D) 50 0.69(0.08) 0.69(0.09) 0.63(0.09) 1.62(0.21) 4.32(0.42)

100 0.62(0.05) 0.42(0.04) 0.31(0.03) 1.34(0.14) 3.82(0.27)
(E) 50 1.05(0.05) 1.04(0.05) 1.04(0.06) 1.85(0.12) 3.78(0.21)

100 1.13(0.03) 1.13(0.02) 1.07(0.02) 1.66(0.07) 3.55(0.12)
(F) 50 2.05(0.06) 2.26(0.05) 2.43(0.06) 2.55(0.09) 5.10(0.23)

100 2.11(0.05) 2.19(0.04) 2.35(0.04) 2.56(0.08) 4.96(0.14)

Table 3: LSCV method: an average of Euclidean norm with a standard error.

One can use each of the kernels for the least square cross-validation method. The
bias cross-validation methods require some smoothness conditions to be satisfied. In
this case, we can use only Epanechnikov, the biweight, and the cosine kernel for BCV1
and the biweight and the cosine kernel for BCV2.

The biweight kernel seems to be the best choice for the least square cross-validation
method. According to ED-criterion, Epanechnikov and the uniform kernel are also
good choice. By contrast, the uniform kernel is the least suitable choice according to
ISE-criterion. The second best choice is Epanechnikov and the cosine kernel. On the
other hand, LSCV-optimal bandwidths suffer from a large variability (see [2]). For
all kernels this variability is approximately the same.

In the case of the BCV1, we can choose between using Epanechnikov and the
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ED BCV1 BCV2
density n Epan Biw Cos Biw Cos
(A) 50 3.79(0.02) 6.29(0.03) 4.15(0.02) 2.62(0.06) 1.12(0.03)

100 3.43(0.01) 5.44(0.01) 3.74(0.01) 2.31(0.03) 1.07(0.02)
(B) 50 1.19(0.01) 2.12(0.01) 1.34(0.01) 0.54(0.01) 0.15(∗)

100 1.14(∗) 1.91(0.01) 1.26(∗) 0.53(0.01) 0.16(∗)
(C) 50 0.63(∗) 1.16(0.01) 0.71(0.01) 0.22(0.01) 0.04(∗)

100 0.62(∗) 1.05(∗) 0.69(∗) 0.23(0.01) 0.05(∗)
(D) 50 1.90(0.01) 3.27(0.02) 2.11(0.02) 1.05(0.03) 0.35(0.01)

100 1.79(0.01) 2.88(0.01) 1.97(0.01) 1.02(0.02) 0.40(0.01)
(E) 50 1.14(0.01) 1.98(0.01) 1.26(0.01) 0.66(0.02) 0.34(0.02)

100 1.06(∗) 1.75(0.01) 1.17(∗) 0.56(0.01) 0.25(0.01)
(F) 50 0.01(∗∗) 0.04(∗) 0.01(∗∗) 0.32(0.02) 0.57(0.02)

100 0.02(∗∗) 0.06(∗∗) 0.02(∗∗) 0.15(∗) 0.31(∗)

Table 4: BCV1 and BCV2 methods: an average of Euclidean norm with a standard
error (∗ stands for the standard error less than 0.005 and ∗∗ for the standard error
less than 0.001).

100 × ISE LSCV
density n Uni Epan Biw Cos Tri
(A) 50 0.48(0.02) 0.39(0.02) 0.38(0.02) 0.43(0.02) 0.48(0.02)

100 0.37(0.01) 0.27(0.01) 0.24(0.01) 0.30(0.01) 0.38(0.01)
(B) 50 1.11(0.04) 0.86(0.03) 0.77(0.03) 0.90(0.04) 1.10(0.04)

100 0.97(0.02) 0.69(0.02) 0.58(0.02) 0.70(0.02) 0.91(0.03)
(C) 50 3.54(0.07) 2.47(0.07) 2.03(0.07) 2.48(0.07) 3.06(0.07)

100 3.52(0.05) 2.47(0.05) 1.97(0.05) 2.37(0.05) 2.84(0.06)
(D) 50 5.23(0.07) 4.43(0.08) 4.05(0.08) 4.28(0.08) 4.62(0.08)

100 5.04(0.06) 4.12(0.06) 3.67(0.06) 3.92(0.06) 4.30(0.06)
(E) 50 1.03(0.03) 0.79(0.03) 0.73(0.03) 0.82(0.04) 0.94(0.04)

100 0.97(0.02) 0.71(0.02) 0.61(0.02) 0.68(0.02) 0.83(0.02)
(F) 50 5.32(0.08) 4.25(0.08) 3.76(0.08) 4.10(0.08) 4.57(0.08)

100 5.32(0.06) 4.12(0.06) 3.59(0.06) 3.97(0.06) 4.47(0.06)

Table 5: LSCV method: an average of the integrated square error with a standard
error.

cosine kernel, because their performance is comparable regarding both critera. But
the BCV1 method gives quite underestimated values of the optimal bandwidth H.

Concerning BCV2, it is obvious that the cosine kernel performs better than the
biweight kernel. Density (F) is an exception, but there is influence of boundary effects.
The main advantage of the cosine kernel over the biweight kernel is that its fourth
derivative, needed for calculation of BCV2, is not a constant function, as it is the case
for the biweight kernel.

4 Conclusion

In this paper we compared several two-dimensional kernels with a bounded support
with respect to the method for finding optimal bandwidth. We propose that the
biweight kernel is the best choice for the LSCV method and the cosine kernel is the
best choice for the BCV2. In the case of BCV1, one can decide whether to use the
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100 × ISE BCV1 BCV2
density n Epan Biw Cos Biw Cos
(A) 50 4.79(0.12) 9.48(0.32) 5.51(0.15) 1.24(0.05) 0.73(0.03)

100 4.80(0.12) 9.08(0.28) 5.54(0.15) 0.90(0.02) 0.54(0.01)
(B) 50 5.82(0.28) 11.35(0.58) 6.81(0.33) 1.48(0.07) 0.94(0.04)

100 5.81(0.23) 11.17(0.51) 6.63(0.28) 1.07(0.04) 0.67(0.02)
(C) 50 9.87(0.22) 18.90(0.42) 11.18(0.25) 2.44(0.10) 1.55(0.07)

100 9.81(0.19) 18.80(0.45) 11.26(0.23) 1.72(0.05) 1.10(0.04)
(D) 50 7.43(0.22) 14.10(0.41) 8.43(0.25) 3.37(0.10) 3.34(0.08)

100 7.65(0.17) 14.38(0.37) 8.98(0.23) 2.55(0.06) 2.55(0.06)
(E) 50 5.81(0.18) 11.42(0.40) 6.68(0.21) 1.47(0.05) 0.94(0.03)

100 6.16(0.17) 11.63(0.42) 7.04(0.22) 1.12(0.03) 0.71(0.02)
(F) 50 7.90(0.25) 15.94(0.73) 9.09(0.32) 2.97(0.08) 2.96(0.08)

100 8.95(0.28) 17.51(0.66) 10.48(0.35) 2.37(0.05) 2.31(0.05)

Table 6: BCV1 and BCV2 methods: an average of the integrated square error with a
standard error.

cosine kernel or Epanechnikov kernel.
In the future, we want to extend this study to a larger group of kernels and also

to a higher dimension.
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